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Type 2 diabetes, but not obesity, 
prevalence is positively associated 
with ambient temperature
John R. Speakman1,2 & Sahar Heidari-Bakavoli1,3

Cold exposure stimulates energy expenditure and glucose disposal. If these factors play a significant 
role in whole body energy balance, and glucose homeostasis, it is predicted that both obesity and 
type 2 diabetes prevalence would be lower where it is colder. Previous studies have noted connections 
between ambient temperature and obesity, but the direction of the effect is confused. No previous 
studies have explored the link of type 2 diabetes to ambient temperature. We used county level 
data for obesity and diabetes prevalence across the mainland USA and matched this to county level 
ambient temperature data. Average ambient temperature explained 5.7% of the spatial variation in 
obesity and 29.6% of the spatial variation in type 2 diabetes prevalence. Correcting the type 2 diabetes 
data for the effect of obesity reduced the explained variation to 26.8%. Even when correcting for 
obesity, poverty and race, ambient temperature explained 12.4% of the variation in the prevalence 
of type 2 diabetes, and this significant effect remained when latitude was entered into the model 
as a predictor. When obesity prevalence was corrected for poverty and race the significant effect of 
temperature disappeared. Enhancing energy expenditure by cold exposure will likely not impact obesity 
significantly, but may be useful to combat type 2 diabetes.

Obesity and its metabolic sequalae, such as type 2 diabetes mellitus, represent the largest health threat facing the 
modern world1, imposing major economic burdens on healthcare systems and the economy in general2. Obesity 
is defined as excessive storage of lipids, which occurs primarily in white adipose tissue (WAT) depots. It is widely 
agreed that obesity results from an excess of energy intake over energy expenditure3. Energy expenditure is a 
composite variable comprising the energy expended while resting, physical activity energy expenditure and the 
thermic effect of food3. One factor that is generally considered of negligible importance in the energy budgets 
of humans is the cost of thermoregulation. This is because it is assumed that humans spend most of their lives at 
thermoneutral temperatures4 where there are no thermoregulatory demands. Yet there is some indirect evidence 
suggesting that humans do expend energy on thermoregulation.

In addition to white adipose tissue, a second form of adipose tissue occurs, known as brown adipose tissue 
(BAT)5. BAT differs from WAT in that its cells contain multi-locular fat droplets and it is rich in mitochondria5 
which contain a protein (uncoupling protein 1: UCP1)5,6 that provides a channel by which protons can bypass 
ATP synthase, and thereby dissipate their chemiosmotic potential directly as heat5,6. BAT therefore acts as a 
thermogenic tissue. It was originally thought that BAT was restricted in its phylogenetic distribution to small 
mammals and the neonates of larger species5, both of which have significant thermoregulatory requirements 
because of their adverse surface to volume ratios. In recent years however it has been shown that adult humans 
have functional BAT depots7–10. Previous work has demonstrated that this BAT activity is responsive to changes 
in ambient temperature11–16 and that levels of BAT activity vary seasonally17,18, being higher in the winter when it 
is colder. This indirect evidence suggests that humans do indeed expend energy on thermoregulation, and more 
so when it is colder. This effect occurs despite spending long periods of time indoors buffered from such ambient 
extremes by the spread of central heating and air-conditioning19,20.

If these changes have physiological consequences that are not compensated by elevated food intake, then we 
would predict that the prevalence of obesity, and type 2 diabetes, should be reduced in areas where it is colder. 
Several previous studies have noted correlations between obesity prevalence and ambient temperatures, or a role 
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for ambient temperature in individual susceptibility to obesity4,21,22, but the results are confused. Some stud-
ies have suggested obesity (BMI) is increased at higher temperatures4, others have suggested it is decreased21, 
while yet others find no significant effect22. The different results between studies may be because there are several 
important confounding factors, and different studies take them into account to different extents and in different 
ways. In particular, there are large spatial variations in levels of poverty, which is known to be a key factor linked 
to the risk of obesity and type 2 diabetes23,24. Regional or individual differences in poverty levels have not always 
been taken into account in analyses of temperature effects. Second, there are large spatial variations in the distri-
bution of races that vary in their genetic susceptibility to obesity25 and in the conversion probability of obesity to 
type 2 diabetes26. Finally, colder ambient temperatures are generally found in locations at higher latitudes, where 
sun exposure may be a limiting factor on vitamin D status27, which has been implicated as a causal factor in the 
risk of type 2 diabetes28,29, although such a link is disputed30. Nevertheless a spatial link between ambient tem-
perature and disease prevalence may therefore come about because of these confounding factors. Additionally 
the role of temperature in individual susceptibilities is made difficult by the problem of ascribing individual 
temperature exposures. To study the association between ambient temperature and variations in the prevalence 
of obesity and type 2 diabetes we used the county level disease prevalence data across the mainland USA (down-
loaded 2014) and matched these to the county level ambient temperature data. Restricting the analysis to spatial 
variations within a single country (the USA) reduces the potential biases that may occur because of differences 
in food supply, economic activity and culture. We used the US census data (2010) to control for the potential 
confounding impacts of poverty and race.

