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Abstract
Nutritional immunity is a process whereby an infected host manipulates essential micronu-

trients to defend against an invading pathogen. We reveal a dynamic aspect of nutritional

immunity during infection that involves copper assimilation. Using a combination of laser

ablation inductively coupled mass spectrometry (LA-ICP MS) and metal mapping, immuno-

histochemistry, and gene expression profiling from infected tissues, we show that readjust-

ments in hepatic, splenic and renal copper homeostasis accompany disseminated Candida
albicans infections in the mouse model. Localized host-imposed copper poisoning mani-

fests itself as a transient increase in copper early in the kidney infection. Changes in renal

copper are detected by the fungus, as revealed by gene expression profiling and fungal vir-

ulence studies. The fungus responds by differentially regulating the Crp1 copper efflux

pump (higher expression during early infection and down-regulation late in infection) and

the Ctr1 copper importer (lower expression during early infection, and subsequent up-regu-

lation late in infection) to maintain copper homeostasis during disease progression. Both

Crp1 and Ctr1 are required for full fungal virulence. Importantly, copper homeostasis influ-

ences other virulence traits—metabolic flexibility and oxidative stress resistance. Our study

highlights the importance of copper homeostasis for host defence and fungal virulence dur-

ing systemic disease.

Introduction
Micronutrients such as ferrous or cuprous ions are scarce, yet essential for life. They play cen-
tral roles in many biological processes, executing both structural and catalytic functions [1].
However, these ions are toxic in excess. For example, they promote free radical generation via

PLOSONE | DOI:10.1371/journal.pone.0158683 June 30, 2016 1 / 18

a11111

OPEN ACCESS

Citation: Mackie J, Szabo EK, Urgast DS, Ballou ER,
Childers DS, MacCallum DM, et al. (2016) Host-
Imposed Copper Poisoning Impacts Fungal
Micronutrient Acquisition during Systemic Candida
albicans Infections. PLoS ONE 11(6): e0158683.
doi:10.1371/journal.pone.0158683

Editor: Joy Sturtevant, Louisiana State University,
UNITED STATES

Received: April 11, 2016

Accepted: June 20, 2016

Published: June 30, 2016

Copyright: © 2016 Mackie et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This work was supported by the European
Research Council (http://erc.europa.eu/: STRIFE
Advanced Grant ERC-2009-AdG-249793). A.J.P.B.
was also supported by the UK Biotechnology and
Biological Research Council (www.bbsrc.ac.uk:
Research Grants BB/F00513X/1, BB/K017365/1), the
UK Medical Research Council (www.mrc.ac.uk:
Programme Grant MR/M026663/1; Centre Grant MR/
N006364/1), and the Wellcome Trust (www.wellcome.
ac.uk: Strategic Award 097377). The funders had no

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0158683&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://erc.europa.eu/
http://www.bbsrc.ac.uk
http://www.mrc.ac.uk
http://www.wellcome.ac.uk
http://www.wellcome.ac.uk


the Fenton reaction, which causes lipid and protein peroxidation [2]. Therefore, metal parti-
tioning and distribution must be strictly controlled to avoid cellular damage. Metal availability
resides at the centre of pathogen-host interactions. In a process termed ‘nutritional immunity’,
the host manipulates the availability of specific micronutrients to the disadvantage of invading
microbes, either starving them for metal ions [3,4], or poisoning them with metal overload [5–
7]. In response, pathogenic microbes activate specific mechanisms to overcome this metal dep-
rivation or excess [4,8,9].

Recently, we explored the dynamics of global iron homeostasis in the host during systemic
infections caused by the opportunistic fungal pathogen Candida albicans. This fungus is a com-
mensal microbe that colonises the gut and mucosal surfaces of healthy individuals. In immuno-
compromised patients, it causes life-threatening infections characterised by extremely high
mortality rates (40%) [10,11]. We showed previously that the iron landscape of the kidney is
profoundly affected by systemic fungal infection [12]. During disseminated candidiasis, the
liver synthesizes increased amounts of hepcidin, which inhibits iron release from tissue stores.
Also, the recycling of erythrocytes (red blood cells) is perturbed in splenic macrophages of the
reticuloendothelial system, requiring the kidney to become involved in erythrocyte recycling.
Consequently, iron concentrations increase in the renal medulla. Meanwhile, through the
action of haem oxygenases, immune infiltrates in the kidney prevent this iron from reaching
the fungal cells. This generates zones of iron starvation around the fungal lesions, representing
a classical nutritional immunity mechanism. The fungus counteracts these changes by switch-
ing its iron acquisition strategies from FTR1-dependent reductive iron acquisition to HMX1-
dependent haem iron acquisition [12].

