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Abstract 
This paper introduces a new approach to multiscale optimization, where design 
optimization is applied at two scales: the macroscale, where the structure is optimized, 
and the microscale, where the material is optimized. Thus, structure and material are 
optimized simultaneously. We approach multiscale design optimization by linearizing 
and formulating a new way to decompose into macro and microscale design problems 
in such a way that solving the decomposed problems separately lead to an overall 
optimum solution. In addition, the macro and microstructural designs are coupled 
tightly through homogenization and inverse homogenization. This approach is generic 
in that it allows any number of unique microstructures and can be applied to a wide 
range of design problems. An advantage of decomposing the problem in this physical 
way is that it is potentially straight forward to specify additional design requirements 
at a specific scale or in specific regions of the design domain. The decomposition 
approach also allows an easy parallelization of the computational methodology and 
this enables the computational time to be maintained at a practical level. We 
demonstrate the proposed approach using the level-set topology optimization at both 
scales, i.e. macrostructural topological design and microstructural topology of 
architected material. A series of optimization problems, minimizing compliance and 
compliant mechanism are solved for verification and investigation of potential 
benefits. 
 
Keywords: Multi-scale, topology optimization, level-set method, decomposition, 
architected material. 
 
1. Introduction 
The traditional approach to structural design is to select material, then design the 
structure that best utilizes the given material. Material design, on the other hand, has 
taken place without understanding of a specific application but for a gross 
generalization of anticipated or possible needs. The current design practice of 
structure and material are thus, inherently decoupled and yet the performance and 
quality of the designs are inextricably linked across the structural and material scales. 
Recently a new paradigm is being explored where the structure and material are 
designed simultaneously. Thus, the material properties are tailored to the structural 
design and vice-versa. This potentially opens up the design space as the material can 
be directly optimized for the functional needs at the structural scale and can lead to 
lighter and more efficient structures applicable to many engineering sectors. 
 
Topology optimization is a method that aims to produce optimal structures by 
optimizing the size, shape and connectivity of the structure (Bendsoe and Sigmund 
2004; Deaton and Grandhi 2014). It has been applied to optimize structure and 
material simultaneously. For example, structural topology and material selection have 
been simultaneously optimized by designing the material phase (Sigmund 2001; 
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Wang and Wang 2004), or the continuous grading between two materials (Dunning et 
al. 2015; Sigmund and Torquato 1997). Topology optimization has also been 
combined with the design of layered fiber composite material (De Leon et al. 2012; 
Lund 2009; Peeters et al. 2014).  
 
Opening up the material design space, topology optimization has been applied at the 
material microscale (i.e. architected material) in addition to the structural macroscale. 
A schematic of the multiscale topology optimization is shown in Fig. 1. The 
hierarchical solution strategy proposed by Rodrigues et al. (2002) allows a unique 
microstructure to be optimized for each macroscale finite element. Homogenization is 
used to obtain effective material properties of the microstructures, which are then 
used to determine the macroscale structural performance. The relative density of a 
macroscale element is defined from the microscale volume fraction. Thus, if the 
microstructure becomes completely void, the boundary shape or the topology of the 
macrostructure is changed. The hierarchical method is similar to the homogenization 
approach to topology optimization by Bendsoe and Kikuchi (1988) who employed the 
size and rotation of square or rectangular microscale voids within each macroscale 
element as the design variables. The difference being that Rodrigues et al. (2002) 
utilizes the complete topological freedom that is available for optimization at 
microscale. Although the hierarchical scheme optimizes the topology at two scales, 
design variables only exist at the microscale. For the multiple load minimum 
compliance problem, a heuristic scheme based on optimality criteria is employed to 
update the design variables. This approach allows the microscale optimization 
problems to be solved separately and parallel computing is exploited. This is 
important, as the number of design variables can be very large, especially for three 
dimensional structures (Coelho et al. 2008). 
 

 
Figure 1. Multi-scale topology optimization. 

Another approach was recently proposed by Xia and Breitkopf (2014) where the FE 
nonlinear multiscale analysis method is used to bridge the scales and a unique 
microstructure is defined at each element’s Gauss integration point. The idea is that 
the microscale optimization acts as a nonlinear material that adapts to the macroscale 
strain field. The Bidirectional Evolutionary Structural Optimization (BESO) method 
is used to optimize the topology at both the macro and microscales. The solution 
procedure for minimum compliance design starts by computing the macroscale strains. 
The microscale optimization problems are then to maximize the strain energy density, 
subject to a volume constraint on the microstructure. These problems are solved 
independently in parallel. Once all microscale problems converge and the macroscale 
equilibrium condition is met, the macroscale design variables are updated using 
sensitivity information that accounts for the material nonlinearity. Again, this 
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approach is formulated in the context of the minimization of compliance problem and 
the application to general problems is not straightforward. 
 
