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Abstract This paper proposes a futures-based unobserved components model

for the commodity spot price which proves to have superior forecasting ability. The

commodity spot price is decomposed into long-term and short-term components,

while the futures price is decomposed into expected future spot price and risk pre-

mium. Under this model, information from the whole futures curve could be utilized

to improve forecasting accuracy of the spot price. Applying this model to oil market

data, I find that the model forecasts outperform in multiple dimensions the bench-

mark of the literature optimal forecast (the random walk) as well as simple futures

prices forecasts. The model forecasts overall have smaller error variation over the

20-year sample period, and are also more possible to have smaller absolute error

when compared to the benchmark forecasts period by period.
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1 Introduction

Given the high volatility of commodity prices and the importance of raw mate-

rials in production, accurate forecast of the spot price is of great interest for various

purposes. Policy makers and central banks closely track the commodity prices, es-

pecially crude oil price. Price forecast is also crucial to business decisions in many

industries.

One intuitive forecast of the spot price is the futures price. Efficient market

hypothesis suggests the futures price as the best forecast. Studying the spot and

futures prices movements is not only empirically useful, but also theoretically im-

portant, as commodity futures market plays an important role in risk transfer and

price discovery. A large literature has discussed the forecasting ability of the fu-

tures prices. French (1986), Fama and French (1987), Bowman and Husain (2004),

Coppola (2008), Reichsfeld and Roache (2009), Reeve and Vigfusson (2011), Chinn

and Coibion (2013) among others find evidence confirming the forecasting ability of

the futures prices for certain commodities, while equally large amount of research

like Bopp and Lady (1991), Moosa and Al-Loughani (1994), Chernenko et al. (2004),

Alquist and Kilian (2010), Alquist et al. (2013) find little evidence supporting the fu-

tures price as the best forecast. Instead, no-change forecast is suggested as a plausible

measure of the expected spot price. While Alquist et al. (2013) provide a compre-

hensive overview of various forecasting models including futures-based ones, they do

point out the potential of factor (unobserved components) models for forecasting.

This paper contributes to the forecasting and price dynamics literature by propos-

ing a futures-based unobserved components forecasting model which has superior
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forecasting accuracy. The improved forecasting accuracy relies on exploiting the fu-

tures curve (the term structure of the futures prices) in addition to the assumed spot

price stochastic process. The shape of the futures curve is partly determined by the

spot price stochastic process, if we consider the futures price as composed of the ex-

pected future spot price and risk premium as in Pindyck (2001). Prices quoted at the

same time for immediate and future delivery of the same commodity all incorporate

the same set of information under efficient market hypothesis, as argued by earlier

work like Working (1942), Tomex and Gray (1970) and Peck (1985). However they

are affected by the same set of information differently, as some information might

have short-term effect while other have long-term effect. The prices with further de-

livery dates are much less affected by short-term effect of the information compared

to the prices with nearer delivery dates, while all prices are affected by long-term

effect similarly. The difference between the prices with further delivery dates (the

far end of the futures curve) and nearer delivery dates (the near end of the futures

curve with the nearest end being the spot price) roughly reflects the the short-term

effect of the information, while futures prices with further delivery dates (the far end

of the futures curve) roughly reflect the long-term effect of the information. Thus

futures curve, futures and spot prices together help infer the stochastic process that

the spot price follows.

The model allows for flexibility to fit the rich dynamics of the spot price and the

futures curves, while it is still relatively easy to estimate. Applying the model to oil

market data, I show that the model forecasts outperform both the futures price and

the random walk forecasts in multiple dimensions.
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This paper differs from recent research that has already paid attention to the

value of the futures curves in the assumption of the spot price stochastic process.

Coppola (2008) proposes a VECM model which essentially uses futures curves for

forecasting spot price, where the spot price is modeled as a random walk to which

the effect of shocks will never dissipate. To the contrary, this paper argues the effect

of shocks to the spot price could partly dissipate over time.

Motivated by the cost of carry model, the two-factor and three-factor models

proposed in Schwartz (1997) and Cortazar and Schwartz (2003) also bear resemblance

to my model as they are essentially estimated using the futures curves. However, the

models intuitively imply that the spot price follows a random walk process in the

discrete time. The assumption implies the effect of shocks to the spot price will not

dissipate over time. This is fundamentally different from the proposed model in this

paper.

This paper instead assumes the spot price dynamics to contain some temporary

component. The idea that shocks to the spot price could be dissipated is not new.

Both theoretical and empirical works suggest that commodity price contains both

a long-term component and a short-term component (see Fama and French (1988),

Pindyck (1999), Carlson et al. (2007) and Stevens (2013)). Allowing part of the

shocks to dissipate, the unobserved components model proposed in this paper can

then be seen as the empirical extension of the recent development in the commodity

price theory by Carlson et al. (2007) and Stevens (2013). In terms of the assumed

the spot price stochastic process, my model is similar to the model of price evolution

in Pindyck (1999), but further relates the futures prices of different maturity terms
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to the spot price, and thus is able to exploit the information from futures curve.