The acquisition, partitioning and mobilisation of cellular iron depend on copper availability,
and this dependency is evolutionarily conserved [13]. In mammalian cells, copper-containing
oxidases such as hephaestin and ceruloplasmin mediate Fe3+ loading onto the major blood iron
carrier, transferrin, for transport to distant tissues [13,14]. Meanwhile, reductases enable the
import of iron via the DMT1 transporter, and its subsequent intracellular storage in ferritin
[13]. Fungi also utilise copper ferroxidases to acquire iron from the environment, via the reduc-
tive iron acquisition pathway (e.g. Fet3 in C. albicans [15], and FetC in Aspergillus fumigatus
[16]). Unlike intracellular iron redistribution, which involves non-specific metal trafficking
between intracellular locations, copper ions are relayed via specific metallochaperones to their
cognate protein targets [13,17]. For example, murine ATOX1 relays copper to the trans-Golgi
copper transporting ATPase ATP7B [18], CCS to superoxide dismutase SOD1 [19], and
COX17 to mitochondrial cytochrome c oxidase [20]. In contrast to the relatively well-
researched area of iron nutritional immunity, there have been few studies of the copper nutri-
tional immunity mechanisms that operate during microbial infections. Notable examples
include copper poisoning of macrophage-engulfed Salmonella Typhimurium [21] andMyco-
bacterium tuberculosis cells [5], and the adaptation of Cryptococcus neoformans to changes in
copper levels during systemic infection [6,22].

Here we explore the importance of copper nutritional immunity during the development of
C. albicans infections in mice. We show that systemic candidiasis triggers adjustments in cop-
per uptake and release by organs that are peripheral to the major site of infection in the kidney,
such as the liver and spleen. Intriguingly, these adjustments coincide with infection-associated
shifts in iron metabolism in these organs. Renal copper levels increase during the early stages
of fungal colonisation, and decrease late in infection. C. albicans counteracts copper excess
early in infection by high-level expression of the Crp1 copper efflux pump. As the infection
progresses, Crp1 expression is down-regulated and Ctr1 high affinity copper importer is up-
regulated. Both the efflux pump and importer are required for full fungal virulence in the
mouse model, revealing the importance of dynamic host-fungal interactions during nutrient
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immunity. We conclude that the maintenance of cellular copper homeostasis during periods of
copper excess and subsequent starvation is essential for C. albicans virulence.

Materials and Methods

Candida albicans strains and growth conditions
Experiments were performed with C. albicans clinical isolate SC5314 [23] or mutants con-
structed in this background (below). Unless specified otherwise, cells were grown at 30°C in
YPD medium [24] or YNB (0.67% yeast nitrogen base without amino acids) medium, supple-
mented with 2% appropriate carbon sources, or with stressor at the specified concentration.

C. albicansmutants were constructed using the Clox system with nourseothricin selection
[25]. To create the homozygous ctr1/ctr1 deletion mutant, theNAT1-Clox cassette was PCR
amplified using primer pairs CTR1_CLOx_F_JP plus CTR1_CLOx_R_JP, and CTR1_CLOx_
F3_JP plus CTR1_CLOx_R3_JP (S1 Table) and used to transform SC5314 to sequentially delete
both CTR1 alleles. To construct the ctr1/CTR1 reintegrant strain, the wild type CTR1 sequence
was reintroduced into its native chromosomal locus. The CTR1 locus was PCR amplified using
primers SpeI_F_CTR1_ReINT_JP and Not1_R_CTR1_ReINT_JP (S1 Table), digested with
SpeI andNotI, and cloned into pLNMCL [25]. The plasmid was then digested with BstAPI and
used to transform the ctr1/ctr1 deletion mutant selecting for nourseothricin resistance.

To create the homozygous crp1/crp1 null mutant, the NAT1-Clox cassette was PCR ampli-
fied using primer pairs CRP1_CLOx_F_JP plus CRP1_CLOx_R_JP, and CRP1_CLOX_F2_JP
plus CRP1_CLOX_R2_JP (S1 Table), with both CRP1 alleles deleted sequentially in C. albicans
SC5314. To construct the crp1/CRP1 reintegrant strain, the wild type CRP1 locus was PCR
amplified using primers Not1_F_CRP1_ReINT_JP plus Not1_R_CRP1_ReINT_JP (S1 Table),
digested with NotI and cloned into pLNMCL. This plasmid was then digested with Kpn2I, and
used to transform the crp1/crp1 null mutant.

The genotype of each mutant and the ploidy of the target locus were verified by qRT-PCR
with Roche LightCycler 480 system with specific primer pairs (S2 Table).

Animal experiments
Animal experiments were performed as described previously [12]. Briefly, C. albicans strains
were pre-grown overnight at 30°C in NGY broth [26]. C. albicans inocula (104−105 CFU/g
body mass) were injected into the lateral tail veins of 6–10 week old specific pathogen-free
female BALB/c mice (Harlan, UK). For the CTR1 virulence study, the infection doses (CFU/g
animal weight x 104) were as follows: SC5314, 1.9 ± 0.1; ctr1 deletion mutant, 1.1 ± 0.1; ctr1/
CTR1 reintegrant, 4.2 ± 0.2. For the CRP1 virulence study, the infection doses (CFU/g animal
weight x 104) were: SC5314, 3.2 ± 0.1; crp1 deletion mutant, 1.0 ± 0.03; crp1/CRP1 reintegrant,
2.5 ± 0.1. Infections were allowed to proceed for 3 days, with six animals randomly assigned to
every experimental group (the group size was determined by Power calculations), and fungal
loads determined in kidneys [27]. Early infections were analysed after 24 h and advanced infec-
tions after 96 h. Tissues were placed on dry ice and stored at -80°C before processing for histol-
ogy or ICP-MS, as described [12]. Periodic acid and Schiff staining [28] was used to assess the
histology of fresh-frozen tissues. Alternatively, for transcript profiling, the harvested organs
were stored in RNAlater (Qiagen, Crawley, UK) [12].