A recent approach proposed by Xia and Breitkopf (2014) uses the FE2 non-linear 
multi-scale analysis method to bridge the scales and a unique micro-structure is 
defined at each element Gauss integration point. The idea is that the micro-scale 
optimization acts as a non-linear material that adapts to the macro-scale strain field. 
The Bi-directional Evolutionary Structural Optimization (BESO) method is used to 
optimize the topology at both the macro and micro-scales. The solution procedure for 
minimum compliance design starts by computing the macro-scale strains. The micro-
scale optimization problems are then to maximize the strain energy density, subject to 
a volume constraint on the micro-structure. These problems are solved independently 
using parallel computing. Once all micro-scale problems converge and the macro-
scale equilibrium condition is met, the macro-scale design variables are updated using 
sensitivity information that accounts for the material non-linearity. Again, this 
approach is formulated in the context of the minimization of compliance problem and 
therefore may not be easily adapted to solve other problems. 
 
An alternative approach to multiscale topology optimization is to consider the macro 
and microscale designs sequentially (Schury et al. 2012). The first step is to optimize 
the macrostructure using Free Material Optimization (FMO), where the design 
variables are the stiffness tensor values for each element. Once the macroscale 
problem is solved, the second step uses inverse homogenization to design the 
topology of the microstructures. The microscale problems are to minimize the volume, 
whilst obtaining the material properties defined from the macroscale optimum. Thus, 
these problems can be solved in parallel. However, appropriate bounds must be 
imposed on the stiffness tensor variables in the macroscale problem to ensure that the 
following microscale problems are feasible. Due to the freedom afforded to the 
stiffness tensor, setting realistic bounds can present a challenge and some 
conservatism is required. This compromises the ability of the method to obtain the 
global optimum. Furthermore, the mass distribution of the structure is not directly 
considered by the FMO approach, which can be important, for example in dynamic 
problems. 
 
The multiscale topology optimization methods discussed so far allow the 
microstructure to vary within the macrostructure. Another formulation is to use the 
same microstructure throughout the macroscale domain (Liu et al. 2008; Yan et al. 
2014). Thus, only one microstructure is optimized and the number of design variables 
is not significantly greater than a single scale topology optimization. Therefore, the 
multiscale problem formulation is computationally tractable. Again homogenization is 
used to bridge the scales and the derivatives of macroscale objective and constraint 
functions with respect to the microscale design variables are obtained by 
differentiating the homogenization equations. It is thus straightforward to solve for 
many structural design problems beyond compliance and has been used to solve for 
natural frequency (Niu et al. 2009) and multi-objective thermoelastic problems (Deng 
et al. 2013). However, this approach does not allow local tailoring of material 
properties and cannot explore the full structure-material design space, thus limiting 
the potential performance gains that may otherwise be possible. 
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In summary, current approaches that use a nonuniform microstructure decompose the 
problem in some fashion to exploit parallel computing. These decomposition 
approaches are not easily extendable to a wide range of problems and the existing 
literature studies focus on the minimization of compliance problem. On the other hand, 
using a uniform microstructure allows a multiscale solution strategy that is more 
easily applied to wider range of problems. However, local tailoring of material 
properties is not possible and limits potential benefits. 
 
The aim of this paper is to develop a generalized framework for multiscale topology 
optimization that can be used with any number of unique microstructures, including 
uniform and nonuniform designs. The decomposition strategy introduced in this paper 
is generally applicable to a range of problems and naturally extends to parallelization, 
thus the solution strategy is scalable. We use a level-set topology optimization method 
at both scales, i.e. structural topology and architected material. 
 
The paper is organized as follows. The optimal decomposition of a general multiscale 
design problem and the computational strategy for solving the coupled multiscale 
problem, the constraint boundary optimization, the procedure for dealing with 
inactive microscale domains and microscale constraints are detailed in Section 2. 
Section 3 discusses the bridging of scales using homogenization for an elastic 
problem. Section 4 discusses the conventional level-set method which is used to solve 
each of the decomposed problems. The sensitivity analysis of the multiscale topology 
optimization problem is detailed in Section 5. Minimum compliance and compliant 
mechanism examples are presented in Section 6, followed by the conclusions in 
Section 7. 
 
2. Multi-scale optimization 
A general multiscale optimization problem can be written as:  
 

    (1)
  

where f is the objective function, gi are inequality constraint functions, Ng is the 
number of inequality constraints, M is the design variable corresponding to the 
macroscale domain, mj is the design variable corresponding to the microscale domain 
j and N is the number of microscale design variables to be optimized. The Mmin and 
Mmax represent the minimum and maximum bounds for the macroscale design 
variable M. mj,min and mj,max are the minimum and maximum bounds for the 
microscale design variable mj. 
 
2.1 Decomposition 
The objective and constraint functions are linearized about the design variables at 
current iteration k using Taylor’s expansion. 
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  (2) 
 
where gi

k is the value of constraint i at iteration k and ∆Mk and ∆mk
j are the design 

variable update steps for the macroscale design variable Mk and microscale design 
variable mj

k respectively, obtained from iteration k. 
  