When applying the model to the crude oil market weekly data from March 1989

until November 2014, the model outperforms the literature benchmark of the random

walk forecast and the futures price forecasts at most forecasting horizons from 4

to 48 weeks, as measured by MSE, ME and MAE. The improvement at longer

forecasting horizons is also statistically significant as tested by Giacomini and White

(2006) finite-sample unconditional predictive ability test.

The plan of the paper is as follows. Section 2 develops the unobserved compo-

nents model of crude oil prices and discusses the model features. Section 3 provides

an overview of the data, describes the statistical tests adopted and presents the es-

timation results from oil market. Section 4 presents and evaluates the forecasting

ability of the model compared to literature benchmark. Section 5 concludes.

2 Theory and Unobserved Components Model of

Commodity Prices

In this section, an unobserved components model is constructed. Unobserved

components model is able to take full advantage of the information in both the

spot price and the futures prices and uncover the unobserved factors affecting the

prices. The model is later estimated by maximum likelihood, and the unobserved

components are estimated using the Kalman filter, which also enables me to deal

with the missing observations in the data.
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2.1 The Spot and Futures Prices Stochastic Process

Shocks to commodity spot price could have effect of different time-persistence.

French (1986) discusses the possibility that “shocks to the current price are dissipated

before they can affect the expected price” and observes that in such scenario futures

prices can provide “reliably better forecast”. Such observation indicates that shocks

to spot price would dissipate over time, rather than as predicted from a random walk

process. Fama and French (1988) discuss the long-term and short-term components

in asset prices although the purpose there is to test market efficiency. Pindyck (1999)

also argues that a model of price evolution should incorporate both a reversion to

a long-run trend and a non-stationary stochastic long-run trend after studying both

the empirical features of commodity prices and the theoretical implications of the

depletable resource prices. More recently, Carlson et al. (2007) demonstrate that

such price dynamics with both long-term and short-term components could arise

from a hotelling model with production adjustment costs. The impulse response

functions of the spot price to shocks in Carlson et al. (2007) show that part of the

shocks are incorporated into price as temporary increments, rather than all shocks

having long-lasting effects on the price. Stevens (2013) also derives similar price

dynamics from a hotelling model with storage.

Thus this paper assumes the spot price to contain both long-term and short-term

components. This is similar to Pindyck (1999), as both indicate dissipating shocks

over time while overall the price maintains non-stationarity.

As to the the spot and futures prices interaction, there have been two views.

The first is based on the cost-of-carry model which views the expected spot price as
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being different from the spot price by interest rates, convenience yield and storage

costs (see for example Brennan (1958)). This is also referred to as the theory of

storage. In the empirical works built on this view, the futures price is sometimes

used as the proxy of expected spot price (see for example Fama and French (1987)).

Alternatively, the futures price is linked directly to the spot price with a slightly

differently defined convenience yield (see for example Pindyck (2001) and Figuerola-

Ferretti and Gonzalo (2010)). The other views the futures price as the sum of

expected spot price and risk premium (see for example Pindyck (2001)). The two

views are not exclusive of each other, also both involve the concept of the unobserved

expected spot price.

Since this paper models directly the unobserved expected spot price, the futures

price is modeled following the second view. The following section will discuss the

modelling of the spot and futures prices based on the above assumptions.

2.2 An Unobserved Components Model of Spot and Futures

Prices

Like in Pindyck (1999), the long-term component reflects the long-run equilibrium

level of price evolution, and the short-term component reflects short-term deviation

from this long-run equilibrium level. Neither component is observable. The spot

price generating process is summarized by the following equations:
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pt = τt + ct + ϵpt ϵpt ∼ N(0, σ2
p) (1)

τt = τt−1 + ϵτt ϵτt ∼ N(0, σ2
τ ) (2)

ct = ρ1ct−1 + ρ2ct−2 + ϵct ϵct ∼ N(0, σ2
c ) (3)

where pt is the spot price at time t, τt is the non-stationary long-term component,

ct is the stationary short-term component, and ϵpt is an idiosyncratic noise term in

spot price. ϵτt and ϵct are idiosyncratic noise terms in the long-term and short-term

components respectively, and are assumed to be correlated with coefficient covτ,c.

For the futures market, the futures prices do not contain more information about

the future compared to the spot price (see for example Working (1942), Tomex and

Gray (1970) and Peck (1985)). The information incorporated in futures prices is

the same as in spot price. Assumed efficient futures market implies the following

no-arbitrage condition:

fT
t = Et

(
pt+T

)
+RP T

t (4)

where fT
t is the price at time t for a contract maturing at T , and RP T

t is a term

incorporating all the risk at time t associated with the futures contract of maturity

term T . Again, neither Et(pt+T ) or RP T
t is observable. However Et(pt+T ) can be

inferred if the spot price stochastic process is known.

I model the risk premium term RP T
t as follows:
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RP T
t = µT

rp + βT rpt + ϵf
T

t ϵf
T

t ∼ N(0, σ2
fT ) (5)

rpt = ρrprpt−1 + ϵrpt ϵrpt ∼ N(0, σ2
rp) (6)

where µT
rp is a constant capturing the term-dependent average risk premium level for

a futures contract with maturity of T , which is time-invariant; rpt is an AR(1) term

capturing the time-varying part in the risk premium at the price-quoting time t, and

is common to all futures contracts risk premiums, regardless of different maturities.