Ex vivo renal epithelium model
The ex vivo experiments were performed as described elsewhere [29]. Briefly, C. albicans
strains were grown overnight at 30°C in YPD, washed three times in PBS, and co-incubated
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(MOI = 1) with M-1 mouse kidney cortical collecting duct epithelial cells (CRL-2038, ATCC)
for up to 24 h in DMEM:Ham’s F12 supplemented with 2 mM glutamine (Gibco Life Technol-
ogies), 5 μM dexamethasone (Hspira UK Limited), 5% foetal bovine serum with 5% CO2 at
37°C. KC production was measured by ELISA [29]. Renal epithelial cell damage was assessed
by assaying lactate dehydrogenase release into the culture supernatant [29]. For histology, the
cells were fixed in 4% formaldehyde for 12 h at 8°C, washed three times with PBS and stained
using Periodic acid and Schiff [28]. Mann-Whitney U test with two-tailed t-test was used to
assess statistical differences between the two groups.

Immunohistochemistry
Specific antigens in kidney, liver and spleen sections were detected using the Vectastain Elite
ABC System (VectorLabs, Orton Southgate, UK), according to manufacturer’s instructions.
The following primary mouse-specific antibodies were used: ATP7A, rabbit, polyclonal
(Abcam, Cambridge, UK); ATP7B, rabbit, polyclonal to ATP7B C-terminal region (Abcam,
Cambridge, UK); ceruloplasmin, rabbit, polyclonal (Abcam, Cambridge, UK); CTR1, rabbit,
polyclonal to SLC31A1/CTR1 (Abcam, Cambridge, UK); F4/80, rat, monoclonal (AbDSerotec,
Kidlington, UK); HO-1, rabbit, polyclonal (Abcam, Cambridge, UK); SOD1, rabbit, polyclonal
(Abcam, Cambridge, UK). The secondary antibodies were biotinylated horse anti-rabbit IgG
(H+L) (VectorLabs, Orton Southgate, UK), or goat anti-rat IgG2b:horse radish peroxidase con-
jugate (AbDSerotec, Kidlington, UK) with 3,30-diaminobenzidine as the substrate (VectorLabs,
Orton Southgate, UK). Images are representative of at least two replicates from at least four
independent biological replicates. Brown colour indicates positive reaction. Blue colour indi-
cates no staining.

For fluorescent detection of ATP7B, the secondary antibody used was goat anti-rabbit Alexa
Fluor 647 (IgG H&L) conjugate (Abcam, Cambridge, UK). The staining was performed in the
dark, after which the sections were mounted using VectaShield Mounting Medium with DAPI
(VectorLabs, Orton Southgate, UK).

Gene expression studies
Mouse and fungal transcripts from tissues fixed with RNAlater (Qiagen, Crawley, UK) or in
vitro C. albicans cultures were quantified as described elsewhere [30]. Roche LightCycler 480
and Universal Probes were used in monocolour hydrolyses reactions in qRT-PCR, according
to the manufacturer’s instructions. Primer pairs and specific probes are listed in S3 Table and
elsewhere [12,30]. Fungal transcript levels were normalised to the ACT1mRNA control, and
mammalian transcript levels to the GAPDHmRNA. Differences were considered statistically
significant for p�0.05 in two-tailed t-test, using the Mann-Whitney U test. For multiclass com-
parisons in Figs 1A, 2D, 3B and 3C and S4 Fig, the Mann-Whitney U test was performed only
after Kruskal-Wallis statistics revealed significant differences (p�0.05) between the compared
groups.

Laser ablation inductively coupled plasma mass spectrometry (LA-ICP
MS) and ICP-MS for total tissue metal content
LA-ICP MS experiments were performed as described previously [12]. Sequential 22-μm-thick
cryosections from the same tissue were prepared for LA-ICP MS, histology and immunohis-
tochemistry. Elemental distribution mapping was performed with a laser ablation system (UP-
213, NewWave) coupled to an Agilent 7500c ICP-MS, as described previously [12]. Data were
background subtracted and plotted using Microsoft Excel v14.2.4. The images are representa-
tive of at least three biological replicates. Total tissue copper measurements were conducted
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using standard methods [31]. The data are averages from kidneys of four different animals at
the indicated infection stages, pooled and measured in samples of two.

Ethics
All animal experiments were approved by the University of Aberdeen Welfare and Ethical
Review Board. The experiments were conducted in compliance with United Kingdom Home
Office licenses for research on animals (project license number PPL 60/4135) and in accor-
dance with EU Directive 2010/63/EU. Animals were euthanized by cervical dislocation. All
experiments are reported in accordance with the ARRIVE guidelines [32].

