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their identity had long been considered as unproven. In comparison with traditional (single-26 

locus) barcoding, our approach allowed us to unambiguously exclude that these birds were 27 

first-generation hybrids or backcrosses involving Elegant Terns or other species of orange-28 

billed terns.     29 

Keywords: genetic identification, multilocus barcoding, nuclear DNA, hybridization, long 30 

range vagrancy. 31 

 32 

Introduction 33 

 The analysis of DNA sequences has been used since the 1990s either to discover or 34 

delimit species boundaries, or for identification of individual specimens (Saiki et al. 1988). 35 

Hebert et al.(2003) even suggested that the use of a single gene sequence could be enough to 36 

characterize the majority of animal biodiversity and proposed to use the mitochondrial gene 37 

cytochrome c oxidase subunit 1 (COI) as a universal DNA ῾barcode᾿ delimiting species based 38 

on mitochondrial sequence divergence. However this approach is not without controversy 39 

(e.g. Moritz & Cicero 2004). For barcoding to allow universal and reliable species 40 

delimitation and specimen identification, DNA sequences sampled within a species need to 41 

have their most recent common ancestor within that species and levels of sequence divergence 42 

between species have to be much larger than within species. This is true in many cases but 43 

there are numerous exceptions, partly due to introgression (e.g.Whitworth et al. 2007). 44 

Moreover, recent hybridization events may be undetectable with a mitochondrial barcode 45 

because hybrids and backcrosses will only exhibit their mother’s mitochondrial DNA. It is 46 

thus of paramount importance to use multilocus nuclear genotyping to identify specimens in 47 

species groups where hybridization is suspected or proven. The main difficulty of these 48 

“multilocus barcodingˮ approaches is that, unlike for mitochondrial DNA, we do not have 49 

nuclear loci which are variable enough to differ between most species but have primers 50 



 

 
 
 

conserved enough to be used in all species of a deep taxonomic grouping. 51 

 Elegant Tern Sterna elegans and Sandwich Tern Sterna sandvicensis are two closely 52 

related species of “crested” terns (Efe et al. 2009) belonging to the subgenus Thalasseus, 53 

which is sometimes recognized as a distinct genus (Bridge et al. 2005) but not by the 54 

European taxonomic authorities we prefer to follow (BOURC and AERC, 55 

seehttp://www.bou.org.uk/thebritishlist/British-List.pdf and http://www.aerc.eu/tac.html). 56 

“Crested” terns have a worldwide distribution and are characterized by a black crown with 57 

elongated feathers on the rear forming a crest. Speciation within the group was inferred to be 58 

recent, with current species diversity originating within the last 3 million years (Bridge et al. 59 

2005). Nearctic and Palearctic populations of the Sandwich Tern were long treated as 60 

conspecific due to their phenotypic similarity, but they were recently split as different species 61 

owing to their genetic divergence and the closer relationships of Nearctic populations to 62 

Elegant Tern than to Palearctic populations and to minute but likely diagnostic differences in 63 

plumage and structure (see Sangster et al. 2011). Currently, the Palearctic Sandwich Tern is 64 

treated as a monotypic species by most authorities while the North American Cabot’s Tern 65 

(formerly treated as a Nearctic subspecies of Sandwich Tern) includes the subspecies S. 66 

acuflavida acuflavida and S. a. eurygnatha (Cayenne Tern). Following this split, the 67 

distribution range of Elegant Tern and Sandwich Tern do not overlap (see Table 1). 68 

 In Europe, several birds presenting Elegant Tern characters have been seen either 69 

during the breeding period in Sandwich Terns colonies or along coasts of several European 70 

countries (e.g. Boesman 1992, Gutiérrez 1998, Milne & MacAdams 2005) (see Figure S1). 71 

This vagrancy pattern, involving several individuals of a species only breeding on the Pacific 72 

coast of America occurring in Europe, is unprecedented in Europe. In addition, some of these 73 

birds were perceived as exhibiting features atypical for Elegant Tern. Although some apparent 74 

Elegant Terns in Europe have been morphologically indistinguishable from those on the 75 



 

 
 
 

Pacific coast of the USA, others, whose identification has remained controversial, have lacked 76 

the ‘classic’ long, richly bicoloured bill of Elegant Tern (see Table 1), showing instead a more 77 

uniform yellow bill.  78 

Known occurrence of hybridisation between Sandwich Tern and the yellow-billed 79 

Lesser Crested Tern S. bengalensis in Europe (Dies & Dies, 1998; Dies 2001), and the 80 

possibility of hybrids with the orange-billed Royal Tern S. maxima, also confused the 81 

situation (see Table 1). Together, these lines of arguments raised the possibility that Elegant-82 

like terns seen in Europe might include, or entirely be, hybrids between various crested tern 83 

species. This hypothesis has precluded formal acceptance of recent records of Elegant Terns 84 

in several European countries (BOU, 2014). Some presumed Elegant Terns have also been 85 

recorded along the Atlantic coast of North America, sometimes in Cabot’s Terns colonies, 86 

although here again identification has been questioned (Paul et al. 2003). The “hybrid 87 

hypothesis” was reinforced by the occurrence of several mixed pairs and suspected hybrids 88 

between Elegant Tern and Cabot’s Tern along the Pacific (Collins 1997, Velarde & Rojo 89 

2012) and Atlantic coasts of North America (Paul et al. 2003) and by the fact that some 90 

apparent Elegant Terns identified in Europe were paired with Sandwich Terns (own 91 

unpublished data). 92 

In summary, the birds observed in Europe and showing characteristics of Elegant 93 

Terns (notably a combination of orange bill and white rump) might be genetically pure 94 

Elegant Terns or hybrids from mixed pairs involving Elegant Tern and Cabot’s or Sandwich 95 

Tern. Some could even be offspring of Elegant Tern paired with Lesser Crested Tern (the last 96 

species has been seen in W France in the same colony as Elegant-type birds) or with Royal 97 