Results
Using the raw unadjusted data there was a significant positive relationship between the prevalence of obesity and 
ambient temperature (Fig. 1A). The least squares fit regression equation obesity prevalence =  0.1986* (average 
annual ambient temperature °C) + 28.46, explained 5.73% of the variation in obesity prevalence (F1,2653 =  161.25, 
P <  0.0005). The difference between the predicted level of obesity (% population obese) at a mean ambient tem-
perature of 5 °C (29.5%) and 25 °C (33.4%) was approximately 3.9%. Surprisingly the impact of ambient temper-
ature on type 2 diabetes prevalence was considerably stronger (Fig. 1B). The least squares fit regression equation 
diabetes prevalence =  0.2276* (average annual ambient temperature) + 6.44 (Fig. 1B) explained 29.6% of the vari-
ation in diabetes prevalence (F1,2653 =  1115.26, P <  0.0005). At 5 °C the predicted prevalence was 7.58% compared 
to 12.13% at 25 °C, about 1.6x greater. This difference in prevalence probably has enormous impacts on healthcare 
systems in the respective counties. As anticipated there was a strong association between prevalence of obesity 
and prevalence of type 2 diabetes (r2 =  0.468) (Fig. 1C). When we corrected the prevalence of type 2 diabetes for 
the prevalence of obesity the average annual ambient temperature still explained 26.7% of the residual variation 
in type 2 diabetes prevalence (Fig. 1D) (F1,2653 =  969.53, p <  0.0005).

Figure 1. Levels of obesity and type 2 diabetes prevalence across the mainland USA. Plots show the county 
level data (n =  2655 counties) for (A) obesity prevalence (proportion of population with BMI > 30) and 
average annual temperature (°C), (B) type 2 diabetes prevalence and average annual temperature (°C), (C) the 
association between obesity and type 2 diabetes prevalence and (D) the association between type 2 diabetes 
prevalence corrected for obesity levels and average annual temperature (°C). Fitted lines show the least squares 
fit regression equations with associated equations and r2 values.
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Spatial patterns in both poverty and race mirror the spatial patterns in the levels of obesity and type 2 dia-
betes. Hence there were strong relationships between both obesity, and type 2 diabetes, prevalence with poverty 
(Fig. 2A,B). Very similar relationships to those observed with % individuals living in poverty were obtained when 
using the average county income as the independent predictor. Associations were also noted between obesity and 
type 2 diabetes with the % of the population in a given area that was African American (Fig. 2C,D). The distribu-
tions of these latter race data show heteroscedasticity in the variance. We tried various transformations to remove 
this but none were completely successful. Fortunately, the outcome of the final analysis was robust to the type of 
data transformation used. When we corrected the levels of obesity for the levels of both poverty and population 
racial make-up, the variation in obesity levels explained by ambient temperature fell to 0.15% (F1,2649 =  3.85, 
p =  0.052, Fig. 3a).

In contrast the relationship between the prevalence of type 2 diabetes and ambient temperature when cor-
rected for obesity levels, poverty and race was best fitted by a curvilinear fit that explained 12.5% of the variance 
in diabetes prevalence (F2,2648 =  188.5, p <  0.0005: Fig. 3b). Using the temperature data for individual months, 
rather than the annual average revealed a systematic change in the explained variation with time of year (Fig. 4a). 
The explained variation was inversely related to the mean monthly temperature averaged across all the sites. 
Hence, in mid-summer when the average temperature was 24.8 °C (July) the explained variation in type 2 diabetes 
prevalence (corrected for poverty, obesity and race) by ambient temperature and temperature squared was only 