       (3) 
 
In order to exploit parallel computing, the linearized problem (2) is decomposed into 
(1+N) problems by separating terms associated with the macroscale design variable M, 
and each of the N microscale design variables, mj : 
 

    (4)

   

  (5) 
 
where γM,i is the ith constraint boundary corresponding to the macroscale design 
problem and γm,ij is the ith constraint boundary corresponding to the jth microscale 
design problem. 
 
If the problem is unconstrained (Ng = 0), then we can proceed and solve each 
decomposed problem separately to obtain the updates for the macroscale and 
microscale design variables. For a constrained problem (Ng > 0), the constraint 
boundaries in the decomposed problems, γM and γm must be compatible with the 
inequality constraints of the original problem, (1). Thus, the constraint boundaries in 
the decomposed problems, (4, 5) must satisfy the following constraint feasibility 
condition: 

!

!

!
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        (6) 
 
2.2 Determination of constraint boundaries  
The search direction for the multiscale problem is defined by the updates for the 
macroscale and microscale design variables, ΔM and Δmj. A desirable search 
direction is one which optimizes the objective whilst meeting the constraints. For the 
decomposed problems (4, 5), the task is to compute the constraint boundaries to 
achieve such a desirable search direction. The determination of the constraint 
boundaries is thus, formulated as an optimization problem to minimize the objective 
function in (2), while satisfying the constraint feasibility condition (6). 
 

 (7)

  
where γM,max and γM,min represent the side limits for constraint boundary vector γM 
corresponding to the constraints for the macroscale problem, γm,max and γm,min are the 
side limits for the constraint boundary vector γm, corresponding to the constraints for 
the microscale problems. 
 
The constraint boundary optimization problem of (7) is solved using a nested 
approach. The objective and constraints are linearized (8). The decomposed problems 
(4, 5) are solved with an initial set of constraint boundaries which meet the constraint 
feasibility condition. A finite difference method is employed to compute the 
derivatives of objective function change Δf, which are then used to update the 
constraint boundaries. 
 

   

(8)

 

 
where l is the iteration number. In practice, a line search strategy is used to compute 
the constraint boundaries to improve the convergence and stability of the method. If 
the current objective value of (7) is greater than the previous value, then the constraint 
boundaries are replaced by:  
 

!

!
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       (9) 
 
where ω is a scaling factor, chosen here as 0.5. Figure 2 shows the pseudo code for 
solving the constraint boundary optimization problem, where η is a small number 
used in the termination criterion. 
 

 
Figure 2. Optimization algorithm for computing constraint boundaries. 

The side limits of constraint boundaries in (8) are set such that no constraint 
boundaries which satisfy the feasibility condition make the decomposed problems 
infeasible. The maximum and minimum possible constraint changes in each of the 
decomposed problems for all the constraints, are computed. For example, the 
maximum and minimum values for the constraint i, corresponding to the macroscale 
problem and the jth microscale problem are: 
 

               (10) 
 

The maximum and minimum values are then multiplied by a factor, chosen from 
experience as 0.2 if the problem has a single constraint, or 0.1 for more constraints. 
To check the feasibility of these values, the decomposed problems (4, 5) are solved 
using the minimum side limits for each constraint. If the problem is infeasible, then 
the lower limits for the infeasible constraints are multiplied by 0.7 and the problem is 
solved again. This continues until a feasible solution is obtained. The final values of 

!
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the constraint limits then become the lower side limits for the constraint boundaries in 
(8). 
 
Once the upper and lower side limits for all constraint boundaries are determined, the 
initial solution is selected based on the maximum and minimum possible changes for 
each constraint (Δgi,max and Δgi,min). 
 

                (11) 
 
The initial constraint boundaries are then chosen by considering the current value of 
the constraint gi. 
 

               (12) 
 
where the superscript 0 indicates the initial values. The sum of the initial values of the 
constraint boundaries define the right hand side of the constraint feasibility condition 
in (8). 
 
2.3 Microscale constraints 
This subsection considers a microscale constraint that influences the constraints in 
other decomposed problem(s). For example, a volume constraint to a microscale 
domain would need to be reflected on the macroscopic volume. The derivatives for 
these two volume constraints are directly proportional. This makes one of the 
constraints redundant, and so is removed from the decomposed problem. We first 
detect if the derivative of a microscale constraint is proportional to another by 
computing the following factor. 
 

                 (13) 
 
where ∂g/∂m and ∂gl /∂m are the derivatives of the constraint g and microscale 
constraint gl respectively, m is the design variable of the microscale domain for which 
gl is defined for. If α = 1, then the two constraints are directly proportional and if       
α = −1, they are inversely proportional. In both cases the microscale constraint is 
removed from the decomposed problem and either the upper or lower limit of the 

!
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overall constraint boundary is adjusted to maintain or improve the feasibility of the 
microscale constraint. For the case α = 1 the upper limit is adjusted to: 
 

              (14) 
 
If α = −1, then the lower limit is adjusted: 
 

              (15) 
 
where γm,g,max and γm,g,min are the maximum and minimum constraint boundaries for 
the decomposed problem for which gl is defined. 
 