Tern, or even hybrids Lesser Crested x Royal Terns, two species with yellow or orange bills 98 

which could produce offspring with orange bills and whitish rumps. To resolve these 99 

possibilities three adult European Elegant-like birds, one in Spain and two from France were 100 



 

 
 
 

caught, colour-ringed and sampled for DNA analysis. In addition, a bird assigned to the 101 

Lesser Crested Tern on morphological cues seen in France in the same colony as Elegant-type 102 

birds was also caught and colour-ringed. 103 

 Preliminary genetic analyses performed in 2012 and 2013 by JMP and JMC using one 104 

nuclear intron (Beta Fibinogen intron 7, BFib7 hereafter) and the mitochondrial gene ND2 105 

revealed that all three Elegant-like birds had elegans mtDNA but suggested that two of the 106 

three birds had mixed ancestry as they were heterozygous for a single nucleotide 107 

polymorphism (SNP) of the BFib7 locus that was believed to be species-diagnostic in the 108 

small sample of Elegant and Sandwich used as reference (see below for details). This 109 

preliminary result generated considerable online debate and left us unsatisfied as it was based 110 

on a small sample of reference specimens and only one nuclear marker and because it was 111 

difficult to reconcile with the appearance of the birds (the supposedly pure individual having a 112 

phenotype far less typical of Elegant Tern than the suspected hybrids).  113 

 The aims of this study were thus 1) to increase the number of Elegant and Sandwich 114 

Terns sequenced for the BFib7 locus to verify its validity as a diagnostic marker between 115 

these two species, 2) to develop a “multilocus barcoding” approach for large “crested” terns 116 

(Sterna subgenus Thalasseus) and 3) to apply it to the question of the identification of large 117 

terns with red or orange bill resembling Elegant Tern (Elegant-like birds hereafter) and 118 

Lesser-crested Tern seen in Western Europe. 119 

 120 

METHODS 121 

Sampling 122 

Samples of birds to identify (4 in total) were collected in Spain and in France as 123 

follows. One bird (Sterna 3) was caught in the Sandwich Tern colony of L’Albufera de 124 

Valencia on the Mediterranean coast of Spain (Valencia province, 39°20’ N, 00°20’ W) on 02 125 



 

 
 
 

June, 2006 by JID. This bird was already ringed when caught in 2006, and the ring revealed it 126 

had been first ringed as Lesser Crested Tern in the Marismas del Odiel, Huelva (SW Spain) 127 

on 8 October 2002 (M. Vázquez, pers. comm.). Its white rump suggested Elegant Tern but its 128 

bill colour and shape were perceived as slightly untypical for that species and its identity was 129 

left unresolved. Colour-rings (yellow ring) were added and the bird was blood sampled (see 130 

http://www.freewebs.com/jidies/AlbuferaTern.pdf for details). The other two birds were 131 

caught and sampled by JG in the Sandwich Tern colony of Banc d’Arguin on the Atlantic 132 

coast of France (Gironde department, 44°35’ N, 1°14’ W). One of them was caught a first 133 

time on June 18, 2007 and a second time on June 15, 2013. Several feathers were collected on 134 

each occasion. The other was caught on July 3, 2003 and several feathers were collected. Both 135 

birds were colour-ringed as well (Sterna 1 with red/white rings and Sterna 2 with 136 

yellow/green rings). One of them perfectly matched the appearance of Elegant Tern in 137 

America but the other one, with its relatively short and pale bill, was widely believed to be of 138 

hybrid origin. Last, one bird identified as Lesser Crested Tern (Sterna 4) was caught by JG on 139 

Banc d’Arguin in the same colony as Elegant-like birds on July, 2003 (see Supplementary 140 

Figure 1 for photos of all four birds). 141 

Reference samples were obtained as follows: Sandwich Tern, breeding adults or 142 

chicks, Banc d’Arguin, W France, 44°35’/-1°14’ (n=10) and Agde, S France, 43°23’/3°38’ 143 

(n=4); Elegant Tern, Bolsa Chica State Ecological Reserve, USA, 33°41’/-118°2’ (n=5) and 144 

Westport, Grays Harbor, USA, 46°54’/-124°7’ (n=9); Lesser Crested Tern (subspecies emigrata),  145 

Libya (n=8); Royal Tern (subspecies albididorsalis), Cap Blanc peninsula, Mauritania, 21°0’/-146 

17°4’ (n=1) and Tanji Bird Reserve, Gambia, 13°23'/-16°48' (n=1); Royal Tern (subspecies 147 

maximus), Guadeloupe (n=1); Crested Tern (subspecies bergii), Robben Island, South Africa, 148 

33°49’/-18°22’ (n=1).  149 

 150 



 

 
 
 

DNA extraction and genotyping 151 

 We selected 13 nuclear loci for initial screening (including BFib7, which had already 152 

been sequenced in the three Elegant-like birds, see introduction) that had already been found 153 

to be variable in birds (see Table 2 for details). Most of the samples were processed in 154 

Montpellier, but for some samples independent extractions, PCR and sequencing were done in 155 

Aberdeen (by JMC), Paris (JMP) and Montpellier (PD).  156 

In Montpellier, DNA was extracted from blood or feather base using the Qiagen Blood 157 

and Tissue extraction kit (Applied Biosystems, Foster City, CA, USA), following the 158 

manufacturer’s recommended procedures. Negative extraction blanks were made by 159 

processing tubes in exactly the same way as tissue samples. Standard amplification protocols 160 

were used.The annealing temperature was 55°C for all loci except for ND2 (56°C) and MYO2 161 

(57°C). Both strands of the PCR products were sent for sequencing at Eurofins Genomics 162 

(Ebersberg, Germany) using the same primers as for the amplification (primers are reported in 163 

Table 2). Sequences were aligned with MEGA6 (Tamura et al. 2013) with further adjustment 164 

by eye. Heterozygous sites and point substitution were spotted on the alignment and checked 165 

by visual inspection of the chromatographs using Chromas v2.4.3 (Technelysium Pty Ltd). 166 