However the common risk premium component rpt is loaded into each futures price’s

risk premium term with term-dependent loading factor βT . This allows for handling

futures prices with different maturity terms, and also allows for a flexible time-varying

risk premiums. ϵf
T

t is an idiosyncratic noise term in the risk premium and is specific

to futures contracts with maturity term T .

An equation for the price of a futures contract with maturity term T follows

through naturally:

fT
t = Et

(
pt+T

)
+ µT

rp + βT rpt + ϵf
T

t ϵf
T

t ∼ N(0, σ2
fT ) (7)

rpt = ρrprpt−1 + ϵrpt ϵrpt ∼ N(0, σ2
rp) (8)

The two sets of equations for the spot and futures prices hold simultaneously

in an efficient market. Equations (1), (2), (3), (7) and (8) should be estimated as
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a system with observed pt and fT
t . The model then can be then rewritten into a

state-space form and estimated by maximum likelihood using Kalman filter. The

detailed discussion is provided in Appendix A. Before moving on to estimation, I

will first discuss the spot and futures price dynamics implied by this model.

2.3 Model Discussion

The model provides rich dynamics to fit most features of the observed price

dynamics like in Figure 1 from crude oil market. One implication from the model is

that it allows for lower volatility for the prices of future contracts with longer maturity

lengths. Under the model, all prices contain a non-stationary long-term component

as well as a stationary short-term component, but are affected by them differently.

In other words, the spot and futures prices all contain the same set of information

but are affected differently. The futures prices, especially those with longer terms,

are less affected by the short-term shocks like temporary supply disruptions. The

longer the maturity term, the more the short-term shocks would dissipate, leaving

the futures prices to be subject to mostly the volatility of long-term component. This

implication is consistent with observed market data.

Another implication from the model is that it allows for flexible futures curves.

Futures curves simulated by the model can be upward or downward sloping, or even

hump-shaped. If current spot price is lower than the long-term level, the negative

short-term component’s effect on future delivery would be expected to dissipate over

time, resulting in higher futures price quoted today, and thus a upward-sloping fu-

tures curve. The futures curve could also be further shaped by the futures contract
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risk premiums. If the risk premium for futures contracts with longer maturity lengths

is more negative than the shorter ones, the different risk premiums at different ma-

turity lengths might result in a hump-shaped futures curve.

Furthermore, the model provides an alternative interpretation of forecasting ac-

curacy. Namely, the forecasting accuracy could be affected by changing market

condition like the prevalence of short-term or long-term shocks and their sizes in the

market. If the model correctly captures the price dynamics, the existence of station-

ary component would reduce the forecasting error variation relatively to a random

walk forecast. More specifically, the reduction as measured by the relative MSE of

the two is determined by the short-term component volatility.

3 Empirical Studies: the Case of Crude Oil Price

3.1 Data Overview

I use the crude oil market data for applying the model. An overview of the data

is plotted in Figure 1. The main advantage of crude oil market is the availability of

data. WTI spot price is available from 1986, and WTI futures contracts have been

traded actively since late 1980s. Among different oil price measures, I focus on the

forecasting of weekly WTI spot price. Firstly, WTI spot and futures prices have a

longer history. Secondly, the concern that there is a consistent divergence between

WTI and Brent prices and that WTI price is less popular as the world oil price is

less relevant to this application. Using the proposed model to explore the forecasting

ability of the futures prices requires only that the spot and futures prices are quoted
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on the same underlying commodity, so that presumably the spot and futures prices

would be affected by the same market disturbances.

Weekly frequency is selected since intuitively a lot of very-short-run disturbances

to the price would be averaged out at monthly frequency. Comparing the spot and

futures prices at weekly frequency could help separating the short-term component

in the price, which potentially could improve the forecasting accuracy.

To separate out the long-term component, I specifically select the futures con-

tracts whose maturities are of 6 months, 12 months and 18 months to cover mid-

and long-term futures prices. There are several reasons for such selection. The first

is that 18-month length may be far enough to capture the long-term component

as most of the short-run fluctuations in prices dissipate within this horizon (Herce

et al. (2006)). The second consideration is the availability of futures price data as

the trading of longer-term futures contracts were rare on NYMEX during 1980’s.1

Overall 18-month futures price would be a balance between an enough term-length

for uncovering the long-term component of oil prices and a meaningful length of

time series data. The third consideration is that selecting 6-month and 12-month as

mid-term futures prices help alleviate the imprecision due to the expiration date of

futures contracts.2

1For example, weekly observations of 12-month futures price started in March 1989. 18-month
futures contracts first started trading in September 1989, but were not traded weekly until 1995.