The adjusted limits are used in Eqs. (11) and (12) to define the initial constraint 
boundaries, where the 0.5 factor is replaced by 1.0 in (12) for a constraint whose 
derivative is proportional to that of a microscale constraint. 
 
2.4 Inactive microscale designs 
During optimization, a region of the macroscopic domain may become outside of the 
design. The microscale design associated with the outside region is no longer 
considered during optimization and becomes inactive. As the macroscopic design is 
optimized, its boundaries move which can make these outside regions become a part 
of the macroscale design again. When a region is reactivated, the microscale design of 
this region may significantly vary from the neighboring active regions with a 
discontinuity in material properties. Figure 3 illustrates this: As the macroscale 
boundary moves ((a) to (b)), the region 4 which has a significantly different 
microscale design becomes a part of the structure and creates a discontinuity at the 
interfaces of regions 2 and 3. In order to reduce the discontinuities, inactive 
microscale designs are updated at the end of each iteration by copying the microscale 
design of a neighboring active region, thus maintaining continuity in material 
properties. 

 
Figure 3. Discontinuity caused by an inactive microscale design a) microscale 

design 4 is inactive and not optimized b) subsequent iteration where movement 
of the macroscale boundary makes microscale design 4 active. 

3. Bridging the scales using homogenization 
The asymptotic homogenization method is employed to compute the effective or 
homogenized properties of a composite material (in this paper, material and voids). 
The asymptotic expansion of a function is used to solve a differential equation or 
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compute the effective properties of a domain. There is a truncation error in the 
method which is infinitesimal for a small microscopic characteristic length ζ. The 
asymptotic expansion of a variable u(x) is: 
 

                   (16) 
 
where y = x / ζ is called the fast moving variable. The truncation error depends on the 
number of terms considered on the right hand side and the value of ζ. Allaire (1993) 
provides the details of the derivation where the coefficients of different powers of ζ in 
(16) are used to create a hierarchy of problems to be solved, to compute the 
homogenized properties. 
 
Here, we outline the procedure to compute the homogenized stiffness tensor to be 
used in elasticity problems. The classical homogenization (Sanchez-Palencia 1980; 
Guedes and Kikuchi 1990) with periodic boundary conditions is employed to bridge 
the scales. The macroscale element is formed by the periodic microscale designs. The 
microscale design is defined on a unit cell and assumed isotropic properties. 
 
The effective property of the microscale design Ωm is computed based on the 
mechanical behavior of the unit cell. Three unit load cases are applied for 2D 
problems (uniform extension in two directions and uniform shear) and six unit load 
cases for 3D problems (three extension and three shear). The effective elasticity 
tensor for the unit cell is computed as: 
 

                (17) 
 
where Epq

H is the effective (or homogenized) elastic tensor (Voigt notation). Ωm is the 
unit cell domain (|Ωm| = 1), uq is the characteristic deformations vector for the test 
case q, ūq is the vector of displacements that produce unit strains over the unit cell 
(18). ϕ is a function which is positive at a point if it lies inside the domain, zero if it 
lies on the boundary, otherwise negative, and H(ϕ) is the Heaviside function. 
 

                    (18) 
 
where δ is the Kronecker delta function. 
 
The characteristic deformations uq are given as solutions to the periodic cell problem: 
 

              (19) 
 
where v is Ωm – periodic virtual displacement field. Equations (17) and (19) can also 
be written in compact form (Bendsoe and Kikuchi 1988): 
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              (20) 
 
4. Level-set topology optimization method 
The conventional level-set method defines a structure using an implicit signed 
distance function, ϕ(x): 
 

                   (21) 
 
where Ω is the domain of the structure, Γ the structure boundary and x ∈ Ωd, where 
Ωd is the design domain containing the structure, Ω⊂Ωd. The boundary Γ is set as the 
zero level set of the implicit function. The following advection equation is used to 
update the implicit function and move the position of the boundary: 
 

                  (22) 
 
where t represents the level-set evolution time. Since the velocity field of motion by 
mean curvature is composed of only the normal direction, 
 

                  (23) 
 
where Vn is normal velocity and 𝑁 is the unit outward normal. Discretizing (22) with 
(23) yields the following update equation (Osher and Sethian 1988): 
 

                  (24) 
 
where k is the iteration number, j is a discrete point in the design domain. 
 
The velocities required for the level set function update in (24) are obtained by 
solving an optimization problem formulation. We start by a generic single 
formulation of minimizing an objective function F(Ω), subject to Ng constraints: 
 

               (25) 
 
where f, gi are functions of x ∈ Ω. 
 
Linearization of the above optimization problem using Taylor’s expansion yields: 
 

!

!

!
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                (26) 
 
where ΔΩk is the update for the design domain Ω, k is the iteration, Gi

k is the ith 
constraint value in the kth iteration. 
 