In Aberdeen, DNA was extracted using the using the DNA Micro Kit (Qiagen, UK) 167 

according to the manufacturer’s instructions, with addition of dithiothreitol to 0.1 M 168 

concentration in the digestion mix and elution in 80 μl of Qiagen buffer AE. PCR, DNA 169 

extraction and sequencing was performed using protocols as described in Shannon et al. 170 

(2014). Primers used were those described in Table 2. In addition, ND2 was amplified using 171 

universal primers L5216 and H6313 as described in Shannon et al. (2014).All sequences were 172 

deposited in GenBank except for individuals that yielded incomplete sequences (GenBank 173 

Accession Nos. KU668666-681 for ND2, KU577493-506 for Myo2, KU577469-492 for 174 

BFib7, KU252681-712 for 3862, KU234225-256 for ACL, KU252713-745 for CRMIL, 175 



 

 
 
 

KU252780-812 for RGS4, KU252813-844 for TGF, KU252746-779 for FGB, KX131231-176 

239 for 16264, KX131240-247 for 17483, KX131249-256 for 26187, KX131257-265 for 177 

GAPD2, see Appendix 1 for G3PDH). In addition, 11 ND2, 13 BFib 7 and 4 Myo2 sequences 178 

available in Genbank were included in our data set (see Figure 1 and Table S1 and S2).For 179 

illustrative purpose a phylogenetic tree of the ND2 sequences was performed using Mega 180 

version 6 (Tamura et al. 2013). Briefly, we selected the best nucleotide substitution model 181 

selection (HKY) then performed a maximum-likelihood analysis with 1000 bootstrap 182 

replicates using this model of substitution.  183 

 184 

RESULTS& DISCUSSION 185 

The molecular analyses clearly supported that our three Elegant-like individuals were 186 

genetically pure Elegant Terns and suggested that the suspected Lesser Crested Tern was 187 

correctly identified.  188 

 189 

Mitochondrial DNA 190 

Results for the mitochondrial ND2 are reported on Figure 1. Several diagnostic sites were 191 

found between all species. All three Elegant-like birds presented without ambiguity an 192 

elegans mtDNA haplotype whereas the Lesser Crested Tern from France presented as 193 

expected a bengalensis mtDNA haplotype. 194 

 195 

Nuclear introns: identification of diagnostic loci and reliability of BFib7 196 

First, all nuclear introns except BFib7 were sequenced on 5 individuals of Elegant Tern and 5 197 

individuals of Sandwich Tern. Among these11 introns, 5 loci (16264, G3PDH, GAPD2, 198 

17483 and 26187) did not reveal candidate diagnostic mutations between the two species and 199 

were thus discarded. For the other loci, at least one substitution separated all Elegant from all 200 



 

 
 
 

Sandwich individuals and for these markers 5 additional individuals of Elegant Tern and 5 201 

additional individuals of Sandwich Tern were sequenced to confirm suspected diagnostic 202 

sites.  203 

For BFib7, we sequenced in Montpellier nine individuals of confirmed Elegant Tern 204 

and four individuals of Sandwich Tern. We added and compared them to the 3 Elegant (2 205 

sequenced by JMP and one unpublished sequence sent to us by E.S. Bridge), the 2 Sandwich 206 

(sequenced by JMP), and one Royal (sequenced by MC) sequences were already available. 207 

We also used additional GenBank sequences of Cabot's Tern (2 acuflavida FJ356204-208 

FJ356205 and 5 eurygnatha FJ356199-FJ356202), Royal Tern (AY695189), and Sandwich 209 

Tern (FJ356206-208). Adding more Elegant specimens to the small data set available to us 210 

previously revealed that this marker cannot be used to separate Elegant from Sandwich as the 211 

substitution we thought to be diagnostic for Sandwich Terns was in fact observed in two 212 

Elegant Terns from USA in the heterozygous state (see Table S1).  213 

The six others nuclear introns were retained as they presented at least one mutation 214 

fixed (ACL, FGB, TGF, 3862, CRMIL) or nearly so (RGS4) between our 10 Elegant and 10 215 

Sandwich specimens. The number of (near) diagnostic SNPs by intron varied between 1 and 2 216 

(see Table 3). These six loci were thus sequenced on the three European Elegant-like birds. 217 

 218 

Nuclear introns: genotyping and identification  219 

The three Elegant-like birds were found to be homozygous for elegans alleles at all 220 

diagnostic SNPs in all 6 loci, excluding the possibility that they were F1 hybrid between 221 

Elegant and Sandwich. The probability that an F2 backcross Elegant x Sandwich Tern with 222 

Elegant Tern would exhibit Elegant alleles at all 6 loci is only (0.5)6 = 0.016 (thus less than 223 

2%) and can be discarded as highly unlikely. Sequencing on some of these introns from 224 

independent extractions of the same birds by MC at Aberdeen University confirmed these 225 



 

 
 
 

results and allowed us to eliminate the risk of contamination or other mistakes in the 226 

laboratory. 227 

As can be seen from Table 3, we can also exclude the possibility that any of these 228 

birds is a hybrid involving Lesser Crested Tern, Royal Tern or Crested Tern as none of them 229 

show any of the alleles of these species for 3 of the 6 loci. This was also confirmed by 230 

examination of the complete alignment for these 6 loci (results not shown). We are thus 231 

confident that the three Elegant-like birds sampled in Europe are indeed pure Elegant Terns.  232 

One of the loci initially screened (MYO2) shows no fixed difference between Elegant 233 

and Sandwich Terns but shows several sites that separate Lesser Crested from Cabot’s and 234 

Cayenne, from Sandwich and from most Elegant (see Table S2). The MYO2 sequence for the 235 

French Lesser Crested Tern (Sterna 4) was typical of the species and, together with the 236 

mitochondrial data (see above), supported the field identification as pure Lesser Crested Tern.     237 