Figure 2. Associations between obesity and type 2 diabetes with poverty and race. Plots show the county 
level data across the USA (n =  2655) for (A) obesity prevalence (proportion of population with BMI > 30) 
and poverty (% of population below poverty line), (B) type 2 diabetes prevalence and poverty, (C) obesity 
and the proportion of the population that are African American (arcsin transformed) and (D) the association 
between type 2 diabetes prevalence and the proportion of the population that are African American (arcsin 
transformed). Fitted lines show the least squares fit regression equations with associated equations and r2 values.
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3.3% (Fig. 4b). In contrast in mid-winter when the average temperature across all sites was 0.7 °C (January) the 
explained variation in type 2 diabetes prevalence by the same parameters was 16.8% (Fig. 4c). In part this was 
because in winter the range of temperatures was also greater (Fig. 4). When we included latitude as a predictor 
in the model it explained additional variance to the temperature effect and both temperature, temperature2 and 
latitude were highly significant independent predictors (e.g. for the January temperature effect the explained vari-
ance by temperature and temperature2 was 16.8% (F2,2648 =  268.0, p <  0.0005) and when latitude was included the 
explained variation increased to 20.1% (F3,2647 =  221.98, p <  0.0005).

Discussion
The absence of an ambient temperature effect on obesity levels could occur for several reasons. For example, 
individuals may spend most of their time indoors and are simply not exposed to the external ambient tempera-
ture conditions for long enough to have an impact on energy balance. Although historically indoor temperatures 
may have been closely correlated with external temperatures there has been a spread in central heating and air 
conditioning over the last 5 decades19,20 which has also served to homogenize the home temperature experience 
independent of the external ambient conditions. This interpretation however is inconsistent with the observation 
that levels of BAT activity vary seasonally17,18, being higher in the winter when it is colder. This suggests then 
that the known activation of brown adipose tissue at colder temperatures does not impact on whole body energy 
balance or weight regulation. This could for example be because any elevation in energy expenditure is offset by 
a compensatory increase in appetite and food intake3. These data are consistent with a previous study of impacts 
of ambient temperature on obesity prevalence22 but contrast other studies where effects have been observed4,21. 
These latter observations may be because of inadequate control for confounding factors or using different meas-
ures of temperature.

Our analysis suggests that while ambient temperature did not have a major impact on the levels of obesity 
it did have an impact on the prevalence of type 2 diabetes explaining up to 16.8% of the variation in diabetes 
levels between counties. Although reduced when compared to the uncorrected prevalence data, 16.8% remains 
a substantial level of explained variance. To set this finding in context, this effect of ambient temperature on type 
2 diabetes prevalence is greater than the total variation explained from the combined effects of all the genetic 
polymorphisms previously identified by genome wide association studies for type 2 diabetes which stands at 
around 10% of the variation31. Although we have called this type 2 diabetes, given the nature of the survey data  
(see methods) a small percentage of the adult diabetic population will have type 1 diabetes. The trends we 
describe are unlikely to be a consequence of differences in the prevalence of type 1 diabetes because the county 
wide differences exceed the estimated type 1 diabetic proportion. Moreover, there is a well established increase 

Figure 3. Temperature effect on Type 2 diabetes prevalence across the mainland USA corrected for levels of 
poverty, obesity and population racial make-up. Plot shows the county level data (n =  2651 counties) for type 
2 diabetes corrected for levels of obesity, poverty and race against average annual temperature (°C). The curve 
shows the best fit polynomial regression.
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in the prevalence of pediatric type 1 diabetes at higher latitudes32 that has been ascribed to lower temperatures33  
(i.e. opposite the trends described here for adults).

One potential reason for this effect on type 2 diabetes, in the absence of a link to obesity, might be that the 
association between prevalence of type 2 diabetes and temperature comes about because of an artefact of an 
association between both ambient temperature and type 2 diabetes with latitude. Latitude may be of significance 
for type 2 diabetes susceptibility, but not obesity, because at higher latitudes there is reduced synthesis of vita-
min D due to lower levels of sunlight exposure27 and vitamin D status has been implicated in the risk of type 2 
diabetes28,29. Two factors suggest this is unlikely. The association between vitamin D status and type 2 diabetes 
risk, if it is causal30, if anything would cause a greater risk at higher latitudes, yet it was at such higher (colder) 
latitudes where the risk was lowest. Moreover, when we included latitude into the model the temperature effect 
was not diminished, but latitude instead entered as an additional explanatory factor. This strongly indicates that 
the temperature effect on type 2 diabetes prevalence was not an artefact of a latitude effect acting via vitamin D 
status, or any other latitude related factor. Indeed another factor that is strongly related to latitude is susceptibility 
to mental illness34. Since risk of type 2 diabetes is increased in patients with mental illness, one might anticipate 
that type 2 diabetes prevalence would actually increase at higher latitudes and hence lower temperatures, due to 
this confound. The fact the opposite trend is observed illustrates the strength of the temperature effect. The trend 
of diabetes prevalence with ambient temperature possibly explains the previously reported negative association 
of diabetes with altitude35.

