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Abstract This paper examines the contribution of expectations to the oil price

dynamics. Classical competitive storage theory states that inventory decision con-

siders both the current and future market condition, and interacts with the spot and

expected future spot prices. I model an expectation shock explicitly along with the

concurrent supply and demand shocks. This allows for the estimation of the underly-

ing shock processes from the observed price and inventory data and the quantification

of their contribution to the price/inventory dynamics respectively. The model is ap-

plied to the world crude oil market under assumed price elasticity of demand. The

market expectations are estimated to contribute more to the crude oil spot price

movements when the demand is assumed to be more inelastic. Thus, the model il-

lustrates the importance of the price elasticity of demand in understanding the price

dynamics.
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1 Introduction

Inventory behavior is usually linked to the expectations about future market con-

dition. In the discussion of the causes of the recent crude oil price uprising especially

during 2007-2008, one key question is whether speculation played an important role.

Regardless of their stand on it, researchers turn to inventory for a better understand-

ing of the speculative or precautionary incentive in the oil market, as anticipation of

future increases in oil price could lead to speculative inventory increase and result in

immediate price increase1. Earlier work like Brennan (1958) already points out the

inventory is related to the expected change in price. Applying this intuition in the

oil context, Hamilton (2009b) proposes a link between the speculation and the in-

ventory movements. Empirical studies like Kilian and Murphy (2014) argue against

a major contribution of speculation where the authors identify the forward-looking

element of the real price with data on oil inventories. However, Juvenal and Petrella

(2014) find a more important role of expectations also using data on inventories but

different macroeconomic indicators.

This model illustrates explicitly the key importance of the price elasticity of de-

mand in interpreting the price dynamics, extending the point made by Hamilton

(2009b), Baumeister and Peersman (2013) and Kilian and Murphy (2014), and con-

tributes to the literature on commodity price dynamics, especially the discussion on

the role of speculation. By estimating a rational expectations equilibrium model us-

ing oil market data while assuming the price elasticity of demand, this paper quanti-

fies the effect of expectations on price movements under different elasticity settings.

1The term “expectation” as discussed in this paper will be defined on page 4.
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The comparison provides an alternative explanation of the different results in the

earlier literature like Kilian and Murphy (2014) and Juvenal and Petrella (2014).

Intuitively, the current inventory and prices are affected by both the current and

expected future demand and supply, and their responses are different to changes in

the current or expected market condition. Such difference enables identification of

the source of change from the price and inventory data. For example, today’s strong

relative demand to supply will result in higher spot price and lower inventory today.

It will also instantaneously result in a higher expected future price due to lower

future availability from the depleted inventory (everything else being equal), and

an increase in the expected future price that is smaller than that in the spot price.

Alternatively, today’s expectations of a strong future demand relative to supply will

result as well in a higher spot price today, due to the lower current availability from

the accumulating inventory in response to such expectations, but the increase in

the expected future price would be larger than that in the spot price in this case.

The estimation of the model uncovers the underlying stochastic processes driving the

observed prices and inventory data, and thus the role of expectations.

This paper is the first to quantify the effect of expectations using a structural

model. While earlier empirical work like Kilian and Murphy (2014) and Juvenal and

Petrella (2014) adopt similar intuition in identifying the expectations, one advantage

of the structural framework to earlier work is the precise mapping of mathematical

expression to economic interpretation.

The structural framework allows for not only analyzing the role of expectations

in the price inventory dynamics with explicitly defined price elasticity of demand,
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but also mathematically defining the expectations.

It’s revealed that the price elasticity of demand is a key parameter determining

the magnitude of the price and inventory responses to shocks. The more inelastic the

demand, the larger the magnitude of the prices and inventory responses to changes in

the market condition. Given the observed data and its variances, when the assumed

elasticity is different, the model has to assign the contribution of the expectations

differently in order to reconcile with the observed reality. Depending on the demand

data used, the different implied demand elasticity might result in different results on

the contribution of the expectations.

It’s also worthwhile discussing briefly what the “expectation” in the model cap-

tures. The “expectation” in the model specifically refers to the innovations and

macroeconomic activities that could affect the commodity market supply and de-

mand with a delay, in the style of the news shock that has been discussed by Beaudry

and Portier (2006) and adopted by a large macroeconomic (DSGE) literature like

Davis (2007), Barsky and Sims (2011), Jaimovich and Rebelo (2009) and others.

More specifically, the “expectation” process in the model has no contemporaneous

but only lagged effect on the supply and demand. The idea is that agents in the

market may learn about the production capacity that has been recently installed

and will be implemented in the future, at which time they expect the supply to rise.

Similarly, agents could learn that commodity will be utilized with higher efficiency

in the future production at which time they expect the demand to shift. Such

expectations have no effect on the current market supply and demand condition, but

do affect agents’ current inventory decision, and affect the spot and expected future
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prices. It’s such expectations that are referred to as the “expectation” in the model.

Despite the different modelling strategies, the results of the paper is comparable

to the earlier literature. The expectation as defined in this structural model overall

shares similarities with and is comparable to that in earlier literature like Juvenal and

Petrella (2014), Kilian (2009), Kilian and Murphy (2014), Baumeister and Peersman

(2013) and others. VAR can be interpreted as the reduced form of structural model,

and the sign and boundary constraints adopted to identify expectations (or “pre-

cautionary demand” as referred to) in earlier work are comparable to the impulse

response functions to the expectations in this structural model.

However, this paper differs from earlier work in the assumption on the oil sup-

ply. This model views the supply as exogenous, not affected contemporaneously

by the demand side (global demand, precautionary, and speculative motives). The

observed changes in the world oil production are largely driven by the aggregated

natural variation of the field production, and newly-started fields which have been

planned several years in advance, rather than by the concurrent demand-induced

price changes2. This view does result in different identification constraints of the

underlying shocks, which will be discussed in detail in Section 2.

This model also differs from one strand of earlier storage and price dynamics lit-

erature like Wright and Williams (1982, 1984) and Deaton and Laroque (1992, 1995,

1996) and the more recent Dvir and Rogoff (2010) and Arseneau and Leduc (2013)

in modelling inventory stock-out. Instead, observing that oil market doesn’t typi-

2Recent works using field-level production data from North Sea and Texas (Hurn and Wright
(1994), Mauritzen (2014) and Anderson et al. (2014)) provide strong evidence that the impact effect
of the current price (level and volatility) on production is negligible. In other words, the short-run
supply curve of individual fields is almost vertical.
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cally experience stock-outs, I model a non-linear marginal convenience yield function

as in Pindyck (1994) such that when the inventory approaches zero, the marginal

convenience yield approaches infinity. Intuitively this setting implies that it’s always

beneficial to hold inventory. As a result the inventory will always stay positive3.

The paper is planned as follows. Section 2 introduces the model. Section 3 dis-

cusses the theoretical implications on the price-inventory dynamics in an equilibrium

model under rational expectations. Section 4 presents the estimation results and the

discussion of the role of the shocks during the past price movements. It compares

two cases of price elasticities of demand to illustrate the difference this key parameter

makes in the interpretation of price dynamics. Section 5 concludes.