Fig 1. Systemic candidiasis perturbs copper homeostatic functions in the liver and spleen. ProgressiveC. albicans infection affects the expression
of copper homeostatic functions in the liver at transcript (A) and protein (B) levels. As the infection progresses, the abundance of hepatic transcripts for
the metal storage protein metallothionein MT1 and the copper-containing ferroxidase ceruloplasmin (CP) increase, while the abundance of the copper
importerCtr1 transcript decreases (A). In contrast, hepatic ceruloplasmin protein levels do not increase with progressive C. albicans infection, while CTR1
protein levels diminish (B), as assessed by immunohistochemistry (Materials and Methods). All transcript data were acquired in duplicate from four
biological replicates: healthy mice (replicates H1–H4), animals at early (24 h, replicates E1–E4) or late (96 h, replicates L1–L4) infection stages, following
injection with saline (controls, H) or C. albicans SC5314. Transcript abundances were normalised against theGAPDHmRNA. Fold differences in
expression are given when p�0.05. Numerical data are provided in S4 Table. (C) In the spleen, the red pulp macrophage population remains relatively
constant, as revealed by detection of the red pulp macrophage antigen F4/80. The haem oxygenase HO-1, CTR1 importer and trans-Golgi ATPase
ATP7B all decrease in the red pulp over the course of infection. Images are representative of four biological replicates. Brown colour indicates positive
reaction and blue colour no reaction. Size bars: 5 mm (B) or 200 μm (C).

doi:10.1371/journal.pone.0158683.g001
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Fig 2. Systemic candidiasis perturbs copper homeostatic functions of the kidney and is accompanied by renal metal redistribution. (A) As
the infection develops, renal metabolism shifts towards increased copper acquisition. Immunohistochemistry revealed an increase in CTR1 copper
importer, ceruloplasmin (CP), and the trans-Golgi copper transporting ATPases ATP7A and ATP7B, during infection. The location of the renal
medulla is indicated inside the dotted area of the top left panel. Arrows markC. albicans lesions. Brown colour indicates positive reaction and blue
colour no reaction. (B) Fluorescent detection of ATP7B protein with Alexa Fluor 647 antibody conjugate showed a progressive increase in signal
(false-coloured red, over the blue DAPI signal) in both the medulla and cortex, with no apparent changes in subcellular distribution of the protein (Size
bars: 20 μm). (C) As theC. albicans infection develops, there is a transient redistribution of copper in renal tissue as shown by 63Cu measurements
using LA-ICP MS. 13C levels remain relatively unchanged throughout, whereas there is a transient increase in tissue 63Cu early in the infection (far
right). Histology of the corresponding tissue sections is shown (‘pas_h’, middle right). The sequential transverse kidney sections shown in (A-C) are
representative of at least two technical replicates, with at least three biological replicates. (D) The shifts in copper distribution are reinforced by
changes in the expression of genes encoding copper-associated functions. These transcript abundance data were acquired in duplicate from at least
three biological replicates. Transcript abundances were normalised to theGAPDHmRNA. Fold differences in expression are given when p�0.05.
Numerical data are given in S5 Table.

doi:10.1371/journal.pone.0158683.g002
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Fig 3. C. albicans copper homeostasis responds specifically to the changing renal tissue microenvironment during infection. (A) The fungus
senses and responds to the copper redistribution in the colonised kidney, as evidenced by the significant up-regulation of theCRP1 copper exporter gene
early in the infection, and the CTR1 copper importer gene at the later infection stage. These transcript data were acquired in duplicate from at least seven
biological replicates: early (24 h, replicates E1–E8); late (96 h, replicates L1–L7) infection stage. Fungal transcript abundances were normalised to the
ACT1mRNA. Fold differences of expression are given when p�0.05. Numerical data are given in S6 Table. (B) TheC. albicans gene expression pattern
in fungal cells isolated from the colonised kidneys is distinct from the fungal response to the blood, supporting tissue-specific response of the CTR1 and
CRP1 transcripts in (A). Blood was obtained from three healthy animals. Transcript abundances for blood and in vitro experiments were acquired in
duplicate from three biological replicates. Colour scale is as in (A). Numerical data are given in S7 Table. (C) C. albicans transcriptional response to the
blood from healthy animals (HB) and animals 24 h post infection (24h) differs from that of in vitro (NGY) grown cells, and is largely unchanged for the
subset of genes analysed. Colour scale is as in (A). Numerical data are given in S8 Table. (D) The inactivation of either CRP1 or CTR1 compromises C.
albicans virulence in the mouse model, as assessed by determining fungal loads in the kidney 72 h post infection. Mann-Whitney U test with two-tailed t-
test was used to assess statistical differences between the groups (n = 6 mice per group; the detection limit of our CFU determining method is ca. 100
fugal cells/kidney; CFU counts were below the detection limit in four animals infected with crp1 null mutant and in five animals infected with ctr1 null
mutant). Differences were considered statistically significant when p�0.05, and the corresponding p values are given.

doi:10.1371/journal.pone.0158683.g003
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Results

C. albicans infections affect hepatic copper metabolism
The mammalian liver is involved in iron and copper homeostasis. It is a major site of iron stor-
age, with ferric iron trapped in ferritin [33], and regulates iron fluxes in other organs through
the production and excretion of the soluble hormone hepcidin [34,35]. The liver also produces
ceruloplasmin, the major plasma cuproprotein, and ferroxidase that promotes iron mobilisa-
tion [13,36]. The liver receives the bulk of dietary copper from the duodenum, conjugated to
albumin or α2-macroglobulin. Ceruloplasmin also promotes the delivery of copper to other
organs [37,38].