2For WTI futures contracts traded on NYMEX, each contract expires on the third business day
prior to the 25th calendar day of the month preceding the delivery month (If the 25th calendar day
of the month is a non-business day, trading ceases on the third business day prior to the business day
preceding the 25th calendar day. After a contract expires, same type of contract for the remainder
of that calendar month is the second following month.). As a result, the 1-month futures prices
quoted for each week of the month is not precisely associated with oil delivered 4 weeks from spot
delivery. Also, since a month can be either 4 weeks or 5 weeks, the information difference between
spot price and 1-month future price could reflect variable number of weeks, rather than the fixed
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The empirical application of the model uses the real prices of crude oil. Although

the model could work for both real and nominal prices, intuitively it seems more

appropriate to measure such price in real term, as the long-term component for the

equilibrium price ultimately is determined by the market fundamentals like aggregate

demand and supply.

The WTI spot and futures prices are available from Energy Information Admin-

istration website and Datastream. The maturities of the futures contracts are of 6

months, 12 months and 18 months to cover mid- and long-term futures prices. The

prices are the daily closing prices at the end of each week, starting from the week

ending on March 31, 1989 to the week ending on November 28, 2014. US CPI data

is available from U.S. Bureau of Labor Statistics at monthly frequency, which is lin-

early interpolated to weekly frequency. Persistence test results using ADF test are

reported in Table 1. As the results show, all data series contain a unit root, con-

firming the view of the model that the spot and futures prices contain a long-term

random-walk component.

4 weeks assumed by the model. Since the model assumes that the information difference between
spot and futures price of a certain maturity length is fixed in order to separate the long-term
and short-term components, this makes the separation less precise. However, since I use 6-month
futures prices as the shortest maturity, I argue that the difference of one more week of dissipating
short-term shocks on top of approximately 24 weeks is relatively small. It would be more so for 12-
and 18-month futures prices.
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3.2 Estimation Results

In this section, I estimate the model using the full sample from 1989 to 20143 with

time-varying risk premiums and correlated long-term and short-term components

((9) and (12) in Appendix A). Estimates are reported in Table 2.

The point estimates of most parameters are significant at 99% significance level.

Due to the small magnitude of the point estimates, I also plot the estimated unob-

served components time series with 90% confidence intervals in Figure 2: long-term

τt, short-term ct, and the time-varying component of risk premiums rpt. I also plot

overall risk premiums for different contracts in Figure 3. Note that the estimated

risk premiums from all contracts are systematically negative throughout the sample

period, and tend to be less negative post 2000s except for a short period around 2008

and towards the end of the sample period.

Keynes (1930) theory of risk premium proposes that if hedgers in the futures

market are net short (i.e. producers of the physical commodity) seeking price pro-

tection, then in order to entice speculator into taking the offsetting long positions,

risk premium would be negative as a reward. And the longer the maturity term,

naturally the higher the risk associated with the futures contract, thus the reward

for bearing the risk would tend be larger in size. When the hedgers are net long

(i.e. buyers), risk premium would be positive. It would follow from the theory that

the sign and size of risk premium would logically be related to the distribution of

hedgers.

3Although the 18-month futures price have missing observations during the earlier periods, the
state space model can still be easily estimated with missing observations in data. More details are
provided in Appendix A
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This model enables estimating risk premiums by exploiting the spot price and

futures curves, rather than approximating the unobserved risk premiums as the naive

difference between the spot and futures prices. The resulting estimated risk premiums

share similar pattern as in recent literature. Even without splitting the sample period

into two as in Hamilton and Wu (2014), the estimated risk premiums plotted in

Figure 3 show similarly smaller on average compensation to the long position in

more recent data (the risk premiums become less negative). In my results, however

the very end of the sample period sees a larger compensation to the long position

again.

4 Out-of-Sample Forecasting Performance

4.1 Overall Forecasting Accuracy of the Model

The out-of-sample forecasting accuracy is mainly evaluated in this paper by four

measures, and the statistical significance of the improvement is also tested. MSE

measures the average variation of the forecasting errors, ME measures the overall

unbiasedness of the forecasts, MAE provides an overview of the average absolute

error size, and the fraction of smaller absolute errors relative to alternative forecasts.

Although the first three measures are widely used in the literature and provide a good

overview, it could be possible that a few extremely good or bad forecasts bias the

actual improvement in accuracy. Thus in addition I also provide the fourth relative

measure. The benchmark alternatives are the futures prices and the random walk

forecasts.
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Figure ?? plots the forecasting errors at different forecasting horizons using for-

ward recursive estimation. The first estimation uses data from March 31, 1989 to

March 18, 1994. 1 to 48-week ahead forecasts are made. The estimation sample pe-

riod is extended at weekly frequency until Jan 31, 2014. A total of 1038 forecasts are

generated for each forecasting horizon. Figure ?? selectively plots only 4-, 12-, 24-

and 48-week ahead forecasts. To check the robustness of the forecasting performance,

forecasting errors from rolling-window estimation are also plotted in Figure ??. The

rolling estimation uses 260 weeks (approximately 5 years) of data, first starting from

March 31, 1989 to March 18, 1994. The estimation sample period is rolled forward at

weekly frequency until Jan 31, 2014. Again 1038 forecasts at all forecasting horizons

are generated. The rolling estimation forecasts almost look identical to the forward

recursive estimation results. Judging from Figure ?? and ??, the model and the two

alternatives all perform similarly at all reported forecasting horizons.