2 The Model

This section sets up the model for oil market equilibrium with inventory. Al-

though it has been interpreted in the oil market context, the model can be generally

applied to most storable commodity markets in which no stock-out has been ob-

served. In this model of the world oil market, the price is determined by the world

supply, the demand for consumption and the overall economic performance. The

quantities supplied and demanded are not necessarily the same, as the market also

has the demand for inventory, based on the current market and the expectations of

the future.

3Similarly, Eichenbaum (1984) also argues for the technological in addition to the speculative
reason for voluntarily-held inventory.
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2.1 Demand for Oil

First, I model the demand side of the world oil market. I start with a general

inverse demand function for crude oil, where the oil price Pt is determined by the oil

consumption Qd
t , and a measure of overall economic performance Y d

t . In specific, Y d
t

captures the shifts of the demand curve driven by the global economic fluctuations.

For example, Kilian (2009) has argued that the demand for industrial raw materials

has been fuelled by the emerging economies in Asia such as China and India after

2002. For now, let Y d
t denote a measure of overall economic performance, which can

be some function of world GDP, or industrial output, or the index of world economic

activities as proposed by Kilian (2009). The inverse demand function of oil:

Pt = P (Qd
t , Y

d
t ) (1)

is decreasing in Qd
t and increasing in Y d

t . I further posit this inverse demand function

to be homogeneous of degree zero, i.e. only the consumption relative to the overall

economic performance matters, as oil consumption and world economic performance

is highly correlated. Thus I can use a CES inverse demand function:

Pt = c(
Qd

t

Y d
t

)−
1
γ (2)

where c is a scalar and γ measures the price elasticity of demand. Denote the available

inventory at the beginning of period t by Nt, and the inventory held for next period

t + 1 by Nt+1. In the market equilibrium, the crude oil consumption Qd
t equals to
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the crude oil production Qs
t less the change in inventory Nt+1 −Nt:

Pt = c(
Nt +Qs

t −Nt+1

Y d
t

)−
1
γ (3)

2.2 Inventory Decision

In addition, the need for inventory-holding arises from the uncertainty about the

future. A profit-maximizing oil producer (or buyer) in a competitive market makes

decision with regards to its inventory-holding following the first-order condition when

the inventory is positive4:

Pt = βEt[Pt+1]− Et[MICt+1] if Nt+1 > 0 (4)

where MIC is the net marginal cost of holding inventory, which includes the physical

cost of storage as well as the convenience of storage (see Brennan (1958) and others).

Whenever positive inventory is held, an optimal inventory decision Nt+1 at time t

would be such that the resulting net marginal cost of holding inventory Et[MICt+1]

would be just covered by the marginal revenue, or the expected intertemporal price

change βEt[Pt+1]− Pt.

Since in the commodity market, zero inventory is rarely observed, the net

marginal cost of holding inventory is modeled such that Nt+1 would always be pos-

itive. Namely I assume that the net marginal cost converges to negative infinity

when inventory is drawn down to near zero. Thus, even when the price is expected

4This first-order condition is the same regardless of whether it’s the producer or the buyer
holding the inventory
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to fall and the expected intertemporal price change βEt[Pt+1]− Pt is very negative,

the inventory still won’t be drawn out completely. Intuitively, inventory facilitates

production and delivery scheduling and avoids stockouts in the face of fluctuating

demand and changing supply technology. These benefits motivate producers to hold

inventory even if they expect the price to fall, as discussed in Brennan (1958). I follow

the exponential function for the net marginal cost of holding inventory as suggested

by Pindyck (1994)5, assuming that there is a constant marginal inventory-holding

cost δ, and that the net marginal cost is affected positively by the current price as

well as the inventory held relative to the quantity demanded. I further introduce

an inventory adjustment cost, following earlier literature like Eichenbaum (1984),

observing that the relative inventory (the inventory held relative to the quantity de-

manded) data is much less volatile compared to the price even after removing the

seasonality.

MICt+1 = Pt ∗ [δ + α(
Nt+1

Nt+1 + Y s
t+1 −Nt+2

)−ϕ +Θ(
Nt+1

Nt

)− β ∗Θ(
Nt+2

Nt+1

)] (5)

The net marginal cost of storage here takes into consideration the physical cost

of holding inventory δ, the intangible benefit of inventory-holding to avoid stock-

out (the exponential part; α < 0) and the inventory adjustment costs Θ (which is

a function of relative inventory changes) for both current and next periods. The

exponential part captures the intangible benefit of inventory-holding in a way such

that the benefit would be low when the inventory level is already high relative to

5Pindyck (1994) refers to the negative net marginal cost of storage as “the net marginal con-
venience yield”, and proposes an exponential form for the latter based on the observation that the
scatter plot of relative inventory against the net marginal cost of storage is nonlinear.
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demand, and vice versa. Such setting guarantees that inventory level is never drawn

down to zero. Θ is assumed to be zero when there’s no change in inventory, and

to have constant marginal adjustment cost (Θ′). More detailed discussion of the

parameters and the functions will be available in later section of the model solution

and its estimation.

2.3 Exogenous Shocks in the Model: Modelling Expectation

The key part of the model is modeling the factors driving the price and inventory,

including demand, supply and expectations. The model itself doesn’t attempt to

explain how demand, supply and the expectations about them arise, and thus treat

them as exogenous. Like the identification restrictions of the reduced form analysis,

assumptions on these exogenous factors are important for the model’s economic

intuition and the solution. This section will present how the exogenous processes

of supply, demand and expectations are modeled.

On the supply side of the market, the world crude oil supply plotted in Figure

1 appears to contain a stochastic trend and the log first-difference appears to be

stationary. The log of world crude oil supply can be reasonably assumed to follow a

random walk process with a drift.

log(Qs
t) = log(Qs

t−1) + log(µs
t) (6)

log(µs
t) = µ̄+ ϵµt ∼ N(0, σ2

µ) (7)

The process for the demand side is modeled implicitly. The demand shifter, or
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the process for overall economic activities Y d
t can be thought of as some function of

either world GDP or industrial index as discussed earlier. Regardless which one of

these measures best approximates Y d
t , the process is quite possibly non-stationary.

However, in the oil/commodity market context, it’s also reasonable to think that the

overall economic activities are overall balanced with the supply in the long run, as

strong economic activities encourage new production capacity instalment and new

exploration, and weak economic activities lead to fewer drilling activities. Thus,

instead of modeling Y d
t explicitly as another random walk, I model the stationary

relative supply,
Qs

t

Y d
t
:

log
Qs

t

Y d
t

= yτt + yct (8)

yτt = ρτyτt−1 + nτ
t−1 + ϵyτt ϵyτt ∼ N(0, σ2

yτ ) (9)

yct = ρcyct−1 + ϵyct ϵyct ∼ N(0, σ2
yc) (10)

nτ
t = ρnτnτ

t−1 + ϵnτ
t ϵnτ

t ∼ N(0, σ2
nτ
) (11)

This stationary assumption on
Qs

t

Y d
t
is especially important for solving the model (this

will be discussed in next subsection).