During disseminated C. albicans infections, hepcidin production and hepatic iron stores
increase dramatically [12]. Given the documented relationship between copper and iron
homeostases [13], we profiled key hepatic copper-related transcripts to gain insight into the
effect of C. albicans infection upon hepatic copper metabolism. These included transcripts
encoding the mammalian copper storage protein metallothionein MT1, the high-affinity cop-
per importer CTR1, and ceruloplasmin. We sampled the livers of healthy animals and those of
animals infected systemically for 24 or 96 h (henceforth referred to as ‘early’ or ‘late’ infection
stages) (Fig 1A, S4 Table). TheMt1 transcript was significantly up-regulated while the Ctr1
transcript was significantly down-regulated at both infection time points. This suggested
increased copper storage and decreased copper consumption by the liver [39,40]. Indeed,
recently Li et al [41] reported perturbations in hepatic copper content during the course of can-
didiasis infections in mice. Ceruloplasmin production is induced during infections as part of
the generic acute phase response of the host [42]. Accordingly, the Cp transcript was signifi-
cantly up-regulated in the livers of infected, but not healthy, animals (Fig 1A). Interestingly,
this was not accompanied by an increase in hepatic ceruloplasmin protein levels, as determined
by immunohistochemistry (Fig 1B). This might suggest that Cp gene expression is regulated at
a posttranscriptional level [43]. CTR1 protein levels decreased as infection progressed, which
correlated with the decline in Ctr1 transcript levels (Fig 1A and 1B). We conclude that systemic
C. albicans infection perturbs host copper homeostasis in the liver.

C. albicans infections perturb splenic copper homeostasis
We showed previously that systemic candidiasis affects metal (iron) metabolism in the spleen
[12]. Therefore, we investigated the effects of C. albicans infection on copper appropriating
proteins of the splenic red pulp. We used specific antibodies to probe splenic levels of cerulo-
plasmin, CTR1 and ATP7B (a trans-Golgi copper efflux ATPase which supplies copper to
various cuproproteins [13,44]). While ceruloplasmin was barely detectable and remained
unchanged (not shown), both CTR1 and ATP7B decreased over the course of systemic infec-
tion (Fig 1C). These data are consistent with a lowered splenic copper consumption. Indeed,
splenic copper levels were recently shown to decrease during candidiasis in the mouse model
[41], further supporting the view that copper appropriation by the spleen declines during dis-
seminated C. albicans infections.

In certain cell types, depending on copper availability, ATP7B and the closely related copper
transporter ATP7A relocalise to facilitate copper export rather than trans-Golgi delivery,
migrating to the apical or basolateral membranes, respectively [13,45,46]. We observed no
change in the subcellular localisation of ATP7B, which was detected as defined punctate struc-
tures at each infection stage (S1 Fig). However, we did observe a gradual decrease in ATP7B
levels in the splenic red pulp, suggesting quantitative rather than qualitative effects of infection
on ATP7B.
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Collectively, our data indicate readjustments of hepatic and splenic copper homeostatic
functions during the development of systemic C. albicans infections.

Adjustment of renal copper homeostasis coincides with increased renal
iron acquisition during C. albicans infections
During disseminated candidiasis, the kidney takes over some erythrocyte recycling functions
from the spleen, and during the latter stages of infection this is reflected in increased renal
transferrin receptor (iron acquisition), HO-1 and HO-2 (haem iron extraction), and hepcidin
and ferritin (iron retention) [12]. Renal iron medullary deposits increase as a result. Simulta-
neously, the host imposes iron nutritional immunity in the renal cortex through infiltrating
immune cells [12]. Given the well-documented mechanistic link between the iron and copper
homeostases [13], we reasoned that kidney copper metabolism would also be affected by sys-
temic candidiasis. Therefore, we compared renal ceruloplasmin, CTR1, ATP7A and ATP7B
protein levels in animals at different stages of infection (Fig 2A). Indeed, the levels of these cop-
per homeostasis proteins increased during infection. Furthermore, the abundance of ATP7B
progressively increased in both the renal cortex and medulla during infection, but its subcellu-
lar localisation remained unchanged over the course of the disease (Fig 2B). Although ATP7B
is generally thought to be liver-specific, this result is consistent with a previous report on
ATP7B dynamics in an in vitromodel [46]. Collectively, these data suggest increased renal cop-
per acquisition and/or redistribution during systemic fungal infection.

We next mapped 63Cu in kidneys from animals at different stages of infection and observed
a transient increase in the overall copper in early infection (Fig 2C). We measured the total
amount of kidney copper from organs of healthy animals, and animals at early and late infec-
tion stages. There was a ca. 10% increase in total kidney copper at the 24 h time point, when
compared with healthy animals (16.6±0.5 mg/kg dry weight ‘early infection’ vs. 15.3±0.8 mg/
kg dry weight ‘healthy’). Late in the infection, the total kidney copper levels fell by more than
ca. 10% compared to the healthy controls (13.9±0.4 mg/kg dry weight ‘late infection’). The
recent data of Li et al [41] reinforce these observations. The kidney is more resilient to global
metal content changes than other organs [47], and therefore the detected changes in copper
may suggest a physiologically relevant role for the infection process.

Our data indicated changes in renal copper loading and distribution during disease progres-
sion, suggesting possible alterations in intracellular renal copper pools. We therefore profiled
the expression of mouse genes encoding copper metallochaperones and some of their clients:
Ccs and Sod1; Cox17 and Cox1; Atox1 for Atp7B; ceruloplasmin (Cp), the main cuproprotein
involved in iron loading of transferrin; and the mitochondrial Mn Sod2 (Fig 2D, S5 Table). The
abundances of the Cox1, Cox17 and Sod1 transcripts all decreased in abundance during disease
progression. Interestingly, SOD1 protein was present at lesion sites late in the infection (S2 Fig).
Ccs and Sod2 transcript levels remained unchanged. Remarkably, Cp transcript was up-regu-
lated about seven-fold in infected kidney, relative to the healthy controls. This suggests that the
ceruloplasmin protein detected late in the infection (Fig 2A) may have been synthesised by the
kidney [48], rather than being transported from the liver. This corroborated our observation
that hepatic ceruloplasmin levels do not increase during the course of infection (Fig 1B).