 238 

Drawbacks of genotyping by sequencing 239 

The “multilocus barcoding” approach that we have developed has thus proven very 240 

effective to identify individuals and exclude hybridization in a situation where it was 241 

suspected. However, it required a tedious step of marker selection involving sequencing 242 

multiple nuclear markers and selecting those showing diagnostic mutations on a subset of 243 

reference samples before genotyping additional reference samples. Only after this last step, it 244 

was possible to genotype our target specimens. Furthermore, detection of heterozygous 245 

substitutions as double peaks on chromatographs depends on the quality of the sequenced 246 

DNA and in most cases the software we used did not automatically recover these peaks as 247 

heterozygous. Reliable identification of heterozygous base positions thus relied entirely on 248 

visual inspection of individual chromatographs. Other genotyping methods such as Sequenom 249 

(Bradić et al. 2011) or KASPar (Cuppen 2007) are available for large-scale genotyping of 250 



 

 
 
 

SNPs but they are expensive for small number of specimens and still rely on previous 251 

identification of target SNPs. Effective, simple and cheap “multilocus barcoding” approaches 252 

thus still need to be developed. 253 

 254 

Morphological and plumage characters of the Elegant-like birds 255 

In spite of the initial confusion surrounding the identification of the three Elegant-like birds, 256 

morphological and plumage characters are consistent with our genetic conclusions. Compared 257 

with Elegant Terns photographed in the native range, our three birds fit well into the 258 

phenotypic variability of the species (pers. obs.). Moreover, a putative hybrid raised by of one 259 

of our 3 genotyped male Elegant Terns and a female Sandwich Tern, colour-ringed before 260 

fledging in the Banc d’Arguin colony and photographed as adult, is similar to a Sandwich 261 

Tern with orange spots on the dark bill and a more extensive yellow bill tip (pers. obs.).  262 

 263 

Origin of the Elegant Terns seen in Europe 264 

We have demonstrated here that three pure Elegant Terns currently reside in Europe where 265 

they were seen every year between 2001 and 2015. Because these three birds do not differ in 266 

phenotype from most other Elegant-like birds that have not been sampled in the present study, 267 

it is reasonable to assume that most Elegant-like terns seen in Europe are indeed pure Elegant 268 

Terns, unless there are plumage or bare-part irregularities that argue against such 269 

identification. A total of 25 birds presenting Elegant Tern characteristics were noted in 270 

Europe since 1974 (PD, unpublished data) but this probably includes repeated records of the 271 

same individuals. Whether all Elegant-like Terns seen in Europe were hatched in America and 272 

reached Europe via transatlantic vagrancy or some of them were hatched in Europe remains 273 

an open question. Most records concern adult birds and several pertain to birds observed in 274 

Sandwich Tern colonies for several breeding seasons, usually paired with Sandwich Tern. 275 



 

 
 
 

These birds have sometimes adopted the migratory behaviour of European Sandwich Terns, 276 

as illustrated by sightings of both colour-ringed birds from France on their wintering sites in 277 

South Africa and Namibia (JG unpublished data). Moreover, the Spanish bird that we 278 

analysed has previously paired with unsampled Elegant-like birds in Spain in 2011, 2012, 279 

2013, 2014 and 2015, fledging a probably pure Elegant Tern chick in four years (JID 280 

unpublished data, see also www.rarebirdspain.net). No Elegant-like birds were seen paired 281 

together before2011, but it is conceivable that pure pairs could have escaped detection prior to 282 

that. 283 

 284 

Extreme vagrancy as a source of interspecific gene flow and long-distance range 285 

colonisation  286 

However unlikely long-distance vagrancy might seem to be, our results highlight that it can 287 

have evolutionary important consequences. The fact that Elegant Terns and Sandwich Terns 288 

are reciprocally monophyletic in mtDNA and several nuclear loci demonstrate that 289 

interspecific gene flow has not regularly occurred in the past, knowing that even low levels of 290 

gene flow (a few successful hybridization events per century) would result in extensive 291 

lineage sharing at neutral markers (Wright 1940). This is clearly not due to pre-mating 292 

mechanisms as Elegant Terns regularly mate with Sandwich Terns not only in Europe but also 293 

in North America where several mixed pairs have been observed in Florida and California 294 

since 1980 (McCarthy 2006). To date all mixed pairs observed in France, Spain (pers. obs.) 295 

and North America (McCarthy 2006) involved elegans males. We have no information on 296 

breeding success of Elegant x Sandwich hybrids. Although complete post-zygotic isolation is 297 

theoretically possible, it is unlikely given that the low genetic divergence of these species 298 

suggests a recent speciation event (see Efe et al. 2009). Whatever the reason for lack of 299 

historical gene flow between Elegant and Sandwich Terns, the current records of Elegant 300 



 

 
 
 

Terns in Europe and of Sandwich Terns in North America illustrate that allopatric ranges, 301 

even when normal breeding range are separated by 10,000 km, is not necessarily sufficient 302 

alone to totally prevent interspecific gene flow in seabirds. The recent reproduction of Elegant 303 

Tern in pure pairs in Europe (in Spain, see above) also provides a possible mechanism for 304 

long range colonization in seabirds, including trans-Atlantic colonization, that do not 305 

necessarily proceed from gradual range expansion followed by fragmentation but could 306 

originate from occasional natural long-distance vagrants (as in the case of the recent 307 

colonization of America by the Cattle Egret Bubulcus ibis, see Moralez-Silva &Del Lama 308 

2014).  309 
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Table 1: Phenotypical characters in adults and breeding range of the sampled species. 400 
Sources: [1] : van Duivendijk (2010) [2] : www.iucnredlist.org 401 
 402 

 Species Size1 

(cm) 

Bill characters1 

 

Breeding range2 

 Color Structure 

1. Elegant Tern 

 Sterna elegans 

43 Reddish-

orange 

with 

paler tip 

Long with dropping 

bill-tip 

Pacific coast of North 

America 

2. Sandwich Tern 

S.sandvicensis 

40 Black 

with 

small 

yellow 

tip  

Slender bill Europe from the Atlantic 

coast to the Caspian Sea 

3. Cabot's Tern 

S. acuflavida 

acuflavida 

38 Black 

with 

small 

yellow 

tip  

Slender bill, slightly 

shorter than 2. 