Figure 4. Effects of temperatures in different months on type 2 diabetes prevalence. (A) Histogram showing 
the percentage variation in type 2 diabetes prevalence (corrected for obesity, poverty and race) explained by 
ambient temperature and temperature squared (gray bars) in each month of the year and the average monthly 
temperature across all sites (n =  2651) (open bars). The explained variation was greater in months when it was 
colder. (B,C) Example relationships between type 2 diabetes prevalence (corrected for obesity, poverty and 
race) and ambient temperature in July and January. The curves show the best fit relationships and the associated 
equations.
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The curved relationship between type 2 diabetes prevalence and ambient temperature indicated a relatively 
smaller effect at higher temperatures and a larger effect when the average temperature fell below 18 °C. This shape 
of the curve was consistent with the human thermoregulatory response to temperature36–38 and was hence con-
sistent with the protective effect of low temperature on type 2 diabetes prevalence being linked to switching on 
thermoregulatory energy expenditure when it is colder. This interpretation is also consistent with the changing 
level of explained variation in type 2 diabetes prevalence in different seasons. That is in mid-summer most of the 
temperature data sit above the lower critical temperature38–40 where there is minimal thermoregulatory demand, 
and in this situation the association between ambient temperature and type 2 diabetes prevalence was lower 
than in winter when most data sit below this level. Consequently the variation in July temperatures would be 
unlikely to be related to the annual level of thermoregulatory requirement, while temperatures in January would 
be strongly linked to such a requirement.

Low temperature may have an impact on the prevalence of type 2 diabetes in the absence of an effect on obe-
sity because colder ambient temperatures stimulate brown adipose tissue12–16 which is capable of disposing large 
quantities of glucose and lipids12,39. The main weakness of such an interpretation is that there is no direct evidence 
for the US population that BAT is seasonally activated in populations living in colder regions, although this is 
known to be the case in Japan11 and in Europe18. It is possible that US populations respond differently to Japanese 
and European ones in this respect. Interestingly, a small clinical trial recently showed that mild cold exposure 
(15 °C) for 6 hours per day had marked benefits with respect to glucose homeostasis, and this happened despite 
only a modest increase in brown adipose tissue activation40. Although unfeasible as a clinical treatment option, 
this points to the possibility that cold may activate other, brown adipose tissue independent, pathways that influ-
ence glucose homeostasis, explaining the patterns we observed. If this is true, understanding the impact of cold 
on glucose homeostasis in humans should become a key future goal.

Methods
We downloaded the county level data on the age adjusted prevalence of obesity and type 2 diabetes from the USA 
Centers for Disease Control and prevention web site (www.cdc.gov) (data download July 2014). This website 
provides data on the current prevalence rates of both diseases across 3146 counties or county equivalents from 
the continental USA. Excluding counties for which no data were available or for which temperature, poverty and 
race data were unavailable, left 2654 counties with complete data, comprising a total population of 170,430,015 
individuals. The data are sorted by state and by the Federal information processing standard (FIPS) code, which 
is a 5 digit code that allows counties and county equivalent units to be uniquely identified. Data downloaded for 
this analysis relate to age adjusted prevalence. Detailed methods for how the county level data are compiled are 
available on the CDC web site (http://www.cdc.gov/diabetes/pdfs/data/). Briefly the prevalence of diabetes and 
obesity is estimated using data from the CDC Behavioural Risk factor surveillance system which is a monthly 
state based telephone survey of a nationally representative sample of adults aged > 20 years old. Because it is tele-
phone based it excludes individuals living in care homes or those without a telephone. The survey was changed 
in 2011 to include cell phone numbers. More than 400,000 individuals are contacted annually to take part in 
the survey which has been running since 1984. Individuals are judged to have diabetes if they respond ‘yes’ ; to 
the question “Has a doctor ever told you that you have diabetes”? excluding females who indicate in a follow-up 
question that they only had diabetes during pregnancy. Previous work indicates that self report of a physician’s 
prior diagnosis of diabetes is highly reliable compared to medical records41. This question does not separate 
those with type 1 and type 2 diabetes. In the adult population of the USA more than 96% of diabetes is type 2, we 
therefore called the estimated prevalence that of type 2 diabetes. Given the magnitudes of the trends described 
here they cannot be attributed to differences in prevalence of the type 1 diabetes. For obesity, in the telephone 
interview, individuals self report their height and weight in response to the questions “About how much do you 
weigh without shoes”? and “About how tall are you without shoes”? which are then converted if necessary to kg 
and metres before calculating the Body mass index (BMI =  (height)2/weight). A BMI > 30 is then classed as obese 
using the WHO standard for Caucasians1. This is applied independent of actual race. Individuals normally over 
estimate their own height and underestimate their own weight in a self report setting42,43 and hence these esti-
mates are likely to be conservative. However, we considered it unlikely that individuals would be deceptive about 
their diabetes status, height and weight in relation to ambient temperature and hence it seems improbable that the 
reported trends are a consequence of such biases. In addition to the health questions individuals are also asked a 
core of demographic questions which include age, sex, race, marital status, education, employment status, income 
and home ownership status.