It’s worth noting that the above assumptions view the supply as exogenous to

the demand while the two remain cointegrated. The view sharply contracts with the

identification restrictions of Kilian (2009), Kilian and Murphy (2014), Juvenal and

Petrella (2014) and others. The assumption that the supply shock ϵµt is independent

of the shocks (ϵyτt , ϵyct and ϵnτ
t ) to the cointegration relationship (log

Qs
t

Y d
t
) implies that

the supply is not affect by the demand side. This is in lie with the empirical findings
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that the demand side shocks don’t not affect the supply (see Hurn and Wright (1994),

Mauritzen (2014) and Anderson et al. (2014)).

Namely, the relative supply process is assumed to contain a persistent part yτt , a

temporary part yct and an expectation part. The persistent and temporary parts are

both AR(1) processes, with ρτ > ρc. The expectation nτ
t is modeled as an AR(1)

process with autoregression coefficient ρnτ .

The expectation nτ
t is modeled similarly to the news in the DSGE literature.

It captures the events that could affect the market demand and supply with delay

as Equation 9 shows. When the market expectations at t changes, even though

the relative supply in the current period t isn’t affected, rational market participants

would still respond right away to the expectation change by adjusting inventory which

results in contemporaneous price change. This expectation in the model captures

the forward-looking component of price determination in the market: if the market

agents believe that the price would be higher in the future, such expectations would

drive up the price and inventory today.

2.4 The Model Overview and Its Equilibrium

Normalization of some variables is necessary in order to solve for the steady state

of the model and the equilibrium path since they contain trends (Qs
t , Y

d
t ). I follow

the macroeconomic literature in treating the variables with a trend, and normalize

them by the world supply.

Such normalization of variables in Equation 3 results in the “relative supply”

Qs
t

Y d
t
, which I will denote by lower letter, qst =

Qs
t

Y d
t
. It is assumed to be stationary
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(see Equation 8 to 11) so that the model has a steady state. The inventory is also

normalized, resulting in nt+1 =
Nt+1

Qs
t
. The normalized inventory variable nt+1 can be

thought of as the “effective inventory” level.

Equation 3 then can be rewritten in terms of the “effective inventory” n and the

“relative supply” q:

Pt = c[(nt/µ
s
t + 1− nt+1) ∗ qst ]

− 1
γ (12)

Similarly, the normalization of variables in Equation 4 and 5 rewrites the equa-

tions as:

Pt = βEt[Pt+1]− Et[MICt+1] (13)

MICt+1 = Pt ∗ [α(
nt+1/µ

s
t+1

nt+1/µs
t+1 + 1− nt+2

)−ϕ+δ+Θ(
nt+1

nt/µs
t

)−β ∗Θ(
nt+2

nt+1/µs
t+1

)] (14)

where µs
t+1 =

Qs
t+1

Qs
t
, as defined in Equation 6.6

Now the full model is written in the normalised terms as Equations 12, 13 and

14, along with the exogenous processes µs
t , y

τ
t , y

c
t and nτ

t given by equations 7 8 9 10

11.

The equilibrium path is defined as follows: taking as given the exogenous pro-

cesses µs
t , y

τ
t , y

c
t , n

τ
t and the resulting qst , and an initial stock of effective inventory n0,

the equilibrium of the model is a sequence of {Pt, nt+1} that satisfies: the optimality

conditions of inventory-holding 13 and 14; the market clearing condition 12.

6Note that log(µs
t+1) is the world supply growth rate.
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3 Solving the Model

In this section, the model is solved and “price policy” and “storage policy” can

be obtained which relate the equilibrium price and inventory decision to the current

and the expected market demand/supply. The solution will be illustrated using the

impulse response functions of the price and inventory to the underlying shocks. The

impulse responses will also be compared to the sign restrictions widely adopted in

recent empirical literature as well.

More importantly, the solution of the model reveals that the price elasticity of

demand (γ) plays a key role in the magnitude of the price and inventory responses.

The impulse response functions show that everything else being equal, the more

inelastic the demand, the larger the magnitude of the price and inventory responses

to the underlying shocks, especially to the expectation shock.

3.1 Model Solution

Specifically, for arbitrarily-set parameters, I log-linearize the model around its de-

terministic steady state and solve the resulting linear rational expectations model as

in Blanchard and Kahn (1980). The resulting linearized model links the equilibrium

price Pt and the effective inventory nt+1 with underlying relative supply processes

(in terms of their deviations from the steady state values). Current-period spot price

(Pt) and next-period effective inventory (nt+1) are determined based on the prede-

termined current-period effective inventory (nt) and the realized shocks (µ̂s
t , y

τ
t , y

c
t ,

nτ
t ). This solved model can be written in a state space form with the currently avail-
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able effective inventory (nt) and the exogenous shocks (µ̂s
t , y

τ
t , y

c
t , n

τ
t ) as the state

variables, and the spot price (Pt) as the observed variable. The expected spot price

(Et(Pt+1)) could also be attained. Appendix A offers more details on the solution

algorithm.

3.2 Simulated Impulse Response Functions

In this section I arbitrarily set the parameters and present the impulse response

functions of price and effective inventory to different shocks. The baseline parame-

terization is summarized in Table 1.

, and then the resulting impulse response functions to the three shocks to the

relative supply under the arbitrary parameterization in Figure 3. More importantly,

the magnitude of the impulse responses greatly depends on the price elasticity of

demand. Figure 4 compares the impulse response functions under different price

elasticity of demand (γ). This is the key to the estimation results discussion later.

3.2.1 Why the “Expectation Shock” is Named So

I first show how the different shocks effect the world relative supply in Figure 2.

Figure 2 plots the impulse response functions of the relative supply to one-standard

deviation shocks. All shocks have been normalized to cause an increase in the relative

supply. Both the persistent and temporary shocks cause a peak increase immediately

in the relative supply, while the expectation shock causes zero change in the initial

period. Instead, the peak effect takes place after several periods7. This striking

7The exact peak time and the magnitude of the peak effect of expectation shock depends on the
specific parameterization of the stochastic process, thus Figure 2 is only for qualitative illustration
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difference illustrates the intuition discussed earlier: a shock to the expectation repre-

sents some event that is known to affect the relative supply with a delay. Such event

doesn’t cause any change in the current relative supply; instead, it’s only after the

event being known by the market participants that the relative supply is affected.