Atlantic coast of North 

America 

4. Cayenne Tern  

S. a. eurygnatha 

38 Yellow 

to black 

with 

small 

yellow 

tip 

Slender bill, slightly 

shorter than 2. 

Central and South 

America 

5. American Royal 

Tern  

S. maxima maxima 

45 Uniform 

orange 

to red 

Heavy bill with 

curved culmen and 

marked gonys 

Pacific coast of South 

America and Atlantic 

coast of America 

6. African Royal Tern 

S. m. albididorsalis 

45 Uniform 

paler 

orange 

Heavy bill with 

flatter culmen and 

lesser obvious 

gonys than 5 

Atlantic coast of Africa 

7. Lesser Crested Tern 

S. bengalensis 

36 Uniform 

yellow 

orange 

Shorter than 2 with 

straight lower 

mandible 

Mediterranean coast of 

Lybia, Red Sea, Persian 

Gulf, Indian Ocean and 

Australasia 

8. Great Crested Tern 

S. bergii 

46 Uniform 

green-

yellow 

Heavier than 7 Namibia, South Africa to 

East Africa, Red Sea, 

Indian Ocean, SE and E 

Asia to Australasia 

403 
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 404 

Table 2: Genetic loci screened in this study. Each locus is shown with intron number in 405 
parentheses, annealing temperature, forward and reverse primers, gene function and source. 406 
Loci in bold are recognised as presenting diagnostic SNPs. Sources: [1] Jackson et al.(2012) 407 
[2] Kimball et al. (2012) [3] Gay et al. (2004) [4] Sladeet al. (1993) [5] Heslewood et 408 
al.(1998) [6] Sorenson et al.(1999). 409 
 410 
 411 

Name  
Length 

(bp) 
Primers Function Source 

16264 684 TTTATAGGCACATCCTTGAC Postsynaptic protein CRIPT 1 

    GCATTGACCTCAAAGAAGGC     

17483 806 TTGCTCTTGGCACGATATGC High mobility group protein B2 1 

    GAAATGTGGTCTGAACAGTC     

26187 868 CATGTTCCAGAGGTTGTAGG ATPase, lysosomal accessory protein 2 1 

    GGTGGGAATGCAGTAGTAGA     

3862 742 CACCTCGTTGGAGATGTTCC WD repeat protein 24 1 

    CCCTCCGACTTCTTCAACCC     

ACL (16) 458 CAGCAATAATGGCAATGGTG ATP citrate lyase 1 

    GCTCTGCTTATGACAGCACT     

BFIB (7) 948 TCCCCAGTAGTATCTGCCATTAGGGTT Beta-fibrinogen 1 

    GGAGAAAACAGGACAATGACAATTCAC     

CRMIL (14) 630 TGATGAGATCCACTCCATCG V-raf murine sarcoma viral oncogene 1 

    TCAATCATCCACAGAGACC     

G3PDH (11) 380 ARRTCCACAACACGGTTGCTGTA Glyceraldehyde 3- 1 

    GGCATTGCACTGARYGAYCATTT phosphate dehydrogenase   

RGS4 (3) 745 GTAGTCCTCACAACTGACC Regulator G-protein signaling 4 1 

    TCGCTGGAAAACTTGATCC     

TGF (5) 560 GAAGCGTGCTCTAGATGCTG Transforming growth factor, beta 2 2 

    AGGCAGCAATTATCCTGCAC     

FGB (5) 580 CGCCATACAGAGTATACTGTGACAT Fibrinogen beta chain 2 

    GCCATCCTGGCGATTCTGAA     

GAPD2 380 GGCATTGCACTGAATGACCATT Glyceraldehyde 3-phosphate  3 

    CTGGGGACAGAAACAGAAGTG dehydrogenase-2   

MYO2 678 GCCACCAAGCACAAGATCCC Myoglobin gene 4 

    GCAAGGACCTTGATAATGACTT   5 

mtDNA         

ND2 1014 CCCATACCCCGAAAATGATG NADH Dehydrogenase 2 6 

    CTCTTATTTAAGGCTTTGAAGGC     
 412 
 413 
 414 
 415 
 416 
 417 
 418 
 419 



 

 
 
 

 420 
 421 
Table 3: Variable positions in nuclear introns of Sandwich and Elegant Terns and our 422 
Elegant-like terns from Europe. Columns in grey are diagnostic position, in white near-423 
diagnosis. The number in the top row refer to the base position in the intron. “?” = missing 424 
base. Positions in sequences have been numbered relative to GenbankKU252780 (RGS4), 425 
KU252747 (FGB), KU252813 (TGF), KU234225 (ACL), KU252681 (3862) and KU252713 426 
(CRMIL). 427 
 428 

TGF CRMIL

1 - Sterna 3 (S35-JMP) T T T G C/T G T A G C G/A G T C

1 - Sterna 3 (S35) ? ? ? ? ? ? ? ? G C G/A ? ? ?