The individual county level data for the BRFSS using the core demographic data are then imputed to yield 
county wide level statistics using the US Census bureau 2010 census data. Rates of obesity and diabetes are age 
adjusted by calculating age specific rates for 3 age groups 20–44, 45–64 and > 65. A weighted sum based on the 
distribution of these age groups from the census is then calculated. The imputation of the specific county level 
rates of prevalence is based on a Bayesian multilevel modelling approach that utilises data from adjacent coun-
ties to refine the predictions. This causes a potential issue because the estimates for each county are potentially 
not independent of those for adjacent counties. We addressed this issue using a variogram analysis as described 
below.

We combined the estimated prevalence data for diabetes and obesity with the monthly temperature records for 
each county (identified also by FIPS code) available from the Oak Ridge National laboratory (http://www.daac.
ornl.gov: files B01, B02 and C07), and the records of county level poverty (% in poverty and average income) and 
racial make-up data from the United States Census Bureau, 2010 census data (http://www.census.gov/2010census 
specifically files PVY01, PVY02, INC01, INCO2, INCO3, IPE01, RHI02). This allowed us to then normalise the 
prevalence data at the county level for these confounds and seek associations of temperature to the disease prev-
alence’s corrected for race and poverty.

http://www.cdc.gov
http://www.cdc.gov/diabetes/pdfs/data/
http://www.daac.ornl.gov
http://www.daac.ornl.gov
http://www.census.gov/2010census
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To establish whether the county level data represent independent sampling units we performed a variogram 
analysis on the residual type 2 diabetes prevalence accounting for the effects of obesity, poverty and race. We 
performed this analysis for 3 southern (Alabama, Georgia and Mississippi) and 3 northern (Iowa, Minnesota 
and North Dakota) states. The variogram analysis involves looking at the correlations between each county and 
its immediate neighbours, and then the correlation between each county and the neighbours that can only be 
reached by passing through 1 other county, then 2 other counties away, etc up to 6 steps away from a given start 
point. To illustrate this analysis Fig. 5A shows the Georgia county map shaded to show the counties in increasing 
steps around Greene county. We recorded the data for residual diabetes prevalence in Greene county and all the 
counties surrounding it up to 6 steps away. We then repeated this process using different counties within the state 
(Fig. 5B for example shows the same county map of Georgia now shaded for Irwin county). If the county is an 
appropriate level of investigation then there should not be a significant downward trend in the correlation as the 
number of steps increases indicating that the correlation to the nearest neighbour is no better than the correlation 
to neighbours 1,2,3 etc. steps away.

The correlation coefficients in relation to step number for each of the 6 states included in the variogram 
analysis are shown in Fig. 6. In all the cases except 2 the correlation coefficients fell inside the 95% confi-
dence limits (corrected for multiple testing by the Bonferoni method). Actual required p to reach signifi-
cance =  0.05/36 =  0.0014. The two exceptions were for 6 steps in Alabama where there was a negative correlation 
and for one step in Mississippi where there was a positive correlation. This positive correlation in Mississippi may 
suggest that the county levels of residual diabetes prevalence are not entirely independent of those reported in 

Figure 5. Illustration of selection process for variogram analysis. Shaded map of Georgia state to illustrate 
the variogram analysis. (A) shows the counties surrounding Greene county up to 6 steps away and Fig. 1B shows 
the same for Irwin county. Original county map purchased from www.mapresources.com.

Figure 6. Variogram analysis. The plot shows the correlation in relation to the step away from the focal county 
for each of the 6 states that were analysed (see Fig. 5). The approximate limits for the 95% significance levels 
(Bonferoni corrected) are also shown as dashed lines (p =  0.05). Values falling outside these two lines were 
significant.

http://www.mapresources.com
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neighboring counties. However, the fact this pattern was only observed in a single state from the six we studied in 
detail indicates that this phenomenon is unlikely to seriously inflate the significance of the data included into the 
analysis and that in general the county is an appropriate level at which to conduct spatial analysis of such disease 
data.
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