The effect on the world relative supply translates immediately into changes in the

equilibrium price and inventory. Figure 3 plots the impulses response functions of the

spot price Pt, expected change in price E(Pt+1 −Pt) and the effective inventory nt+1

following different one-standard deviation shocks. All shocks have been normalized

to cause an initial increase in the real spot price of oil. Again, overall the impulse

response functions to persistent and temporary shocks are similar. They both cause

an initial real price increase that gradually dissipates, accompanying with a decrease

of smaller magnitude in the expected change in price (E(Pt+1 − Pt)) and a decrease

in the effective inventory. While all the shocks are of the same size (see Table 1

for the parameters setting), the price response to the persistent shock is of a larger

scale compared to that to the temporary shock, while the inventory response to the

persistent shock is of a smaller scale relatively.

The price and inventory responses to an expectation shock are also immediate,

despite the fact that the relative supply is not changed at all in the initial period (see

Figure 2 where the contemporaneous response of relative supply to the expectation

shock is zero in the first period). The intuition is, knowing of some event which will

cause a future shortage of supply relative to demand, market participants start to

accumulate the inventory right away. This mechanism captures how “expectations”

in these aspects.
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work thus the name. The expectation-driven demand for inventory effectively lowers

the amount of oil currently available for consumption and drives up the spot price

immediately, even though the current supply and consumption demand for oil re-

mains the same. Since the peak effect on the relative supply takes place after several

periods (see Figure 2), spot price keeps picking up after the initially increase. The

expectated future price increases more than the spot price, as implied by the positive

expected change in priceE(Pt+1 − Pt), while the effective inventory accumulates.

3.2.2 How the Identification of the Shocks compares to the Literature

The above responses to the expectation shock are consistent with what the lit-

erature identifies as forward-looking behavior. Kilian and Murphy (2014) and Juve-

nal and Petrella (2014) adopt similar arguments in constructing their VAR models

of crude oil market. The sign restrictions adopted to identify “speculative demand

shock” in Kilian and Murphy (2014) or “other demand shock” in Juvenal and Petrella

(2014) posit that, the shock have positive impact effect on inventory accompanying

a spot price increase, similar to the impulse responses of the spot price and effective

inventory discussed above. The different price-inventory dynamics in response to

different shocks will enable us to uncover them.

This model also extends the economic intuition adopted by VAR identification.

Figure 3 shows that the more persisting shocks appear to affect price more and in-

ventory less relative to more temporary shocks, other things being equal. Intuitively,

when the market expects the disruption to relative supply to last long, there would

be relatively less incentive to drawn down inventory by a large amount immediately.
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As a result, the price response would be expected to be larger for an extended period,

with lesser intertemporal change in the inventory after a more persistent shock.

3.2.3 How Important the Price Elasticity of Demand is

Figure 4 illustrates that, other things being equal, the more inelastic the demand

is, the larger the magnitude of the inventory and price responses to the underly-

ing shocks, especially to the expectation shock8. While the larger magnitude of the

price response under less elastic demand is straightforward to understand, the larger

magnitude of the inventory response needs more discussion. Take the impulse re-

sponse function to the temporary shock yτc for example. A negative temporary shock

(stronger demand relative to supply) will result in immediate increase in the spot

price (Pt) and withdrawal of the inventory (nt+1). Suppose the magnitude of the

inventory response remains the same regardless of the price elasticity. This implies

the oil availability remains the same for the next period. However, with a lower

price elasticity of demand the current price (Pt) increase is larger, so is the expected

spot price (E(Pt+1)). Overall the relative increase of the spot price compared to the

expected future price (Pt − Et(Pt+1)) is larger with a lower elasticity. This implies

more costly inventory holding (see Equation 4); in other words, the inventory is too

high with the assumed inventory withdrawal. Thus the inventory (nt+1) has to be

drawn down more to bring the market back into equilibrium.

To summarize, the structural model makes use of the additional information of

the magnitude in the estimation. In the next section, the model is brought to data

8Aside from γ, the three cases in Figure 4 all have the same parameters setting as listed in
Table 1
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and the shocks behind the oil price fluctuations are estimated.

4 Estimation Results

In this section I present the data and the model estimation. The estimation

results include the parameter estimates, the estimated impulse response functions,

the estimated underlying shocks and their contribution to the price and inventory

dynamics. As will be shown, the price elasticity of demand γ plays an important

role in the estimation of the shocks’ contribution.

4.1 Data and Estimation

4.1.1 Data

The model is estimated using monthly data from 1987 January to 2014 November.

The estimation uses the real spot and futures (1-month) prices, the effective inventory

and the world crude oil supply growth rate.

An overview of the data is presented in Figure 59. For the prices (Pt and EtPt+1)

I use real spot and futures (1-month) prices of WTI deflated by monthly US CPI

(1982-84=100)10.

For the effective inventory nt+1, I use the ratio of the world inventory and the

world supply as discussed earlier in the model solution. While the world inventory of

crude oil is not available, I use OECD inventory as its proxy, which is end-of-month

9The data has been demeaned for the estimation.
10To use 1-month WTI futures price for EtPt+1 in the model assumes that there’s no risk

premium in the 1-month futures price. Given the short maturity length, this assumption is not
that unreasonable.
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US commercial inventory of crude oil scaled by the ratio of OECD to US petroleum

products stock, following Hamilton (2009a), Kilian and Murphy (2014) and Juvenal

and Petrella (2014). I also adjust the seasonality in the effective inventory data by

including additional monthly dummies in the state equation (see Appendix A.2).

For the world crude oil supply growth rate log(µs
t), I use the log first-difference of

the world supply, which is available from Energy Information Administration (EIA).

4.1.2 What Parameters are Estimated and Why γ is Arbitrarily Set

The parameters estimated are listed in Table 2 and 3. The solved linearized

model allows for estimation of the parameters for the shock processes (ρ’s and σ’s),

the parameters in the net marginal cost of inventory holding (δ and Θ′ in Equation

1411) and the monthly dummies for the effective inventory.

Two scalars, α in the net marginal inventory cost function, and c in the world

demand for oil, are calibrated from the steady state condition using the estimated

parameters and the data. This is because α and c only matter to the levels of the

variables, not their deviations from the steady state. Once the model is linearized

around the steady state and the variables are written in terms of their deviations

from the steady state, α and c no longer appear in the solved model and don’t

matter to the dynamics of the deviations. As result, they cannot be estimated using

the logged differenced data presented in Figure 5. (Appendix A presents the log-

linearized model and shows that it no longer contains α and c as the parameters).

11Appendix A shows that the log-linearized model no longer contains Θ but only its first deriva-
tive Θ′ evaluated at the steady state, which is assumed to be a constant (see discussion in 2.2).
Similarly, ϕ and δ always appear together as ϕ(1−β+δ) and cannot be identified separately. Thus,
ϕ is arbitrarily set as estimated by Pindyck (1994) and only δ is estimated.
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Two key parameters, γ, the short-run price elasticity of demand for crude oil,

and β, the monthly depreciation rate, have to be arbitrarily set as they cannot be

estimated without any data on the demand side. However, the demand elasticity

is potentially important for the estimation as discussed earlier. Thus the range in

the literature on demand elasticity estimation is used as a reference: 0.05 to 0.44

(Dahl (1993), Cooper (2003), Baumeister and Peersman (2013), Bodenstein and

Guerrieri (2011), Kilian and Murphy (2014))12 with admissible values as low as 0.01

(see Baumeister and Peersman (2013)). I pick the literature average 0.25 and a

lower-bound 0.02 for possible γ’s in the estimation. The monthly depreciation rate

is set to be 0.997.