2 - Sterna 2 (S46-JMP) T T/C T T C/T G T A G C G G T C

2 - Sterna 2 (S46) ? ? ? ? ? ? ? A G C G ? ? C

3 - Sterna 1 (S47-JMP) T T/C T T C/T G T A G C G ? T C

3 - Sterna 1 (S47) T T/C T T C/T G T A G C G G T C

S. elegans (S64) T T T T/G C G T A G C G/A G T C

S. elegans (S67) ? ? ? ? C/T G T A G C G G T C

S. elegans (S68) T/C T/C T T C/T G T/C A G C G/A G T C

S. elegans (S69) T T T T/G C/T G T/C A G C G G T C

S. elegans (S70) T T T T C G T A G C G G T C

S. elegans (S71) T/C C T T T G C A G ? ? G T C

S. elegans (S72) T T T G C/T G T/C A G C G G T C

S. elegans (S73) T T T G T G C A G C G G T C

S. elegans (S74) T C T/A G C/T G T/C A G C G G T C

S. elegans (S75) T T T/A T T G C A G C G G T C

S. sandvicensis (S48) C C A G T A ? G A T/C A A C T

S. sandvicensis (S50) C C A G T A C G A T A A C T

S. sandvicensis (S53) C C A G T A C G A T A A C T

S. sandvicensis (S54) C C A G T A C G A T A A C T

S. sandvicensis (S55) C C A G T A ? G A C A A C T

S. sandvicensis (S56) C C A G T A C G A T A A C T

S. sandvicensis (S59) C C A G T A C G A T A A C T

S. sandvicensis (S60) C C A G T A C G A T A A C T

S. sandvicensis (S61) C C A G T A C G A T A A C T

S. sandvicensis (S63) ? ? ? ? ? ? ? G A T/C A A C T

S. bengalensis emigrata (S3) C C A G T A T A G C A G C C

S. bengalensis emigrata (S6) C C A G T A T A G C A G C C

S. bengalensis emigrata (S7) C C A G T A T A G C A G C C

S. bengalensis emigrata (S8) C C A G T A T ? ? ? ? ? ? ?

S. bengalensis emigrata (S9) C C A G T A T A G C A G C C

S. bengalensis emigrata (S10) C C A G T A T A G C A G C C

S. bengalensis emigrata (S11) C C A G T A T A G C A G C C

S. bengalensis emigrata (S12) ? ? ? ? T A T A G C A G C C

S. maximus albididorsalis (S1) ? ? ? ? T A T ? G C A ? ? C

S. maximus maximus (M02) T A T A G C A C

S. maximus maximus (S77) C C A G T A T/C A A C A G C C

S. bergii (S78) C C A G T A C A G C G G C C

RGS4 FGB ACL 3862
256 306 338 483 219 156 387 327174 317 385 334 104 200

 429 
 430 
 431 
 432 
 433 
 434 
 435 
 436 

 437 



 

 
 
 

Figure 1: Maximum-likelihood phylogenetic tree of mitochondrial ND2 sequences. Bootstrap 438 
values (1000 replicates) are indicated at nodes. 439 
 440 

 441 
 442 
 443 

444 



 

 
 
 

Supplementary Materials: 445 

 446 
Figure S1 : A: Sterna 2 Elegant Tern - "Yellow/green" - Banc d'Arguin, Atlantic coast- 447 
France 11/07/2006 (Julien Gernigon) B: Sterna 3 Elegant Tern - "Yellow" - Salins de 448 
Bagnas, Mediterranean coast, France 15/07/2008 (X. Rufray) C: Sterna 1 Elegant Tern -449 
"Red/white" - Banc d'Arguin, Atlantic coast, France 08/08/2007 (Edouard Dansette) D: 450 
Sterna 4 Lesser-crested Tern - "Orange" - Banc d'Arguin, Atlantic coast, France 06/07/06 451 
(Julien Gernigon)   452 
 453 
 454 
 455 
 456 
 457 
 458 
 459 
 460 
 461 
 462 
 463 
 464 
 465 
 466 
 467 
 468 
 469 
 470 
 471 
 472 
 473 
 474 
 475 
 476 
 477 
 478 
 479 
 480 
 481 
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 483 
 484 
 485 
 486 
 487 
 488 
 489 
 490 
 491 
 492 
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 494 
Table S1: Variable positions in the Bfib7 nuclear intron. The numbers in the top row refer to 495 
the base position numbered relative to Genbank KU577469. 496 
 497 

Sterna 3 / MC T/C T/G A/G T/G A/G T/C T/G

Sterna 3 (S35) / JMP T/C T/G A/G T/G A/G T/C T/G

Sterna 2 / MC C T G T A T/C G

Sterna 2 (S46) / JMP C T G T A T/C G

Sterna 1 (S2) / JMP T/C T/G A/G T/G A/G T T/G

Sterna 1 (S47) / JMP T/C T/G A/G T/G A/G T T/G

Sterna 1 / MC T/C T/G A/G T/G A/G T T/G

S. elegans (B5788-Bridge) C T G T A T G

S. elegans (S13) C T G T A T G

S. elegans (S19) C T G T A ? ?

S. elegans (S67) T/C T/G A/G T/G A/G T T/G

S. elegans (S68) C T G T A T G

S. elegans (S69) C T G T A C G

S. elegans (S70) C T G T A T G

S. elegans (S71) C T/G A G G T T

S. elegans (S72) C T A/G T/G A/G T T/G

S. elegans (S73) C T G T A C G

S. elegans (S74) C T G T A T G

S. elegans (S75) T/C T/G A/G T/G A/G T/C T/G

S. sandvicensis (ESP12/FJ356208) T G G T A T G

S. sandvicensis (ESP10/FJ356207) T G A G G T T

S. sandvicensis (ESP08/FJ356206) T G A G G T T

S. sandvicensis (S44) T G A G G T T

S. sandvicensis (S45) T G A G G T T

S. sandvicensis (S50) T G A/G T/G A/G T T/G

S. sandvicensis (S54) T G A G G T T

S. sandvicensis (S60) T G A G G T T

S. sandvicensis (S61) T G A G G T T

S. a. acuflavida (USA09/FJ356205) C T G T A C G

S. a. acuflavida (USA08/FJ356204) C T G T A C G

S. a. eurygnatha (ES03/FJ356202) C T G T A C G

S. a. eurygnatha (ES09/FJ356203) C T G T A C G

S. a. eurygnatha (ES02/FJ356201) C T G T A C G

S. a. eurygnatha (ARG04/FJ356200) C T G T A C G

S. a. eurygnatha (ARG02/FJ356199) C T G T A C G

S. bengalensis emigrata (S3) C T G T A T G

S. bengalensis emigrata (S7) C T G T A T G

S. bengalensis emigrata (S10) C T G T A T G

S. bengalensis emigrata (S12) C T G T A T G

S. maximus maximus (AY695189) C T G T A T G

S. maximus maximus (M02) C T G T A T G

BFIB7

414 519 639 640 645 727660

 498 
 499 
 500 
 501 
 502 
 503 
 504 
 505 



 