Detailed summarizing statistics of the forecasting errors reported in Table 3 re-

veal that overall the model improves the forecasting accuracy, with slightly weaker

performance at 4- to 12-week forecasting horizons by certain measures. Using the

forecasting unbiasedness measure ME the model outperforms the two alternatives at

all forecasting horizons. Using the average forecasting error variation and size mea-

sures MSE and MAE the model outperforms the two alternatives at all forecasting

horizons longer than 12 and 8 weeks, respectively.

Among the two alternative estimation methods, forward recursive estimation is

better usingMSE at all but 4- and 8-week forecasting horizons, while rolling-window

estimation generates better forecasts using ME and MAE at all but 4-week fore-
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casting horizons.

To test statistical significance of the improvement, I carry out the Giacomini and

White (2006) finite-sample unconditional predictive ability test constructed from

the forecasts from rolling-window estimation and the two alternatives4. Column 1 in

Table 3 shows that, comparing the model and the random walk forecasts by MSE, the

null hypothesis of equal predictive accuracy of the two is rejected at 10% significance

level at 48-week forecasting horizons, and the model outperforms with smaller MSE;

by MAE the null is rejected at 10% to 1% significance levels at multiple forecasting

horizons (24- to 48-week). Comparing the model and the futures price forecasts by

ME, the null hypothesis of equal predictive accuracy of the two is rejected at 10%

significance level at multiple forecasting horizons (28- to 48-week); by MAE the null

is rejected at 10% to 5% significance level at multiple forecasting horizons (12- to

48-week). On the other hand, in no cases has evidence of statistically better forecasts

by either the random walk or the futures price relative to the model been found.

In addition I also present the fraction of model improvement in Table 3d. The

fraction of the model forecasts with smaller absolute errors relative to the futures

prices and the random walk alternatives adds on another dimension of forecasting

accuracy. Overall the model forecasts have smaller absolute errors relative to both

futures prices and the random walk alternatives at longer forecasting horizons. For-

ward recursive estimation performs better than rolling estimation when measured

relative to futures prices, while rolling estimation performs better when measured

relative to the random walk.

4A comparison of the forecasts from forward recursive estimation and the two alternatives is
not allowed using Giacomini and White (2006).
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The forecasting evaluation in Table 3 shows strong evidence of superior perfor-

mance of the model. Especially at longer (than 12-week) forecasting horizons, the

model forecasts are more possible to have smaller absolute errors, on average have

smaller absolute errors and variation, and are more unbiased.

4.2 How the Model Improves the Forecasts

The proposed unobserved components model argues that the futures curve and

its changes over time provide useful information about price movements. Under the

assumption of no-arbitrage, futures curves provides important information about the

evolvement of the spot price in addition to the spot and futures prices individually.

The addition of such information improves the forecasting accuracy relative to both

the random walk and the futures prices forecasts.

Furthermore, such improvement relies on more than just a simple composite

of different futures prices. For example, in Table 3, using ME the futures prices

(9-month, corresponding to 36-week forecasting horizon) perform worse than the

random walk. Nonetheless the model forecasts outperform both the random walk

and futures price forecasts. Also, the improvement in forecasting accuracy is not

only in terms of average absolute error size and variation, but also in terms of the

chance of the forecast in each period being better than the random walk and the

futures prices forecasts.

However so far the long-term and short-term view of spot price movements and

the additional information from futures curves have been largely ignored in the lit-

erature of forecasting and modelling commodity price dynamics. The proposed un-
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observed components model provides a way to utilize futures curves and proves to

generate more accurate forecasts compared to the benchmark in the literature.

4.3 Time-varying Forecasting Accuracy of the Model

Although the overall forecasting accuracy improvement is convincing, one inter-

esting question is whether the predictability has changed over time.

To have a closer look, I choose the first 1032 forecasts (starting from March

18, 1994 to December 20, 2013) and take MSE and ME every 12 weeks. The

approximately 3-month average forecasting accuracy over almost 20 years is plotted

out in Figure 4 and 5. In these figures, the average forecasting accuracy of the

model is relatively consistent over time except for mid-2008. At longer forecasting

horizon, average forecasting errors during the 2000s are slightly smaller compared to

the 1990s.

However, such smaller MSE and ME do not necessarily mean that the forecast-

ing accuracy is improved the 2000s. It could be by chance that the forecasting errors

tend to be slightly smaller on average in the 2000s, regardless of what forecast is used.

A comparison between the model and the random walk forecasts is also presented

in Figure 6 and 7, which plot out the MSE and ME ratios of the model forecasts

to the random walk benchmark. A ratio less than 1 in absolute term indicates an

improvement of model relative to the random walk.

Figure 6 and 7 show that in 2000s the model forecasts more frequently have

smaller MSE and ME compared to the random walk. During mid-2008 when fore-

casting errors are large in general regardless of what forecast is used, the model
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forecasts are still comparable to the random walk counterparts.