4.2 Estimated Parameters and Impulse Response Functions

In this subsection I present the estimation results under different demand elastic-

ity settings (σ = 0.25 and 0.02). I also discuss how the estimated results especially

the impulse response functions relate to the existing literature.

4.2.1 Estimated Parameters

Tables 2 and 3 summarize the estimation results under different demand elasticity

settings13. In Table 2, for both cases (σ = 0.25 and 0.02) all parameter estimates are

significant at 99% confidence level. In Table 3, estimates of the monthly dummies

indicate that effective inventory tend to be higher during colder months than warmer

12See Hamilton (2009a) for a summary of the estimates in the literature in Table 1. Kilian and
Murphy (2014) also provides a brief survey of the estimates.

13The model is estimated by maximum likelihood and various initial guesses of the parameters
have been tried. The estimation results presented here have the highest likelihood.
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months (dummies for colder months tend to be negative)14. However, the dummies

estimates are significant only for the case of σ = 0.25, even though the point estimates

for both cases are similar.

More importantly, for the case of σ = 0.25, two shocks (the persistent and ex-

pectation shocks) are identified as random-walk (ρτ = 0.9993, ρnτ = 0.9991) and

the temporary shock is stationary (ρc = 0.0451); for the case of σ = 0.02, only the

persistent shock is random-walk (ρτ = 0.9998), the temporary shock is stationary

(ρc = 0.0279) and the expectation shock is white-noise (ρnτ = 0.0000). Also, the

shock sizes are larger for the case of σ = 0.25, where the highest standard deviation

is σyτ = 0.0197, compared to the case of σ = 0.02, where the highest is σnτ = 0.0088.

4.2.2 Estimated Impulse Response Functions

Figure 6 shows the the estimated responses of the relative supply to shocks under

different γ settings. Again all shocks are one-standard deviations, normalized to

cause an increase in the relative oil supply. The different settings of γ result in

different estimated shock dynamics. The different peak effect sizes and timing reflect

both different shock volatilities and persistences. As discussed earlier, lower demand

elasticity σ works as a magnifier of the price and inventory responses. When γ is

small and the demand is inelastic, the observed volatility in the price and inventory

data is hard to reconcile with the shocks with large volatility and high persistence.

As a result, the estimated shocks tend to have smaller standard deviation and lower

persistence for the case of σ = 0.02.

14Similarly, Byun (2012) finds a higher utilization of inventory in refining production for warmer
seasons.
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The different estimated shock dynamics is more apparent when comparing the

impulse response functions of the price and inventory. Figure 7 plots the impulse

response functions of the price and inventory under different γ settings. All shocks

are one-standard deviations, normalized to cause an increase in the real spot price

of oil. Both sets of impulse response functions overall show the same direction of

changes15, and are consistent with the sign restrictions adopted in the reduced-form

models16.

However, the two sets of dynamics over time are very different. Most prominently,

the expectation shock has much larger effect on the spot price in the case of γ = 0.02.

Meanwhile, in general the persistent and the expectation shocks have smaller effect

on the inventory and the expected change in price (E(Pt+1 − Pt)) for the lower γ

case.

4.2.3 The Results and the Literature

Hamilton (2009b) argues that in presence of high price, different changes in in-

ventory would help identify different type of shocks behind. Consistent with this

argument, the model shows that when the spot price is positively affected, the per-

sistent and temporary shocks cause negative changes in the effective inventory while

the expectation shock causes negative ones (Figure 7). Furthermore, when the de-

mand is more elastic (γ = 0.25), the difference in the inventory responses to the

15For example, in both cases, the persistent shock causes positive changes in the spot price.
16The impulse responses to the expectation shocks are consistent with the sign restrictions of the

”speculative demand shock” in Kilian and Murphy (2014) and ”other demand shock” in Juvenal
and Petrella (2014). The impulse responses to the persistent and temporary shocks do not exactly
match the sign restrictions though as here this model doesn’t differentiate the demand and supply
shocks but rather takes them as a composite.
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concurrent and the expectation shocks is larger.

Kilian and Murphy (2014) postulate that a positive speculative demand shock is

“associated with an immediate jump in the real price of oil”. Consistent with this

argument, the model shows that the expectation shock has impact effect on the price

(Figure 7) without affecting the current market supply and demand for consumption

(6). Furthermore, when the demand is more elastic (γ = 0.25), the impact effect is

smaller.

Hamilton (2009b) also discusses the extreme case where speculation drives up

spot price without a change in inventory. In this model, the case of γ = 0.02 might

be considered as the extreme case, where the expectation shock results in a positive

response of the price and very small positive impact effect on the inventory. Similarly,

Parsons (2010) argues that expectations of higher future price doesn’t necessarily lead

to inventory accumulation if the entire term-structure is elevated due to speculative

incentives. In the case of γ = 0.02, the flat response of the expected change in price

(E(Pt+1−Pt) and the impact positive response of the spot price after the expectation

shock would correspond to an “elevated futures curve”, and the positive inventory

response is small.

4.3 Estimated Cumulative Effects of the Shocks

The different settings of γ result in different estimated shock dynamics, and

ultimately result in different decomposition of the price and inventory behavior.

Along with the estimated parameters, the state variables of the state space model,

or the shocks, are also estimated. This allows for computing the cumulative effect
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of each shock on the real prices of oil and the effective inventory, to understand the

historical price evolution.

It’s worth noting that in this model the state variables include both the effective

inventory and the exogenous shocks. As a result, to separate out the effect of a

certain exogenous shock from that of the initial effective inventory and other shocks,

the cumulative effect of a shock is calculated as the hypothetical price and inventory

series given the Kalman-smoothed time series of the shock of interest, keeping the

initial effective inventory and all other shocks as zeros. More details are in Appendix

B.

Overall the estimation results match the general understanding of the market.

In some cases, the results even match the specific date of historical events. Figure 8

plots the decomposed contribution of each shock on the observed real spot and futures

prices and the effective inventory when γ = 0.25. Overall, under the assumption of

γ = 0.25, the model estimates a persisting tighter market after 2000 as indicated

by the cumulative effect of the persistent shock: the persistent shock contributes

to most of the price increase after 2000, except for a short period during 2008-2009

and towards the very end of the sample period (November 2014); it also contributes

to the continued withdrawal of the effective inventory, especially in 2000-2008. The

model also estimates an expectation of tight market condition at the beginning of

the sample period, and after January 2005: the expectation shock contributes to

the price increase at the beginning of the sample period (from March 1988), and

also a small share after 2005; it also contributes to the accumulation of the effective

inventory at the beginning and since 2004.
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Figure 9 plot the same when γ = 0.02. Under the assumption of lower demand

elasticity (γ = 0.02), the estimated cumulative effect of the persistent shock is similar

as in the case of γ = 0.25. The model also estimates similar pattern for the cumulative

effect of the expectation shock: the expectation shock contributes to a price spike in

August 1991 (the outbreak of the Gulf War); it also contributes to the accumulation

of the effective inventory in October 1990, and after 2004 except for July 2008 -

March 2009 (the oil price peaked in June 2008). However, in terms of the magnitude

of the effect, the expectation shock overall contributes more to of the price dynamics

compared to in the case of γ = 0.25.