 
 
 

Table S2: Variable positions in the Myo2 nuclear intron. The numbers in the top row refer to 506 
the base position numbered relative to Genbank KU577500. 507 
 508 
 509 

Sterna 3 / MC T C A T T

Sterna 2 / MC T/G C A/G T/G T

Sterna 1 (S2) / JMP T C/T A T T

Sterna 1 / MC T C/T A T T

Sterna 4 (C44) / JMP G C G T C

S. elegans (S13) T/G C A/G T/G T

S. elegans (S16) T C A T T

S. elegans (S19) T/G C/T A/G T/G T

S. sandvicensis (C41) G C G G T

S. sandvicensis (C42) G C G G T

S. sandvicensis (C43) G C G G T

S. a. acuflavida (USA09/FJ356216-26) T C G T T

S. a. acuflavida (USA08/FJ356215-25) T C G T T

S. a. eurygnatha (ARG02/FJ356210-20) T C G T T

S. a. eurygnatha (ES03/FJ356213-23) T C A T T

S. bengalensis emigrata (S6) G C G T T/C

S. bengalensis emigrata (S7) G C G T T/C

S. bengalensis emigrata (S8) G C G T T

S. bengalensis emigrata (S10) G C G T T/C

S. bengalensis emigrata (S12) G C G T T/C

MYO2

110 112 124 372 528

 510 
511 



 

 
 
 