Considering all measures for forecasting accuracy, the model forecast perform

slightly better in 2000s. In general this observation is very different from Chinn and

Coibion (2013) who document a broad decline in the predictive content of commodity

futures prices since the early 2000s. More importantly, my model provides very

different interpretation of the time-varying forecasting accuracy. Under my model,

the reduction of forecasting error variation relative to a random walk depends on

the higher short-term component volatility. The estimated short-term volatility σ2
c

from the 260-week (approximately 5-year) rolling estimation shows that the volatility

during 2000s is indeed larger than before, however it decreases towards the end

of sample period (detailed estimates over time can be provided on request). This

together with the forecasting accuracy improvement relative to the random walk

forecast are consistent with the model’s prediction. In other words, it could be simply

the changing market condition that is driving the observed pattern in forecasting

accuracy. For example, long periods of strong demand with constrained supply

in the 2000s might result in more temporary shortage of crude oil, and thus higher

volatility of the short-term stationary component, which reduces the forecasting error

variation of the model relatively to the random walk forecast.

The changing market condition has also been documented and discussed in the

price discovery literature (for example Silvério and Szklo (2012) and Caporale et al.

(2014)), but this model provides an alternative interpretation as the time-varying

dynamics comes from the short-term component in the spot price which might be

driven by market fundamentals like supply and demand, rather than from the futures
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market.

5 Conclusion

This paper proposes a model of commodity spot and futures prices for forecasting.

The improved forecasting accuracy from the model is convincing. When applying the

commodity price model to 25 years of oil market data, the model forecasts outperform

the benchmark of the literature optimal in multiple dimensions. The model forecasts

are more unbiased on average, has smaller forecasting error size and variation on

average, and are also more possible to be so individually when compared to both

random walk and futures prices forecasts during the sample period.

The superior performance comes from the additional information from futures

curves utilized by the unobserved components model of price dynamics and the care-

ful approximation of expected price. The spot and futures prices quoted on the

same date contains the same information, but are affected by it to different extent.

Furthermore, there are information that has longer lasting effect on the prices, and

also information with temporary effect. I abstract the different information as the

“long-term” and “short-term” components in the spot price. This spot price dynam-

ics model enables more careful approximation of expected future spot price, which is

the model forecast, by taking into consideration of the dissipating short-term com-

ponent. Thus the model forecast is able to improve upon the random walk forecast,

which assumes the spot price only contains the long-term component. As the fore-

casting exercises show, the advantage of the model forecasts is indeed more apparent
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at longer forecasting horizon. Furthermore, the expected futures spot price allows

for estimating risk premiums in futures prices. Thus the model forecast is also free

of the effect of risk premiums in naive futures prices forecast. As the results show,

the model forecasts outperform both random walk and futures prices forecasts.

The forecasting ability of futures market has been closely related to the efficient

futures market hypothesis (see for example Malkiel (2003) and Chinn and Coibion

(2013)). The proposed model instead provides an alternative interpretation of the

forecasting accuracy. The improved forecasting accuracy relative to the random walk

guess under the efficient market hypothesis shows that the changing relative forecast-

ing accuracy could be merely due to the changing short-term component volatility,

or in other words, the changing market conditions, rather than the efficiency level of

the futures market.

The model also provides an approximation of unobserved expected spot price,

which is a key concept to understand the interaction between futures and spot mar-

kets. Expected spot price is also what concepts like futures risk premium and con-

venience yield (as defined in for example Brennan (1958)) hinge on. With more

accurately approximated expectation using the model, the risk premiums in futures

prices could also be more accurately approximated. While this paper doesn’t address

the fundamentals behind the changing market conditions and the micro-foundation

of the structure of risk premiums directly, the resulting estimated risk premiums from

the model share similarities with that of Hamilton and Wu (2014). Similarly this

model could be used to infer the convenience yield, which is closely related to market

fundamentals of storable commodities. Application of the model would prove useful

22



for future work jn the literature on futures risk premium as well as convenience yield

for storable commodity futures.

A State-space Setting and Maximum Likelihood

Estimation

This section shows that the proposed unobserved components model can be

rewritten into a state-space form using the example of modeling the spot and one

futures prices. It can be extended to include multiple futures prices with different

maturity lengths as in the paper. It also provides more details about the maximum

likelihood estimation with Kalman filter at the end.

The long-term component τt, short-term component ct described by equations (2)

and (3), and the time-varying risk premium component rpt serve as the unobserved

states underlying the price dynamics. The state equation can be rewritten in matrix

form as the following:



τt

ct

ct−1

rpt


= F



τt−1

ct−1

ct−2

rpt−1


+G ∗ 1+Zνt =



1 0 0 0

0 ρ1 ρ2 0

0 1 0 0

0 0 0 ρrp





τt−1

ct−1

ct−2

rpt−1


+



0

0

0

0


+



ϵτt

ϵct

0

ϵrpt


(9)

Spot price equation can be rewritten as:
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pt = τt + ct + ϵpt =

[
1 1 0 0

]


τt

ct

ct−1

rpt


+ ϵpt (10)

Futures price (with maturity term T ) equation can be rewritten as:

fT
t = Et

(
pt+T

)
+ µT

rp + βT rpt + ϵf
T

t

=

[
1 1 0 0

]
(F)T



τt

ct

ct−1

rpt


+ µT

rp + βT rpt + ϵf
T

t

= (

[
1 1 0 0

]
(F)T +

[
0 0 0 βT

]
)



τt

ct

ct−1

rpt


+ µT

rp + ϵf
T

t

(11)

where F matrix is the loading matrix governing state variables dynamics in equation

(9).