The shape sensitivities of the objective and constraint functions can be defined in 
terms of normal velocities of the boundary points of the domain Ω, which typically 
take the form of boundary integrals (Allaire et al. 2004; Wang et al. 2003): 
 

                (27) 
 
where Δt in the case of topology optimization is iteration, Vn is the normal velocity of 
the boundary Γ. Discretizing the boundary at nd number of points, 
 

              (28) 
 
where Lj is the discrete length of the boundary (or surface area in 3D) around a 
discrete boundary point j, Cf and Ci are the vectors containing integral coefficients, Vn 
is the vector of normal velocities at the nd discrete boundary points. For a constrained 
problem, we can write Vn Δt = α d where α ≠ 0 is the distance travelled along the 
search direction d for the level-set boundary update. Thus, d being a unit vector is to 
be added as an equality constraint. Expressing Vn as a function of α and d, the 
optimization problem (26) can be written as: 
 

               (29) 
 
The Lagrangian function for (29) is given by: 
 

            (30) 
 

!
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where λk is the vector of Lagrange multipliers for the Ng inequality constraints, µk is 
the Lagrange multiplier for the equality constraint in Eq. (29) at iteration k. We know 
that for d be the solution of the optimization problem in (29), itis necessary that the 
first order optimality condition in (31) of the Lagrangian (30) is satisfied. 
 

                (31) 
 
Solving (31) for dk and substituting in the equality constraint of (29), we get: 
 

                   (32) 
 
Substituting (32) into (29) eliminates the equality constraint and the optimization 
problem becomes: 
 

               (33) 
 
The velocities Vn,j are determined by solving (33) for αk, λk using sequential quadratic 
programming in NLOPT (Johnson 2014) and substituted into (24) to obtain the new 
boundary. 
 
In this work, as topology optimization is applied to the decomposed formulation, each 
decomposed problem can be considered as a single scale optimization problem. 
 
5. Sensitivity Analysis 
The multiscale optimization formulation introduced in Section 2 can be considered a 
general framework for a range of multiscale problems. This section presents the 
sensitivity analysis to apply level-set topology optimization of Section 4 to multiscale 
optimization of Section 2. This enables simultaneous optimization of the topologies of 
the architected material and the macroscopic structure. 
 
The general multiscale optimization problem of (1) can be rewritten for elasticity 
problems as: 
 

             (34) 

!
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There are (1 + N) design domains, one for the macroscale and N for the microscale. It 
is assumed that the user would define the number N and the spatial distribution of the 
unique material regions. N = 1 specifies uniform structured material throughout the 
macrostructure and the maximum value N is the number of elements in the 
macroscale domain. Any number between 1 and the total number of macroscopic 
elements N, and any spatial distributions of microstructures are possible. The 
multiscale formulation decomposes to consider optimization of the macroscopic 
domain and each microscopic unit cell domain. The effective elasticity tensor of the 
microstructure is computed using (20). 
 
To determine the velocity in (33), the integral coefficients for the objective and 
constraints are required in each problem. The shape sensitivities for the macroscale 
are obtained by considering that the material properties are defined from the current 
microscale designs (20). The shape sensitivities for the microscales are obtained using 
the macroscale FE discretization and the chain rule. The objective function is a 
function of effective stiffness which in turn is a function of microscopic topology as 
follows: 
 

                (35) 
 
where the macroscale stiffness matrix, K, is the assembly of element stiffness 
matrices: 
 

                (36) 
 
where K is the macroscale stiffness matrix, ke is a macroscale element stiffness 
matrix, B is the strain–displacement matrix, zn the integration weight for integration 
point n, ng the number of integration points, EH,e is the effective elasticity tensor for a 
microstructure e. A is the assembly operator. 
 
The shape sensitivities for the homogenized elastic tensor and effective density are: 
 

          (37) 
 
where mj and Γj are the domain and boundary of the jth microdesign, such that          
mj ⊂Ωm, Vn,j is the normal velocity of the boundary of the domain mj. 
 
The derivative of K with respect to an entry of EH,j is 
 

                (38) 
 

      

€ 

K =
e=1

N e

Ake EH ,e( ),    ke = Bn
T ⋅

n=1

ng

∑ EH ,e⋅ Bn ⋅ zn
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The derivative in (38) is then substituted into the derivative of f in (35) with respect to 
an entry in EH,j. The chain rule is then used to compute the shape sensitivity of f with 
respect to the jth microstructure: 
 

               (39) 
 
where s is three for 2D problem, six for 3D problem. Now, substituting the effective 
elastic property shape sensitivities (37) into (39) and rearranging, the microscale 
shape sensitivity is obtained: 
 
 

 (40) 
 
For a general objective function, its derivatives with respect to each entry in the 
elastic property matrix (39) is to be computed. These derivatives are then used to 
combine the shape sensitivities for the effective elasticity tensor at the microscale to 
arrive at a single shape sensitivity for the objective function with respect to a change 
in the microstructure (40). 
 