Since the kidney is relatively resilient to changes in metal content compared to other organs
[47], we surmised that changes in Cox1 and Cox17mRNA levels during infection could either
signify kidney injury or infection-triggered shifts in renal copper dynamics. Mitochondrial dys-
function and fragmentation occur during kidney injury [49,50]. However, Cox1 transcript levels
decreased early, i.e., 24 h post infection, when only modest numbers of C. albicans cells were
detectable in the kidneys. Furthermore, the mRNA levels for genes encoding mitochondrial
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fission and fusion proteins remained unchanged during the infection (Fig 2D). Thus, the
changes in renal copper homeostasis gene expression during systemic C. albicans infection
appear to reflect an active response to infection rather than tissue damage.

Renal copper fluxes trigger micronutrient adaptation in C. albicans
during systemic infection
The detected changes in renal copper content during disseminated C. albicans infections (Fig
2C) temporally coincided with the mobilisation of renal iron toward the medulla and away
from fungal lesions during the infection [12]. We previously showed that the fungus senses the
reduction in iron availability and responds by activating haem iron acquisition alongside its
reductive iron acquisition pathway [12]. Therefore, we reasoned that the dynamic cupric/
cuprous renal microenvironment should also be detected by the fungus. We examined the
expression of copper-associated genes in fungal cells from renal lesions, focusing on copper
transporters, chaperones, regulators and storage proteins (Fig 3A, S6 Table). Transcript levels
for the high affinity copper efflux ATPase Crp1 [51] were significantly higher at early infection
stages, and then declined. This was consistent with a recent report indicating that fungal CRP1
expression increases early during systemic infection [52]. In contrast, expression of the high
affinity copper importer CTR1 [53] was lower at early infection stage and then increased during
the course of infection (Fig 3). These expression patterns differed from those of C. albicans
cells exposed to blood (Fig 3B, S7 Table) or those grown in vitro (Fig 3C, S8 Table). Rather,
they were consistent with fungal copper efflux coinciding with the transient increase in renal
copper levels early in infection. Furthermore, the data suggested an increase in fungal copper
import in response to the subsequent decline in renal copper levels (Fig 2C).

We examined the regulation of C. albicans CRP1 (copper efflux pump) and CTR1 (copper
importer) in response to copper in vitro. CRP1 gene expression increased while CTR1 expres-
sion decreased in response to elevated copper concentrations, in agreement with earlier reports
[51,53,54] (S3 Fig). In addition, CTR1 was induced under iron limitation, consistent with the
interaction of iron and copper micronutrients and in agreement with previous studies [55] (S4
Fig, S9 Table). Regulation of these C. albicans genes in response to copper and iron in vitro
reflected their expression patterns in vivo in response to the observed changes in renal metal
ion availability (Fig 2C and Potrykus et al [12]).

We next asked whether the C. albicans cells were responding to copper content in the blood-
stream or in the renal tissue. The bloodstream contains copper-containing entities such as
ceruloplasmin, macroglobulin, albumin and amino acids [13], and therefore it was possible
that the C. albicans cells were reacting to copper levels in the blood. Indeed, a progressive
increase in serum copper has been reported over the course of systemic candidiasis in the
mouse model [41]. Hence we examined the impact of blood from infected mice and healthy
controls upon the expression of copper- (and also iron-) related genes in C. albicans. C. albi-
cans cells were incubated for 30 min with blood from healthy animals and animals 24 h post-
infection (Fig 3C) as this time point coincided with high CRP1 expression levels in vivo (Fig
3A) and fungal cells in vitro respond to copper within this timescale (S4 Fig). Significant differ-
ences were observed between the blood-incubated samples and the corresponding in vitro con-
trols for most of the genes analysed. However, the only gene displaying a significant difference
between C. albicans cells exposed to infected or uninfected blood was CSA2, which encodes a
haem receptor (Fig 3C). Given the minimal differences between infected and uninfected blood,
we inferred that the observed changes in renal copper distribution during systemic candidiasis,
and the accompanying C. albicans gene expression patterns, reflect changes in copper retention
by the kidney rather than bloodstream copper accessible to the fungus.
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The virulence of C. albicans during systemic infection depends on both
CRP1 and CTR1
The CRP1 and CTR1 genes encoding the copper efflux pump and importer, respectively, are
differentially regulated during systemic infection (Fig 3A). To test whether these genes are
important for infection, we constructed isogenic C. albicans deletion mutants in the genetic
background of the clinical isolate SC5314 [33] using our Clox gene disruption system [36] and
tested their virulence in the mouse model of systemic infection [12]. We inoculated mice with
similar numbers of fungal cells, based on haemocytometer measurements of total cell numbers.
Subsequent measurements of the actual CFUs revealed differences in the number of live fungal
cells injected into the mice possibly due to different strain viabilities in vitro. This might have
affected the final kidney CFU outcomes. Nevertheless, the data strongly suggest that CRP1 and
CTR1 were both required for the full virulence of C. albicans (Fig 3D). Thus, during infection,
C. albicans cells require the capacity to extrude, as well as import and assimilate, copper.