Equation (10) and (11) can be then fit into the observation equation as follows:
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fT
t

pt

 = H



τt

ct

ct−1

rpt


+A ∗ 1 + wt

=

[ [
1 1 0 0

]
(F)T +

[
0 0 0 βT

]
1 1 0 0

]


τt

ct

ct−1

rpt


+

µT
rp

0

+

ϵfT

t

ϵpt


(12)

The state-space model is estimated using maximum likelihood with Kalman filter.

The initial states for Kalman filter is set to be uninformative: the long-term compo-

nent τ0|0 is set to be the average of the spot price5; others are set to be zeros. The

covariance matrix for the initial states P0|0 is set to be symmetric with 100 on the

diagonal and zeros off the diagonal. Different initial guesses of the parameters have

been tried; the results reported are based on the one with highest likelihood when

convergence occurs6. For earlier periods of the sample, 18-month futures price is not

available at weekly frequency. For these periods, the Kalman gain in the Kalman

filter algorithm is set up such that in the updating equation the states are updated

with zero weight on the 18-month futures measurement.

5For rolling and recursive estimation for forecasting exercises, the average is of the specific spot
price sample used for estimation

6For rolling and recursive estimation for forecasting exercises, the estimations are made itera-
tively and the initial guesses of the parameters are set to be the estimated parameters in the earlier
iteration to speed up the estimation.
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Table 1: Overview of Crude Oil Prices Persistence

(a) level

Series ADF t-statistic # of lags ADF t-statistic # of lags ADF t-statistic # of lags

WTI spot −0.703 1 −0.705 2 −0.799 3
6-month −0.339 1 −0.393 2 −0.550 3
12-month −0.120 1 −0.186 2 −0.329 3
18-month −0.314 1 −0.362 2 −0.441 3

(b) first difference

Series ADF t-statistic # of lags ADF t-statistic # of lags ADF t-statistic # of lags

WTI spot −24.20∗∗∗ 1 −19.07∗∗∗ 2 −15.34∗∗∗ 3
6-month −23.26∗∗∗ 1 −17.83∗∗∗ 2 −14.99∗∗∗ 3
12-month −22.98∗∗∗ 1 −17.80∗∗∗ 2 −15.14∗∗∗ 3
18-month −19.28∗∗∗ 1 −15.26∗∗∗ 2 −13.02∗∗∗ 3

Note: (i) The above tests are performed using log-levels of the prices; (ii) *, ** and ***denote
that the null of a unit root is rejected at the 10%, 5% and 1% significance levels, respectively.
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Table 2: Estimated Unobserved Model of Spot and Futures prices

parameters model estimates

log likelihood 2891.87
Akaike (AIC) criterion -4.29
Bayesian (BIC) criterion -4.23

ρ1 1.2048(0.0264)∗∗∗

ρ2 −0.2080(0.0269)∗∗∗

σ2
τ 0.9597(0.3611)∗∗∗

σ2
c 0.6829(0.6000)∗∗∗

σ2
rp 0.0483(0.0037)∗∗∗

σ2
p 0.5520(0.096)∗∗∗

σ2
f6 0.0000(5.5E + 10)

σ2
f12 0.0042(0.0009)∗∗∗

σ2
f18 −0.4359(1.4239)

µrpf6 0.0003(0.5221)

µrpf12 0.0064(0.0005)∗∗∗

µrpf18 1.3787(0.0190)∗∗∗

β12
a −0.2349(1.0425)

β18 14020(0.0382)∗∗∗

covτ,c −0.9631(0.4818)∗∗

ρrp 0.9742(0.0060)∗∗∗

Note: (i) Standard errors are in parentheses; (ii) *, ** and ***denote that the point estimate is
significant at the 90%, 95% and 99% confidence levels, respectively.

aThe loading factor for 6-month futures prices is normalized to be 1.