To illustrate and compare their relative contribution, Figure 10 rearranges the

plotting and compare the historical decomposition under different γ’s side by side.

As discussed earlier, the overall patterns of the decomposed cumulative effects are

similar, but there’s difference in the magnitude. Overall, in both cases, the persistent

shock is the largest contributor for the price dynamics, followed by the temporary

shock, and the expectation shock; the temporary shock is the largest contributor to

the effective inventory dynamics.

However, in the lower demand elasticity case (γ = 0.02), the model does at-

tribute more of the price dynamics to the expectation shock. Table 4 provides more

evidences. Table 4 presents the variance decomposition of forecast errors for the

price and inventory k-month ahead under different γ’s. The expectation shock con-

tributes more than 150-fold when γ = 0.02. In terms of the variance decomposition,

the expectation shock becomes the second largest contributor to the price dynamics

after the persistent shock when γ = 0.02. On the other hand, the model attributes
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much less of the inventory dynamics to the expectation shock when γ = 0.02.

4.4 The Importance of the Price Elasticity of Demand

The different importance of the expectation shock estimated under different γ’s is

comparable to the literature finding. Even though both estimation results are from

the same qualitative theoretical framework, the importance of the expectation shock

is interpreted very differently.

Both Kilian and Murphy (2014) and Juvenal and Petrella (2014) analyze the

contribution of expectations in the spot prices by the same qualitative sign restric-

tions using the price and inventory data. However, the two studies adopt different

macroeconomic data, which reflect the demand side influence. In other words, the

two studies implicitly derive different price demand elasticity of crude oil. Indeed,

the price elasticity of demand can be inferred under the VAR framework, from the

impact responses of production and of price to a supply shock. The two capture the

movement along the demand curve when the supply curve is shifted by an exogenous

supply shock. The ratio of the two is the price elasticity of demand. In specific, Kil-

ian and Murphy (2014)’s impulse response functions imply a short-run price demand

elasticity of -0.44. Though Juvenal and Petrella (2014) don’t report the implied

elasticity of demand, it can be inferred from the impulse response functions (Juvenal

and Petrella (2014), Figure 2) that the short-run demand is less elastic (the elasticity

is around -0.25) than Kilian and Murphy (2014)’s.

Earlier estimation results of the structural model shows that, the price elasticity

of demand plays an important role in how the model attributes the observed price and
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inventory dynamics to the shocks. When the demand is inelastic (γ = 0.02), given

the observed volatility and movements, the model can only allow for one shock with

high persistence, and the expectation component is estimated to have more effect on

the price rather than the inventory (compared to when γ = 0.25). Accordlingly the

model attributes the more price dynamics to the expectation shock.

However, the importance of the elasticity is not implicit in the reduced-form anal-

ysis. The different macroeconomic data used implies different short-run price elastic-

ity of demand, which changes the resulting interpretation of the shocks. Kilian and

Murphy (2014) where the elasticity is higher, find little evidence for the expectations

contributing to the price movements after 2000, while Juvenal and Petrella (2014)

find more.

This result extends the discussion on the importance of the price elasticity of

demand. This model illustrates that the less elastic the demand is assumed or im-

plied by the data, the more of the price dynamics is attributed to the expectation

component in order to reconcile with the observed data of price and inventory. This

complements Hamilton (2009b)’s emphasis on the importance of elasticity in inter-

preting the role of speculation, where the the cases of perfectly price-inelastic demand

versus slightly elastic demand are discussed. .

5 Conclusion

In this paper, I model market expectations explicitly in a structural model where

the equilibrium prices and inventory decision are endogenously determined. Bringing
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the model to data, it’s possible to analyze the contribution of expectations in the oil

price dynamics. I consider the competitive inventory-holding decision of oil producers

under the current and expected future market condition. The expectations of the

future market condition is explicitly modeled as a shock that affects the relatively

supply with a lag, following the news shock in the macroeconomic literature, in order

to capture the forward-looking component in the price formation. In the model

simulation, this expectation shock affects the price and inventory in a similar fashion

as the speculative component that the literature has identified using reduced from

models. Namely, in response to traditional concurrent shocks to relative supply

(normalized to imply an increase in real spot price), spot price increases and inventory

decreases. In response to expectation shock, spot price increases and inventory is

accumulated. It’s the different response profiles that enable identification of the

different shocks from the data.

Under reasonable assumption of the price elasticity of demand (-0.25 and -0.02),

the oil price movements have been mostly driven by the persistent shock, which

characterizes a persisting constrained supply relative to the demand especially since

2000s. The constrained supply also result in the drawing down of the relative inven-

tory since the end of 1999.

In addition, the short-run movements in the effective inventory are mostly con-

tributed by the temporary shock, while the long-run trend in the relative inventory

is driven by the persistent shock and the expectation shock together. The historical

decomposition of the price and inventory dynamics even matches several historical

events in the oil market.
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In both sets of results, qualitatively the persistent shock drove inventory deple-

tion after 1998 and the expectations drove inventory accumulation after 2004. This

confirms an overall shift of the market expectations in 2000s.

More interestingly, in terms of the quantitative interpretation, the results show

that the price elasticity of demand plays a key role. By comparing the estimation re-

sults under moderate (-0.25) and low (-0.02) demand elasticities, the model illustrates

that the different elasticity setting can result in strikingly different interpretations.

The lower the demand elasticity, the more the price dynamics is attributed to the

expectation shock. It implies that in empirical studies, the different conclusions on

the role of speculation could be a result of different implied demand elasticities due

different demand data used.

This alternative explanation of the different results in the literature also illustrates

the importance of the structural model. While the structural and the reduce-form

models are comparable in many aspects, as discussed in the paper, the structural

model has the advantage of explicitly modeling the economic decisions. The price

elasticity of demand is implicitly included in the reduced-form models, and can be

easily overlooked in the results interpretation. Resorting to the structural model

reveals the key role of the price elasticity of demand in understanding the price

behavior, and this is not just limited to the oil market.

While the current version of the model finds little evidence for the expectations

driving up the price in the 2000s (especially under the assumption of moderate

demand elasticity), this could have to do with how the expectation is modeled. The

expectation shock is a shock to the relative supply with one-period lag, and thus
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captures expectations of the level of future relative supply. However, the speculative

incentives also include increased uncertainty about future market condition, which

can be modeled as a mean-reserving volatility increase of the relative supply. This

would affect prices and inventory decision without changing future relative supply,

which cannot be captured by the current expectation shock. As Kilian and Murphy

(2014) point out, “news about the level of future oil supplies and the level of future

demand for crude oil are but one example of shocks to expectations in the global

market for crude oil.” Such expectation shock can be explored in the future work.