The multiscale level-set topology optimization algorithm is summarized below: 
 

1.   Compute the effective stiffness tensor (20) for each microstructure. 
2.   Assemble the macroscale FE matrices (36). 
3.   Solve the macroscale governing equations. 
4.   Check for convergence. Otherwise proceed. 
5.   Compute the shape sensitivities (40). 
6.   Calculate the constraint boundaries using the constraint boundary optimization 

mentioned in Fig. 2. 
7.   Determine the velocity (33). 
8.   Update the macro and microscale level-set functions, (24). 

 
Without parallel computing the solution time of the above algorithm increases 
approximately linearly with the number of microstructures, primarily due to steps 1, 5, 
6, 7 and 8 being performed over each microstructure. However, due to the 
decomposition, these steps can all be performed in parallel, thus making the proposed 
multiscale topology optimization method computationally tractable. 
 
6. Examples 
The multiscale topology optimization method is demonstrated using several examples. 
In all examples, four-node bilinear plane stress elements are used to discretize the 
macro and microscale design domains. 
 
6.1 A deep beam rested on two supports 
The first example is a deep beam resting on two supports, with a vertical load applied 
along the top edge as shown in Fig. 4. This example is taken from Jog et al. (1994) 
where each element has a different microstructure made of rank-2 layered composites. 

!
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The design variables used were the averaged density of the stiff layer in the rank-1 
composite, the averaged density of the stiff material in the rank-2 composite, and the 
angle of inclination of the material coordinate system with the global reference frame. 
 

 
Figure 4. Initial designs of macrostructure and microstructure. 

The multiscale method in this paper is applied to solve this conventional 
homogenization problem. The macroscale optimization is switched off, and every 
element is allowed to have its own microstructure by topology optimization in each of 
the microstructures. The bridging between the macro and micro scales is done using 
homogenization discussed in Section 3. The optimization method essentially becomes 
the same as the classic homogenization topology optimization approach with the key 
difference being the material microstructures where the present method allows the 
design freedom of topology optimization and the classic homogenization approach 
optimizes rank-2 composites. 
 
Taking advantage of symmetry, only right half of the problem is solved with a 50 ´ 
40 mesh. Each of the 2,000 elements are associated with a unique microstructure. The 
macroscopic volume constraint is set to 60 %. 
 
The optimized solution is shown in Fig. 5 using the plot of elemental porosity of the 
domain. The solution agrees well with that obtained by Jog et al. (1994), with 
macroscale elements of high density connecting the load to the boundary conditions. 
The checkerboard pattern in the center section is also seen in the rank-2 composite 
homogenization solution of Jog et al. (1994), as commonly seen in this type of 
optimization without filtering. The density distribution of the solutions including the 
checkerboard regions are comparable. This verifies the coupling of macro-
microstructural topology optimization using the level set method via homogenization. 
 

 
Figure 5. Elemental Porosity plot - Optimum solution for the deep beam. 

6.2 Simply supported beam 
A simply supported beam of aspect ratio 4 with a vertical load at the center, is 
optimized with the initial macroscopic structure (Fig. 6a), and a uniform material 
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microstructure (Fig. 6b). Due to symmetry, only the right half of the beam is 
optimized and the macroscale domain is discretized using 160 ´ 80 elements. The unit 
cell for the microscale domain is discretized using 100 ´ 100 elements, Fig. 6b. The 
Young’s modulus is 2.1´105 and Poisson’s ratio 0.3. This example is taken from Liu 
et al. (2008) for verification. 
 

 
Figure 6. Simply supported beam: a) macroscale initial design, loading and 

boundary conditions b) microscale initial design. 

The objective is to minimize compliance, subject to a volume constraint at the 
macroscale and a microscale volume constraint at the microscale. Global volume 
constraints are defined as a percentage of macroscale design domain, but are also 
affected by the microstructures. The global volume of the multiscale design is defined 
as: 
 

                 (41) 
 
where ρH is the homogenized value of the density (42), which can vary over the 
macroscale domain according to the mapping of microscale designs to macroscale 
elements. A microscale volume constraint is applied only to the microstructures and 
defined as a percentage of microscale design domain. The effective density, ρH of the 
microstructure is simply computed as: 
 

                    (42) 
 
where ρ is the density of the isotropic material. 
 
First we optimize the multiscale problem with a range of macroscopic volume 
constraints and a fixed microstructure volume constraint of 40 %. The results show 
that as the macroscopic volume fraction increases, compliance decreases, Table 1. 
This is because, for more material available, the optimization algorithm can produce a 
stiffer structure. This essentially only influences the macroscopic structures which add 
more members as more material is available. The optimum microstructure is the same 
for all cases, with horizontal stiffeners and a diagonal lattice, where one diagonal is 
slightly thicker than the other. The topological solutions at macro and microscales are 
comparable with those obtained by Liu et al. (2008). 
 
 
 
 
 

!
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Table 1. Simply support beam results with a 40 % microscale volume constraint. 