The main phenotype of the CRP1 null mutant in vitro was its exquisite sensitivity to copper.
In rich YPD medium, crp1 cells were unable to grow at Cu2+ concentrations over 7.5 mM,
whereas wild type cells tolerated concentrations of 12.5 mM (Fig 4A). This recapitulated the
phenotype of C. albicans crp1mutants constructed in other genetic backgrounds [51,54].

We tested whether the virulence defect of crp1 cells resulted from its role in the C. albicans-
renal cell interaction. To achieve this we exploited our ex vivomodel of renal infection, which
is a proxy for C. albicans virulence studies [29]. The interaction of C. albicans with the renal
epithelial cells in this ex vivomodel was not compromised by CRP1 inactivation (Fig 4B and
4C). No significant differences between C. albicans crp1 and wild type cells were observed with
respect to their ability to stimulate lactate dehydrogenase (LDH) release or KC cytokine pro-
duction by the renal cells (Fig 4B and 4C). Furthermore, after an overnight incubation, the crp1
mutant formed a matt of fungal cells over the renal cells, comparable to the wild type control
(not shown). Therefore, the transient CRP1 up-regulation observed in vivo during developing
systemic infection (Fig 3A) is not simply an outcome of fungus-renal cell interactions.

The deletion of the Ctr1 importer impaired copper acquisition by the fungus and also
exerted pleiotropic effects on C. albicans (Fig 5). Deletion of CTR1 in the SC5314 background
rendered C. albicans cells sensitive to copper deprivation (Fig 5A), thereby recapitulating the
phenotype of ctr1 cells in a different, ura3-, genetic background [53]. Furthermore, the ctr1
null mutant was sensitive to iron chelating agents (Fig 5B), thereby underscoring the role of
copper in iron acquisition [55]. We note that while BPS is generally viewed as an iron-specific
chelator, it can also bind other metals. Therefore, we do not exclude the possibility that the che-
lation of other metals may contribute to the observed effects of BPS. Mutant ctr1 cells were also
sensitive to oxidative (H2O2) stress. Interestingly, these phenotypes were suppressed by copper
supplementation, indicating that they were caused by intracellular copper deprivation. Iron
scavenging and oxidative stress resistance promote C. albicans pathogenicity [56–58], and,
therefore, it was not surprising that ctr1 cells displayed attenuated virulence during systemic
infection (Fig 3D).

Interestingly, C. albicans ctr1 cells failed to utilise glycerol or ethanol, and their ability to
assimilate glucose and oleic acid was also compromised (Fig 5D). These defects in carbon
assimilation were rescued by copper supplementation, but not by ferric ions or haemoglobin
iron (Fig 5D). Thus they were mediated by copper, not iron, insufficiency resulting from the
lack of the high affinity copper importer. Furthermore, the growth defects of C. albicans ctr1
cells were accompanied by changes in core metabolic pathway gene expression (Fig 5E, S10
Table). It has been established that C. albicans dynamically readjusts its core metabolism dur-
ing the course of systemic infections. For example, the CDC19 gene encoding the glycolytic
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enzyme pyruvate kinase is down-regulated, while transcripts for the gluconeogenic enzyme
phosphoenolpyruvate carboxykinase (PCK1) and the glyoxylate cycle enzyme malate synthase
(MLS1) are up-regulated (Fig 5F, S11 Table) [52,59,60]. Indeed, it has been demonstrated that
the ability to assimilate alternative carbon sources is critical for fungal virulence [59,61,62].
Therefore, the influence of Ctr1-mediated copper sequestration upon C. albicans virulence is
probably mediated in part through promotion of efficient carbon assimilation.

Discussion
Infection sites comprise perpetually changing microcosms, shaped by the dynamic interactions
between the pathogen and the host. Micronutrients play a central role in this dynamic interplay
during disease progression. Consequently, nutritional immunity has evolved as a mechanism by
which the host manipulates local micronutrient concentrations to the detriment of the invading
microbe in an attempt to contain an infection [4,9]. The case for nutritional immunity is well
documented for iron, and bacterial and fungal pathogens including C. albicans require effective

Fig 4. TheC. albicans CRP1 copper exporting ATPase is required for copper tolerance in vitro and plays a role
in fungus-host interaction in vivo. (A) The deletion of CRP1 severely impairs the ability of C. albicans to grow in the
presence of copper.C. albicans cells were grown at 30°C overnight in YPDmedium. Cultures were diluted at
OD600 = 0.001 into fresh medium containing the appropriate CuSO4 concentrations, and growth was monitored after 21
h, at 30°C. The values represent differences between the final and initial OD600 of cultures (+/- SD from two technical
replicates), and are representative of three separate experiments performed. (B) Nevertheless, CRP1 deletion does not
impair the interaction of C. albicanswith murine renal epithelial cells in vitro. The CRP1mutant elicits a similar degree of
damage to the renal epithelial cell monolayer as the parental strain SC5314, as assessed by measurements of LDH
release. At least three independent C. albicans inocula were used in at least two independent co-incubation
experiments, in duplicate. (C) Similarly, there is no difference in the release of KC by the renal cells when incubated with
the crp1mutant versus the SC5314 isogenic control.

doi:10.1371/journal.pone.0158683.g004
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iron acquisition mechanisms for full virulence [56,58]. Here we demonstrate another layer of
complexity governing the pathogen-host tug of war—the regulation of copper homeostasis.