27



Table 3: Out-of-sample Forecast Performance: 1994 - 2014

(a) Out-of-Sample Forecast MSE

forecasting horizon rolling a forward recursive b futures prices c random walk

4-week 5.6754 5.7471 5.3968 5.8447
8-week 12.6354 12.6434 12.3574 13.0592
12-week 21.5991 21.5326 21.4724 22.2394
16-week 30.8979 30.6886 30.9778 31.6885
20-week 40.1604 39.7054 40.4026 41.0125
24-week 48.8360 48.0105 49.1441 49.5805
28-week 55.7641 54.4636 55.9356 56.6205
32-week 60.4069 58.7147 60.4375 61.5599
36-week 63.6467 61.4869 63.3219 65.1098
40-week 65.7654 63.1187 65.0160 68.2042
44-week 67.0145 64.1373 66.1304 70.8562
48-week 68.0901∗1 65.1617 67.2564 74.2680

(b) Out-of-Sample Forecast ME

forecasting horizon rollinga forward recursiveb futures pricesc random walk

4-week -0.0599 -0.0262 -0.0773 -0.1261
8-week -0.1331 -0.1380 -0.1341 -0.2470
12-week -0.2060 -0.2506 -0.2307 -0.3666
16-week -0.2756 -0.3605 -0.3521 -0.4820
20-week -0.3504 -0.4759 -0.4915 -0.6016
24-week -0.4280 -0.5942 -0.6420 -0.7230
28-week −0.5028∗2 -0.7099 -0.7967 -0.8406
32-week −0.5684∗2 -0.8164 -0.9440 -0.9483
36-week −0.6290∗2 -0.9177 -1.0861 -1.0499
40-week −0.6758∗2 -1.0050 -1.2131 -1.1370
44-week −0.7101∗2 -1.0794 -1.3266 -1.2105
48-week −0.7166∗2 -1.1258 -1.4120 -1.2555

Continued on the next page

Note: (i) *, ** and ***denote that the null hypothesis of equal predictive accuracy of compared
models in Giacomini and White (2006) finite-sample unconditional test can be rejected at the
90%, 95% and 99% significance levels, respectively. 1 represents when compared to the random
walk forecasts, 2 represents when compared to the futures price forecasts. HAC estimators of the
variance for the test statistics are computed with Barlett kernel and a bandwidth of 100.

aForecasts are generated from rolling estimation of the model, using 260 weeks (approximately
5 years) of data. The first estimation uses data from March 29, 1989 to March 18, 1994. The
estimation sample period is rolled forward at weekly frequency until Jan 31, 2014.

bForecasts are generated from forward recursive estimation of the model. The first estimation
uses data from March 29, 1989 to March 18, 1994. The estimation sample period is extended at
weekly frequency until Jan 31, 2014.

cThe futures prices used for forecasting at 1- to 12-month futures prices, quoted at weekly
frequency.
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Table 3: Out-of-sample Forecast Performance: 1994 - 2014 - Continued

(c) Out-of-Sample Forecast MAE

forecasting horizon rollinga forward recursiveb futures pricesc random walk

4-week 1.6888 1.6839 1.6190 1.6847
8-week 2.3573 2.3605 2.3333 2.3849
12-week 2.9051∗∗2 2.9244 2.9127 2.9932
16-week 3.3313∗∗2 3.3676 3.3804 3.4448
20-week 3.6822∗∗2 3.7544 3.7935 3.8514
24-week 4.0006∗1,∗∗2 4.1160 4.1728 4.2328
28-week 4.3275∗∗1,∗∗2 4.4394 4.5327 4.5949
32-week 4.5295∗∗1,∗∗2 4.6386 4.7561 4.8131
36-week 4.6505∗∗1,∗2 4.7754 4.9069 4.9671
40-week 4.7870∗∗∗1,∗∗2 4.9123 5.0766 5.1889
44-week 4.9441∗∗∗1,∗∗2 5.1084 5.2744 5.4196
48-week 5.1367∗∗∗1,∗∗2 5.3091 5.4649 5.7027

(d) Fraction of Smaller Absolute Forecasting Errors

benchmark: futures pricesc benchmark: random walk
forecasting horizon rollinga forward recursiveb rollinga forward recursiveb

4-week 0.4489 0.4576 0.4990 0.4817
8-week 0.4624 0.4624 0.5000 0.4884
12-week 0.4971 0.4875 0.5222 0.4798
16-week 0.5337 0.5376 0.5164 0.4692
20-week 0.5713 0.5665 0.5299 0.4846
24-week 0.5906 0.5848 0.5482 0.4817
28-week 0.5934 0.6127 0.5520 0.4942
32-week 0.5963 0.6320 0.5366 0.4913
36-week 0.6021 0.6445 0.5395 0.4855
40-week 0.6224 0.6580 0.5645 0.4904
44-week 0.6252 0.6532 0.5617 0.4904
48-week 0.6175 0.6647 0.5848 0.5010
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Figure 1: WTI spot price with futures curves

Source: Datastream. Weekly real prices (calculated by the author).
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Figure 2: Estimated Unobserved Components

Note: The grey line plotted along with the long-term component is WTI spot price.
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Figure 3: Estimated Risk Premiums of Different Futures Prices
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Figure 4: 12-week MSE at Different Horizons using Model Forecasts
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Figure 5: 12-week ME at Different Horizons using Model Forecasts
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Figure 6: The model relative to the random walk: 12-week MSE ratios at Different
Horizons

Note: Model forecasts 12-week MSE to random walk counterpart ratio is plotted with the red
line =1.
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Figure 7: Model relative to random walk: 12-week ME ratios at Different Horizons
using Model Forecasts

Note: The model forecasts 12-week ME to the random walk counterpart ratio is plotted with the
red lines =1 and -1.
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