 
 
For the second series of optimization, the global volume constraint is fixed at 12 % 
and the structure optimized with different microscale volume constraints for 
microstrucutres. These solutions are compared with two further runs, one with no 
microscale constraint and the other using single scale optimization with solid isotropic 
material. The results are summarized in Table 2 which show that as the microstructure 
volume constraint is increased, compliance decreases. In the case of 100 % 
microstructure volume constraint, the optimum microstructure is solid. This is 
consistent with the trend and the difference in the objective function between this 
result (339) and a single mascroscale level set topology optimization result (336) is 
less than 1 %, i.e. negligible. The microstructure experiences a range of different 
strains from all the macroscale elements, with different principal strain directions. 
This result is not surprising, as the objective is to minimize compliance, or maximize 
the stiffness of the beam, the optimization procedure makes use of more material to 
stiffen the structure, so as to resist the loads. Thus, for minimum compliance design, 
porous material is not optimal. When a microscale volume constraint is enforced for 
the porous material, the microscale design has a diagonal lattice, with horizontal 
members at the top and bottom. 
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Table 2. Simply supported beam results with 12 % global volume constraint. 

 
 
6.3 L beam 
This example investigates multiscale topology optimization with nonuniform 
microstructure. The objective is to minimize the compliance of an L shaped beam, Fig. 
7a, subject to a global volume constraint of 18 %. This is solved with and without a 
microscale volume constraint of 40 %. Both problems are solved three times each 
using a different number of microstructures: one (uniform), three and 12 
microsctructures. The mapping for three and 12 microstructures is shown in Fig. 8. 
The macroscale domain is discretized by unit sized elements. The microscale unit cell 
is discretized using 50 ´ 50 mesh and the initial design for all microstructures is 
shown in Fig. 7b. The material properties of the isotropic material are Young’s 
modulus of 100 and Poisson’s ratio of 0.3. 
 

 
Figure 7. L beam: a) macroscale initial design, loading and boundary conditions, 

b) initial microscale design. 
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Figure 8. L beam mapping of microscale designs to macro-structure elements, a) 

3 microstructures, b) 12 microstructures. 

The solutions obtained using a microscale volume constraint show that as the number 
of unique microstructures increases, the compliance decreases, Table 3. This is 
expected as the increasing number of microstructures expands the scope for the 
material tailoring, hence the available design space. The solutions with microscale 
volume constraints are shown in Figs. 9, 10 and 11. The solution using 12 
microstructures shows evidence that the macrostructure adapts to the microscale 
designs and vice-versa, where the macroscopic structural members are aligned with 
the edges of microstructure regions, Fig. 11. This leads to a more consistent principal 
strain direction for the set of macroscale elements associated with a single 
microstructure, which in turn enables a more tailored microscale designs, such as the 
unidirectional microstructural designs. Shear resistant microstructures with diagonal 
members emerge in regions where the load distributions are shear dominant. This 
demonstrates the coupling of the optimum macro and microstructures. The solutions 
are dependent on the number and spatial specification of allowable microstructures. 
When porous materials are required, increasing the number of allowable 
microstructures leads to a solution with an improved objective. 
 
When the microstructure volume constraint is removed and the multiscale optimizer is 
let to determine the optimal microscale volume, all optimal macroscopic structures 
are similar, Fig. 12, and their compliance values are within 1%, Table 3. Their 
microstructural designs are solid. This suggests that the optimum volume fraction for 
a local microstructure is 100%. The compliance with solid microstructure is lower 
than the best design obtained using microscale volume constraints < 100 % (Table 3), 
which suggests again that the optimal microstructure for a single load compliance 
problem is solid material. 
 

Table 3. L beam compliance values. 

No. micro-
structures 

Compliance 
40% microscale 
volume constraint 

No microscale 
volume constraint 

1 905.7 374.3 
3 712.8 374.0 

12 642.9 372.6 
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Figure 9. L beam solution with uniform microstructure and 40% local volume 

constraint. 

 

 
Figure 10. L beam solution with three microstructures and 40% local volume 

constraints. 

 
Figure 11. L beam solution with 12 micro-structures and 40% local volume 

constraints. 
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Figure 12. L beam solutions with no microscale volume constraint a) uniform     

b) three c) 12 microstructures. 

6.4 Compliant mechanism design 
The multiscale topology optimization method is applied to design a compliant 
mechanism. The objective is to maximize the mechanical advantage, defined as the 
ratio of the output force, Fout, to the input force, Fin, subject to upper limits on the 
displacement at the input force location and the total volume (Sigmund 1997). The 
initial design, loading and boundary conditions are shown in Fig. 13, where only the 
lower half is modelled due to symmetry. The material properties are Young’s 
modulus of ten and Poisson’s ratio of 0.3 and the output stiffness, kout, is 0.1. The 
global volume constraint is 15 % and the input displacement constraint is 20. The 
macroscale domain is discretized using unit sized elements. The microscale unit cell 
is discretized into 50 ´ 50 elements and the initial design is the same as for the L 
beam example, Fig. 7b. The problem is solved with a different number of unique 
microstructures: one (uniform), 4, 16, and 1 microstructure per element, making a 
total of 7200 microstructures. The mappings for the 4 and 16 microstructure designs 
is shown in Fig. 14. All problems are solved without microscale volume constraints. 
For comparison, the problem is also solved using a single scale optimization using 
solid isotropic material. 
 