 512 

Appendix 1: Sequences of the nuclear intron Glycéraldéhyde-3-phosphodehydrogenase 513 
(G3PDH). 514 
 515 
>Seq1 [organism=Sterna sandvicensis] S50,France,Glycéraldéhyde-3-phosphodehydrogenase(G3PDH) 516 
GAAGAACAGAAGTGCTGTCAGGACTGACCCATTTCTTGCATCCCCTTCGTCCTAATTTTCCTGCTCTTCTGCCCC517 
ATCTCACACAACTGAACCACTCAGCTTCCCATCCACTTCTAGTAAAGTAAGTAGGAAAAATTCCATACACCCTT518 
CAAATACGGTAAGGAAAAGGCTACAGTCATTTCAGATAAGCAGCAACTTCACTCCACAGAAACTTCATAATAT519 
GTTGGAGCCACCCTACACAGCAGGGGTCTACGTTATGACCCCACACTGCCAACCTGGCAGTGATGAACAGGAC520 
AGAAGCCTGCAACTTGCCTGTGTCAGCTCCTCATCCCCCCCAGTGTCTCCCCCACCACCCCTTAAGGCTGCACC521 
TACCAGGAAACCAGCTTGACAAAATGATC 522 
 523 
>Seq2 [organism=Sterna sandvicensis] S54,France,Glycéraldéhyde-3-phosphodehydrogenase(G3PDH) 524 
GAAGAACAGAAGTGCTGTCAGGACTGACCCATTTCTTGCATCCCCTTCGTCCTAATTTTCCTGCTCTTCTGCCCC525 
ATCTCACACAACTGAACCACTCAGCTTCCCATCCACTTCTAGTAAAGTAAGTAGGAAAAATTCCATACACCCTT526 
CAAATACGGTAAGGAAAAGGCTACAGTCATTTCAGATAAGCAGCAACTTCACTCCACAGAAACTTCATAATAT527 
GTTGGAGCCACCCTACACAGCAGGGGTCTACGTTATGACCCCACACTGCCAACCTGGCAGTGATGAACAGGAC528 
AGAAGCCTGCAACTTGCCTGTGTCAGCTCCTCATCCCCCCCAGTGTCTCCCCCACCACCCCTTAAGGCTGCACC529 
TACCAGGAAACCAGCTTGACAAAATGATC 530 
 531 
>Seq3 [organism=Sterna sandvicensis] S60,France,Glycéraldéhyde-3-phosphodehydrogenase(G3PDH) 532 
GAAGAACAGAAGTGCTGTCAGGACTGACCCATTTCTTGCATCCCCTTCGTCCTAATTTTCCTGCTCTTCTGCCCC533 
ATCTCACACAACTGAACCACTCAGCTTCCCATCCACTTCTAGTAAAGTAAGTAGGAAAAATTCCATACACCCTT534 
CAAATACGGTAAGGAAAAGGCTACAGTCATTTCAGATAAGCAGCAACTTCACTCCACAGAAACTTCATAATAT535 
GTTGGAGCCACCCTACACAGCAGGGGTCTACGTTATGACCCCACACTGCCAACCTGGCAGTGATGAACAGGAC536 
AGAAGCCTGCAACTTGCCTGTGTCAGCTCCTCATCCCCCCCAGTGTCTCCCCCACCACCCCTTAAGGCTGCACC537 
TACCAGGAAACCAGCTTGACAAAATGATC 538 
 539 
>Seq4 [organism=Sterna sandvicensis] S61,France,Glycéraldéhyde-3-phosphodehydrogenase(G3PDH) 540 
GACGAACAGAAGTGCTGTCAGGACTGACCCATTTCTTGCATCCCCTTCGTCCTAATTTTCCTGCTCTTCTGCCCC541 
ATCTCACACAACTGAACCACTCAGCTTCCCATCCACTTCTAGTAAAGTAAGTAGGAAAAATTCCATACACCCTT542 
CAAATACGGTAAGGAAAAGGCTACAGTCATTTCAGATAAGCAGCAACTTCACTCCACAGAAACTTCATAATAT543 
GTTGGAGCCACCCTACACAGCAGGGGTCTACGTTATGACCCCACACTGCCAACCTGGCAGTGATGAACAGGAC544 
AGAAGCCTGCAACTTGCCTGTGTCAGCTCCTCATCCCCCCCAGTGTCTCCCCCACCACCCCTTAAGGCTGCACC545 
TACCAGGAAACCAGCTTGACAAAATGATC 546 
 547 
>Seq5 [organism=Sterna elegans] S64,USA,Glycéraldéhyde-3-phosphodehydrogenase(G3PDH) 548 
GGCGAACAGAAGTGCTGTCAGGACTGACCCATTTCTTGCATCCCCTTCGTCCTAATTTTCCTGCTCTTCTGCCCC549 
ATCTCACACAACTGAACCACTCAGCTTCCCATCCACTTCTAGTAAAGTAAGTAGGAAGAATTCCATACACCCTT550 
CAAATACGGTAAGGAGAAGGCTACAGTCATTTCAGATAAGCAGCAACTTCACTCCACAGAAACTTCATAATAT551 
GTTGGAGCCACCCTACACAGCAGGGGTCTACGTTATGACCCCACACTGCCAACCTGGCAGTGATGAACAGGAC552 
AGAAGCCTGCAACTTGCCTGTGTCAGCTCCTCATCCCCCCCAGTGTCTCCCCCACCACCCCTTAAGGCTGCACC553 
TACCAGGAAACCAGCTTGACAAAATGATC 554 
 555 
>Seq6 [organism=Sterna elegans] S67,UWBM69602,USA,Glycéraldéhyde-3-phosphodehydrogenase(G3PDH) 556 
GACGAACAGAAGTGCTGTCAGGACTGACCCATTTCTTGCATCCCCTTCGTCCTAATTTTCCTGCTCTTCTGCCCC557 
ATCTCACACAACTGAACCACTCAGCTTCCCATCCACTTCTAGTAAAGTAAGTAGGAAGAATTCCATACACCCTT558 
CAAATACGGTAAGGAGAAGGCTACAGTCATTTCAGATAAGCAGCAACTTCACTCCACAGAAACTTCATAATAT559 
GTTGGAGCCACCCTACACAGCAGGGGTCTACGTTATGACCCCACACTGCCAACCTGGCAGTGATGAACAGGAC560 
AGAAGCCTGCAACTTGCCTGTGTCACCTCCTCATCCCCCCCAGTGTCTCCCCCACCACCCCTTAAGGCTGCACC561 
TACCAGGAAACCAGCTTGACAAAATGATC 562 
 563 
>Seq7 [organism=Sterna elegans] S68,UWBM70563,USA,Glycéraldéhyde-3-phosphodehydrogenase(G3PDH) 564 
GACGAACAGAAGTGCTGTCAGGACTGACCCATTTCTTGCATCCCCTTCGTCCTAATTTTCCTGCTCTTCTGCCCC565 
ATCTCACACAACTGAACCACTCAGCTTCCCATCCACTTCTAGTAAAGTAAGTAGGAAGAATTCCATACACCCTT566 
CAAATACGGTAAGGAGAAGGCTACAGTCATTTCAGATAAGCAGCAACTTCACTCCACAGAAACTTCATAATAT567 
GTTGGAGCCACCCTACACAGCAGGGGTCTACGTTATGACCCCACACTGCCAACCTGGCAGTGATGAACAGGAC568 
AGAAGCCTGCAACTTGCCTGTGTCAGCTCCTCATCCCCCCCAGTGTCTCCCCCACCGCCCCTTAAGGCTGCACC569 
TACCAGGAAACCAGCTTGACAAAATGATC 570 
 571 
>Seq8 [organism=Sterna elegans] S69,UWBM69603,USA,Glycéraldéhyde-3-phosphodehydrogenase(G3PDH) 572 
GACGAACAGAAGTGCTGTCAGGACTGACCCATTTCTTGCATCCCCTTCGTCCTAATTTTCCTGCTCTTCTGCCCC573 
ATCTCACACAACTGAACCACTCAGCTTCCCATCCACTTCTAGTAAAGTAAGTAGGAAGAATTCCATACACCCTT574 
CAAATATGGTAAGGAGAAGGCTACAGTCATTTCAGATAAGCAGCAACTTCACTCCACAGAAACTTCATAATAT575 



 

 
 
 

GTTGGAGCCACCCTACACAGCAGGGGTCTACATTATGACCCCACACTGCCAACCTGGCAGTGATGAACAGGAC576 
AGAAGCCTGCAACTTGCCTGTGTCAGCTCCTCATCCCCCCCAGTGTCTCCCCCACCACCCCTTAAGGCTGCACC577 
TACCAGGAAACCAGCTTGACAAAATGATC 578 
 579 
>Seq9 [organism=Sterna elegans] S70,UWBM70562,USA,Glycéraldéhyde-3-phosphodehydrogenase(G3PDH) 580 
GACGAACAGAAGTGCTGTCAGGACTGACCCATTTCTTGCATCCCCTTCGTCCTAATTTTCCTGCTCTTCTGCCCC581 
ATCTCACACAACTGAACCACTCAGCTTCCCATCCACTTCTAGTAAAGTAAGTAGGAAGAATTCCATACACCCTT582 
CAAATACGGTAAGGAGAAGGCTACAGTCATTTCAGATAAGCAGCAACTTCACTCCACAGAAACTTCATAATAT583 
GTTGGAGCCACCCTACACAGCAGGGGTCTACGTTATGACCCCACACTGCCAACCTGGCAGTGATGAACAGGAC584 
AGAAGCCTGCAACTTGCCTGTGTCAGCTCCTCATCCCCCCCAGTGTCTCCCCCACCACCCCTTAAGGCTGCACC585 
TACCAGGAAACCAGCTTGACAAAATGATC 586 