A Solving the Model

To solve the detrended model in Section 2.4, first I find its steady state and log-

linearize the model around the steady state, second I solved the log-linearized linear

system using Blanchard and Kahn (1980) and write the model in a state-space form.

First, I write out the steady state of the model in Section 2.4 (the steady state

values are in bold; for example nt = nt+1 = n in steady state ):

P = c[(n/µs + 1− n) ∗ qs]−
1
γ (15)

1 = β − [α(
n/µs

n/µs + 1− n
)−ϕ + δ] (16)

logµs = µ̄ (17)

log qs = 0 (18)
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yτ = 0 (19)

yc = 0 (20)

nτ = 0 (21)

Then I log-linearize the model in Section 2.4 around the steady state.

Define P̂t = (Pt −P )/P , n̂t = (nt −n)/n, µ̂s
t = (µs

t −µs)/µs, q̂st = (qst − qs)/qs

for all t, the original model in Section 2.4 can be written as terms of the deviation

from the steady state:

P̂t = −1

γ
[pn0n̂t − pn1n̂t+1 − puµ̂s

t + pyq̂st ] (22)

where

pn0 =
n/µs

n/µs + 1− n
(23)

pn1 =
n

n/µs + 1− n
(24)

pu =
n/µs

n/µs + 1− n
(25)

py = 1 (26)

P̂t = βEt[P̂t+1]−
MIC

P
Et[ ˆMICt+1] (27)

ˆMICt+1 = P̂t +micn0n̂t +micn1n̂t+1 +micn2n̂t+2 +micu0µ̂
s
t +micu1µ̂

s
t+1 (28)
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where

micn0 = − 1

β − 1
∗Θ′ ∗ µs (29)

micn1 =
1

β − 1
[ϕ(1− β + δ)

1− n

n/µs + 1− n
+ (1 + β) ∗Θ′ ∗ µs] (30)

micn2 =
1

β − 1
[ϕ(1− β + δ)

n

n/µs + 1− n
− β ∗Θ′ ∗ µs] (31)

micu0 =
1

β − 1
∗Θ′ ∗ µs (32)

micu1 =
1

β − 1
[ϕ(1− β + δ)

n− 1

n/µs + 1− n
− β ∗Θ′ ∗ µs] (33)

Following Blanchard and Kahn (1980), the log-linearized model’s variables are

grouped as state variables Xt, costate variables Yt and exogenous shock variables et,

where X ′
t =

[
n̂t n̂t+1

]
, Yt =

[
P̂t

]
, e′t =

[
µ̂s
t yτt yct nτ

t

]
. The above model can be

solved for the state-space form (or more specifically, to solve for F , Z, U , H and R

in the state-space form below from Equation (22) - (33)).

The resulting state-space model is in the format below:

State equation:

n̂t

et

 = F

n̂t−1

et−1

+ Z ∗ vt vt ∼ N(0, U) (34)
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where v′t =

[
ϵµ

s

t ϵyτt ϵyct ϵnτ
t

]
, Z =



0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, U =



σ2
µs 0 0 0

0 σ2
yτ 0 0

0 0 σ2
yc 0

0 0 0 σ2
nτ


.

Observation equation:

P̂t = H

n̂t

et

+ u1t ut ∼ N(0, R1) (35)

where u1t is the measurement error for the spot price, and its variance is a small

positive number (in the estimation it’s set to be 1/100000).

A.1 Additional Observables

In addition to the spot market, crude oil futures contracts are also actively traded.

If 1-month futures price approximates of the expected 1-month ahead spot price, the

futures price can serve as another observed variable.

The state space model implies the following for the 1-month ahead expected price:

EtP̂t+1 =H

Etn̂t+1

Etet+1

 (36)

=H ∗ F ∗

n̂t

et

 (37)
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This gives rise to the second observation equation:

F̂t,1 = H ∗ F ∗

n̂t

et

+ u2t ut ∼ N(0, R2) (38)

where Ft,1 is the 1-month futures price quoted at t and u2t is the measurement error

for the futures price, and its variance is a small positive number (in the estimation

it’s set to be 1/100000).

A.2 Observable State Variables

One advantage of the model is that two of the state variables are actually ob-

served. Both the effective inventory n̂t+1 and the world supply growth rate µ̂s
t are

available. This provides two additional observation equations in the state-space form:

n̂t

µ̂s
t

 =

1 0 0 0 0

0 1 0 0 0


n̂t

et

+

ϵn̂t
0

 ϵnt ∼ N(0, σ2
n̂) (39)

where ϵnt is the measurement error for the effective inventory. This allows for correct-

ing possible data inaccuracy due to using the OECD effective inventory as the proxy

of world inventory. On the other hand, the world supply growth rate µ̂s
t already

contains a shock in the state equation (see Equation 34).

In order to remove the seasonality in the inventory data, monthly dummies are
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included in the inventory observation equation, so that in the estimation:

n̂t =

[
1 0 0 0 0

]n̂t

et

+ di + ϵn̂t ϵnt ∼ N(0, σ2
n̂) (40)

where di is the dummy variable for month i, di = 0 if i = March; di ̸= 0 otherwise.

A.3 Equations for the Estimation

To summarize, the equations in the estimation are Equations 34 35 38 40 and the

second row (for µ̂s
t) of Equation 39.

B Estimation of the State Space Model

Given a starting set of parameters, with the state equation 34, the observation

equations 35 38 40 and the second row (for µ̂s
t) of Equation 39, and the observed data,

I use the Kalman filter to produce the estimates of the state variables, as well as the

joint likelihood under this set of parameter. The maximum likelihood estimation of

the model involves finding the parameters to maximize the joint likelihood. Once the

parameters are estimated, the estimates of the state variables are also produced, and

smoothed by Kalman smoother. The state variables and the decomposition results

discussed in the paper are all based on smoothed state variables.

For the results discussion, the smoothed state variables are not plotted. Rather

the historical decomposition and variance decomposition are provided for better il-

lustration. The figures of the state variables can be provided on request.
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To compute the historical decomposition of the price and inventory, aside from

the shock of interest, all other shocks are set to be zeros over the whole sample period.