Our data clearly indicate that disseminated fungal infections affect copper metabolism in
organs that promptly clear the infection (the liver and spleen), as well as organs that become
colonized (the kidney). These changes coincide with previously described [12] infection-associ-
ated perturbations in iron metabolism in these organs. Unsurprisingly, the local changes in
copper levels are sensed by C. albicans. Similarly to iron acquisition [12,56,58], intact copper
acquisition pathways (Fig 3D) are required for full C. albicans virulence. Early in the infection,
high expression of fungal Crp1 high affinity efflux pump accompanies increased copper levels,

Fig 5. High affinity copper acquisition influences fungal pathogenicity factors.C. albicans ctr1 cells are susceptible to copper deprivation imposed
using the copper chelator BCS (95 μM) (A). TheC. albicans ctr1mutant is also sensitive to iron chelation by BPS (B). TheC. albicans ctr1 strain is highly
sensitive to H2O2 (C). Both of these defects are reversed by copper supplementation. Further, the C. albicans ctr1mutant displays growth defects on
various carbon sources, a phenotype that is suppressed by copper supplementation, but not by haem or Fe3+ addition (D). Images were taken after 72 h
incubation at 30°C. Number of cells spotted in every subset is given at the bottom of the panel. (E) The transcript levels for key metabolic genes are
perturbed in ctr1 cells, in the absence (top) and presence (bottom) of copper. These data represent averages of three biological replicates with two
technical replicates. Numerical data are given in S10 Table. (F) Changes in C. albicans transcript levels during renal colonisation. These data represent
duplicate measurements from at least four biological replicates from the kidneys of animals at early (24 h, replicates E1–E4, 4 animals) or late (96 h,
replicates L1–L5, 5 animals) infection stage. Colour scale is as in (E). Fungal transcript abundances were normalised to the ACT1mRNA. Numerical data
are given in S11 Table.

doi:10.1371/journal.pone.0158683.g005
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possibly to evade copper poisoning [51] (Fig 3). As immune infiltrates create zones of iron-
exclusion around fungal cells and iron becomes limiting for the fungus [12], C. albicans
increases the expression of its high affinity copper importer Ctr1. It is tempting to speculate
that the down-regulation of fungal copper-dependent reductive iron acquisition in the course
of infection [12] is partly driven by changes not just in iron but also copper availability. Access
to copper also impacts other key factors that enhance the virulence of C. albicans, namely, oxi-
dative stress resistance [57,63,64], carbon assimilation and the expression of core metabolic
genes [42,59,65–67].

In conclusion, we demonstrate the impact of systemic infection on copper homeostasis in
the host, the interplay between copper and other essential micronutrients such as iron in
infected tissues in situ, and the effects of host copper on fungal copper homeostasis and car-
bon assimilation. It is clear that “nutritional immunity” is more than just a static limitation of
a single nutrient. Rather, this phenomenon is a cumulative outcome of dynamic, simulta-
neous spatio-temporal alterations of multiple micronutrients impacting the progression of
infection.

Supporting Information
S1 Fig. Subcellular localisation of splenic copper trans-Golgi transporting ATPase ATP7B
is unchanged during C. albicans infection. As the infection progresses, ATP7B protein
decreases in the red pulp of the spleen, as determined by immunoflourescent probing with
Alexa Fluor 674 labelled antibodies. The subcellular localisation of the protein does not change
(arrows). Tissue sections in the Figure are sequential to those in Fig 1C. The staining is repre-
sentative of results from four biological replicates. Red, ATP7B (arrows). Blue, DAPI counter-
stain. Size bars, 20 μm.
(TIF)

S2 Fig. During development of systemic candidiasis, renal superoxide dismutase SOD1
localises to fungal lesion sites (black arrows). The SOD1-positive regions correspond to areas
occupied by the immune infiltrates, suggesting staining of mouse and not fungal SOD1. The
staining is representative of transverse kidney sections from three biological replicates per
infection stage. Pas_h, Periodic acid/Schiff staining.
(TIF)

S3 Fig. C. albicans CRP1 copper efflux gene and CTR1 copper importer gene are conversely
regulated with changing copper concentrations. Fungal cells were incubated at 30°C for 1h in
YPD supplemented with increasing concentrations of CuSO4. The relative transcript abun-
dances are normalised to ACT1. The values are averages of duplicate measurements performed
in duplicate. See Materials and Methods for details. Primary y-axis, normalised CRP1 abun-
dance; secondary y-axis, normalised CTR1 abundance.
(TIF)

S4 Fig. The effect of copper and iron chelation on the expression of C. albicans genes
encoding core metabolism and metal homeostatic functions. Early exponential phase C. albi-
cans SC5314 cells grown at 30°C in YNB-Glucose medium were exposed to 170 μM iron chela-
tor BPS or 250 μM copper chelator BCS for 30 min, before fixing in RNAlater. Gene expression
was analysed by qRT-PCR, as described in Materials and Methods. Relative transcript abun-
dances are normalised to ACT1, and expressed as ratios to control (i.e., no iron or copper che-
lation). Values are averages of duplicate measurements from three independent experiments.
Numerical data are given in S9 Table.
(TIF)
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