 
Figure 13. Compliant mechanism - Initial design, loading and boundary 

conditions. 

 
Figure 14. Compliant Mechanism mapping of microstructures to macrostructure 

elements a) four microstructures b) 16 microstructures. 
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The results show that as the number of unique microstructures increases, the 
mechanical advantage increases, Table 4. This again, demonstrates the expanded 
design space arising from material tailoring hence a better optimum solution can be 
found. However, unlike the previous compliance minimization example, this trend is 
seen without imposing microscale volume constraints and the multiscale optimization 
utilizes porous microstructure to improve the objective as compared with the solid 
material design. While the level-set method is applied at both macroscale and 
microscale, Figs. 15, 16, 17 and 18 show the plots of elemental porosity of the 
macroscale domain and the associated microstructures to show the topological 
solution and porosity of the structure. The results reflect how the optimizer makes use 
of porous microstructures to improve the objective. 
 
The macroscale designs for the single scale and uniform microstructure solutions are 
similar, Fig. 15, and they are comparable with the results obtained by Bendsoe and 
Sigmund (2004). When nonuniform microstructures are allowed, porous 
microstructures aid in increasing the mechanical advantage compared with the solid 
material solution. Figures 16, 17 and 18 show that porous microstructures at some 
locations in the domain help in improving the objective as seen in Table 4. This 
suggests that the compliant mechanism is benefitting from the multiscale design. This 
may be explained because a compliant mechanism has conflicting stiffness 
requirements. It must be stiff enough to transmit the force from input to output 
locations and to meet the essential boundary conditions, but it must also be compliant 
to create the mechanism that changes the force direction at the output point. 
 
When every element of the macroscopic domain is allowed to have its own 
microstructure, the optimizer has a significantly greater design space and more 
opportunities to tailor the material properties throughout the macroscopic structure. 
The local tailoring of the material microstructures near the input and output points 
leads to more compliant members. The porosity of the lower left member enables it to 
bend more than the solid microstructure counterpart. This leads to increase in 
objective function which further leads to the optimum solution. The advantage 
increased to 0.8901. 
 

Table 4. Compliant mechanism mechanical advantage values. 

Number of 
microstructures 

Mechanical 
advantage 

single scale 0.7403 
1 0.7461 
4 0.8522 

16 0.8644 
7,200 0.8901 
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Figure 15. Elemental porosity plot of compliant mechanism – Optimum solution 

a) single scale b) uniform microstructure. 

 
Figure 16. Elemental porosity plot of compliant mechanism – Optimum solution 

(four microstructures). 

 
Figure 17. Elemental porosity plot of compliant mechanism – Optimum solution 

(12 microstructures). 
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Figure 18. Elemental porosity plot of compliant mechanism – Optimum solution 

(One microstructure per element). 

7. Conclusions 
This paper introduces a new methodology for multiscale topology optimization, 
where two scales are linked by homogenization. The new method can optimize for 
any number of microscale domains, including uniform and nonuniform microscale 
designs. The decomposition formulation is proposed and this allows for easy 
parallelization of the solution algorithm. Thus, the computational time can be 
maintained at a practical level and the proposed methodology is scalable. The 
decomposition formulation results in several separate problems, one corresponding to 
the macroscopic domain and one for each of the microscale domains. The constraint 
boundaries for these problems are determined by formulating and solving it as an 
optimization problem. 
 
The new multiscale topology optimization methodology is demonstrated using 
minimum compliance and compliant mechanism problems. The minimization of 
compliance problems from the existing literature are used to verify the methodology. 
By switching off the macroscale topology optimization, the multiscale optimization 
reproduces the results of the classic topology optimization using homogenization. 
When topology optimization is applied for both macro and microscale domains, the 
optimum microscale design for minimum compliance with a single load case is found 
to be solid, and porous materials do not offer benefits. This means single scale 
optimization would provide the same topological solution as the multiscale solution 
for this problem. When microscale volume constraint is enforced, the objective 
improves as the number of allowable microstructures increase. This demonstrates that 
the multiscale optimization exploits the expanded design space offered by material 
tailoring. The porous materials is observed to be beneficial in compliant mechanism 
optimization where objective is improved by using a multiscale optimization as 
compared to a single scale optimization using solid isotropic material. When a 
uniform microstructure is used without microscale volume constraints, the resultant 
optimum solution is same as that obtained using a single scale optimization, and the 
optimum microstructure is solid. As the number of allowable microstructures 
increases, the objective improves reflecting the increased design space via local 
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tailoring of material design. This demonstrates the potential benefits of multiscale 
topology optimization. Future work will study the effects of periodic boundary 
conditions at the interfaces of differing microstructures and at the edges. 
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