The effective inventory in the first period is also set to be zero. The hypothetical

price and inventory over time is calculated iteratively from the time path of the shock

of interest, using the estimated state space model. Thus the historical decomposition

of the inventory always starts from zero in figures.
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Table 1: Model Parameterization

Parameters Value Description

β 0.997 monthly depreciation rate

γ 0.25 price elasticity of demand

ϕ 1.42 parameter in MIC

Θ′ 0.2 marginal cost of inventory change

δ 0.89 marginal physical storage cost

ρτ 0.9 AR coef of persistent shock

ρc 0.1 AR coef of temporary shock

ρnτ 0.9 AR coef of expectation shock

σyτ 1 s.d. of persistent shock

σyc 1 s.d. of temporary shock

σnτ 1 s.d. of expectation shock

σµs 1 s.d. of growth rate shock

σn̂ 1 s.d. of inventory measurement errora

aIn the observation equation, although the observed effective inventory is mapped 1 to 1 directly
from the state variable effective inventory, I allow for measurement errors in the observed values.
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Table 2: Estimated Model for Crude Oil Market

Parameters γ = 0.25 γ = 0.02 Description

Point Estimate (Standard Error) Point Estimate (Standard Error)

log likelihood 4628 4635

β (set) 0.997 0.997 monthly depreciation rate

γ (set) 0.25 0.02 price elasticity of demand for crude oil

ϕ (set) 1.42 1.42 parameter in net marginal convenience yield

Θ′ 0.0151∗∗∗ (0.0004) 0.0018∗∗∗ (0.0002)

δ 0.0025∗∗∗ (0.0001) 0.0021∗∗∗ (0.0001) marginal physical storage cost

ρτ 0.9993∗∗∗ (0.0000) 0.9998∗∗∗ (0.0000) AR coefficient of persistent shock

ρc 0.0451∗∗∗ (0.0035) 0.0279∗∗∗ (0.0011) AR coefficient of temporary shock

ρnτ 0.9991∗∗∗ (0.0000) 0.0000∗∗∗ (0.0000) AR coefficient of expectation shock

σyτ 0.0197∗∗∗ (0.0001) 0.0010∗∗∗ (0.0002) s.d. of persistent shock

σyc 0.0092∗∗∗ (0.0003) 0.0088∗∗∗ (0.0015) s.d. of temporary shock

σnτ 0.0000∗∗∗ (0.0000) 0.0003∗∗∗ (0.0000) s.d. of expectation shock

σµs (set) 0.0105 0.0105 s.d. of growth rate shock

σn̂ 0.0000∗∗∗ (0.0000) 0.0000∗∗∗ (0.0000) s.d. of inventory measurement errora

Note: (i) Standard errors of the estimates are simulated and reported in parentheses; (ii) *, **
and ***denote that the point estimate is significant at the 90%, 95% and 99% confidence levels,
respectively.
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Table 3: Estimated Model for Crude Oil Market - continued

Parameters γ = 0.25 γ = 0.02 Description

Point Estimate (Standard Error) Point Estimate (Standard Error)

log likelihood 4628 4635

Jan. −0.0377∗∗∗ (0.0052) −0.0383 (0.0329) monthly seasonality dummy

Feb.(set) −0.0105∗∗∗ (0.0036) −0.0109 (0.1042) monthly seasonality dummy

Mar. 0 0 monthly seasonality dummy

Apr. 0.0300∗∗∗ (0.0037) 0.0305 (0.0308) monthly seasonality dummy

May. 0.0419∗∗∗ (0.0050) 0.0429 (0.0307) monthly seasonality dummy

Jun. 0.0337∗∗∗ (0.0060) 0.0348 (0.0309) monthly seasonality dummy

Jul. 0.0112∗ (0.0063) 0.0115 (0.0312) monthly seasonality dummy

Aug. −0.0041 (0.0066) −0.0040 (0.0646) monthly seasonality dummy

Sep. −0.0129∗ (0.0067) −0.0132 (0.0440) monthly seasonality dummy

Oct. −0.0333∗∗∗ (0.0064) −0.0339 (0.0317) monthly seasonality dummy

Nov. −0.0068 (0.0063) −0.0073 (0.0353) monthly seasonality dummy

Dec. −0.0121∗∗ (0.0057) −0.0130 (0.0480) monthly seasonality dummy

Note: (i) Simulated standard errors of the estimates are in parentheses (20000 simulations); (ii) *,
** and ***denote that the point estimate is significant at the 90%, 95% and 99% confidence
levels, respectively.
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Table 4: The Variance Decomposition k-month Ahead under Different γ’s

Forecast
error in

Innovation
in

γ k = 1 k = 3 k = 6 k = 12 k = 24

Pt

yτ
γ = 0.25 0.9967 0.9974 0.9976 0.9978 0.9975

γ = 0.02 0.9501 0.9515 0.9526 0.9546 0.9573

yc
γ = 0.25 0.0013 0.0007 0.0004 0.0002 0.0000

γ = 0.02 0.0109 0.0096 0.0086 0.0068 0.0043

nτ
γ = 0.25 0.0002 0.0002 0.0002 0.0003 0.0008

γ = 0.02 0.0350 0.0351 0.0352 0.0354 0.0357

nt+1

yτ
γ = 0.25 0.0016 0.0073 0.0261 0.1042 0.2686

γ = 0.02 0.0000 0.0000 0.0001 0.0004 0.0017

yc
γ = 0.25 0.8223 0.8083 0.7600 0.5606 0.1473

γ = 0.02 0.8123 0.8126 0.8126 0.8124 0.8115

nτ
γ = 0.25 0.0034 0.0155 0.0551 0.2181 0.5533

γ = 0.02 0.0009 0.0008 0.0008 0.0007 0.0005

Note: (i) Pt: the spot price in period t; nt+1: the effective inventory determined in period t for the
beginning of period t+ 1; (iI) yτ : persistent shock; yc: temporary shock; nτ : expectation shock.
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Figure 1: World Supply of Crude Oil
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Figure 2: Effect of the Shocks on Relative Supply under Arbitrary Parameterization

Note: All shocks have been normalized to cause an increase in the relative supply.
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Figure 3: Impulse Response Functions under Arbitrary Parameterization

Note: 1. yτ : persistent shock; yc: temporary shock; nτ : expectation shock; 2. All shocks have
been normalized to cause an increase in the real spot price of oil.
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Figure 4: Impulse Response Functions under Arbitrary Parameterization with dif-
ferent γ’s

Note: 1. yτ : persistent shock; yc: temporary shock; nτ : expectation shock; 2. All shocks have
been normalized to cause an increase in the real spot price of oil.
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Figure 6: Estimated Effect of the Shocks on Relative Supply

Note: All shocks have been normalized to cause an increase in the relative supply.
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Figure 7: Estimated Impulse Response Functions

Note: 1. yτ : persistent shock; yc: temporary shock; nτ : expectation shock; 2. All shocks have
been normalized to cause an increase in the real spot price of oil.
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Figure 8: Cumulative Effect of Shocks on the Prices and Effective Inventory with
90% CI: γ = 0.25
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Figure 9: Cumulative Effect of Shocks on the Prices and Effective Inventory with
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(b) γ = 0.25: Effective Inventory Decomposi-
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Figure 10: Cumulative Effect of Shocks to Price and Inventory

Note: For illustration purpose, the CI’s from Figure 8 and Figure 9 are not included in the
rearranged plottings.
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