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1. An improved pseudo-functions approach is presented for estimate the production 

performance for a finite-conductivity fractured gas well in rectangular reservoirs with 

stress sensitive properties; and the solution is validated with the standard commercial 

numerical simulator, Eclipse.  

2. The effect of stress sensitive properties on the production performance are 

investigated extensively using the newly presented analytical solution.  

3. Larger stress-sensitivity coefficient leads to higher rate decline and smaller 

cumulative production under constant bottom-hole pressure. 

4. Fracture conductivity and fracture half-length mainly affect the pressure depletion in 

the early production time under constant flow rate.  
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ABSTRACT 6 

In order to study the effect of stress sensitivity on transient flow behavior for fractured wells, 7 

this article demonstrates how to account for stress sensitivity effect in gas reservoirs using 8 

modified pseudo-functions approach. By making this modification, the governing equation 9 

can be linearized. This study presents production performance of gas well for the most widely 10 

used inner conditions: constant flow rate and constant bottom-hole pressure. Furthermore, 11 

type curves are generated to investigate the effects of stress sensitivity, reservoir size and 12 

fracture properties (i.e., conductivity and half-length). Calculative results show that a bigger 13 

stress-sensitivity coefficient will lead to higher degree of bend upward on the log-log pressure 14 

curves, indicating bigger pressure depletion and rate decline in the late-time period; reservoir 15 

size mainly affects the duration of pressure depletion and rate decline; fracture conductivity 16 

and fracture half-length affect pressure and production in the early-time period. This study 17 

provides comprehensive analysis of stress sensitivity for fractured gas wells and new insight 18 

into investigating production performances in stress-sensitive gas reservoirs. 19 
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1 Introduction 1 

As early as 1928, it was recognized that porous media are not always rigid and 2 

non-deformable but exhibited elastic and inelastic deformations (Meinzer, 1928). The 3 

phenomenon that the effective stress on the matrix during the development of gas field 4 

leads to the deformation of rock skeleton and permeability changes of rock is called as 5 

the stress sensitivity. Since then, many researchers (Raghavan et al., 1972; Samaniego et 6 

al., 1977; Samaniego and Cinco-Ley, 1989; Pedrosa, 1986; Kikani and Pedrosa, 1991; 7 

Franquet et al., 2004; Thompson et al., 2010; Clarkson et al., 2012; Wang and Wang, 8 

2016) have studied pressure transient response in stress-sensitive reservoirs. In addition, 9 

several articles are also published to investigate the effect of stress sensitivity on 10 

production performance. Samaniego and Cinco (1980) analyzed the influence of stress 11 

sensitivity on well production decline in constant wellbore pressure tests and found out 12 

that variable property decline solutions did not follow any of the three common types of 13 

production decline curves-exponential, hyperbolic or harmonic. Raghavan and Chin 14 

(2002) established a numerical model that couples geo-mechanical and fluid-flow aspects 15 

and discussed how the physical (rock) properties influenced productivity loss in 16 

stress-sensitive reservoirs. Rosalind (2008) presented an approach than could avoid the 17 

use of pseudo-pressure to handle stress sensitivity on production data analysis, however, 18 

the approach was limited to a linear variation of permeability and porosity with pressure 19 

change. 20 

Due to low permeability and stress sensitivity, it is generally not possible to 21 

economically exploit gas reservoirs without the use of hydraulic fracturing. Fractured 22 

wells have been widely used in the development of stress-sensitive gas reservoirs to 23 

improve well production. Overall, many researchers (Prats, 1962; Gringarten et al., 1978; 24 

Cinco-Ley et al., 1978; Cinco-Ley and Samaniego, 1981; Osman, 1993; Barreto and 25 

Peres, 2012; Luo and Tang, 2014) have focused on the fracture performances in 26 

conventional gas reservoirs. Based on Pedrosa’ work, Celis et al. (1994) presented a new 27 

analytical model considering the flow in a naturally fractured stress sensitive reservoir for 28 
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interpreting pressure transient test and obtained type curves that can be used for analyzing 1 

pressure buildup and drawdown tests. Pedroso and Correa (1997) established a model 2 

considering fracture conductivity, diffusivity ratio and permeability modulus, then 3 

numerically solved by finite difference schemes in both fracture and reservoir. Samaniego 4 

and Villalobos (2003) presented the results of a study that investigates the effect of 5 

pressure sensitivity of the natural fractures of a fissured formation on the transient 6 

pressure analysis of well tests. Yao et al. (2013) developed a semi-analytical model for 7 

hydraulically fractured wells with stress-sensitive conductivities, and hydraulic fractures 8 

were discretized into several slab source segments. Zhang et al. (2014) presented an 9 

improved pressure buildup test model for vertical well intercepted by a finite conductivity 10 

fracture with the consideration of stress-sensitive fracture permeability and hysteresis 11 

effect. Wang and Wang (2016) used the numerical convolution method to solve the 12 

semi-analytical model considering effects of slippage and pressure sensitivity to 13 

investigate pressure transient behavior for fractured gas wells. However, the above works 14 

mainly concentrated on the pressure response and flow regime identification.  15 

The main objective of this paper is to establish a mathematical model to investigate 16 

the effect of stress sensitivity on pressure and flow rate. Laplace transform, point-source 17 

solutions, and Stehfest numerical inversion technique (Stehfest, 1970) are used to solve 18 

the model. Type curves are generated to analyze the effects of stress sensitivity, reservoir 19 

size and fracture properties on reservoir performance. 20 

2 Mathematical model 21 

2.1 Model assumption 22 

Consider a vertical well intercepted by a symmetry fracture with a half-length of yf 23 

in a closed homogenous rectangular reservoir as shown in Fig. 1. The fracture is 24 

considered to be fully penetrating with the well located at its center. As shown, the 25 

assumptions of the physical model described in this paper are as follows. 26 

1) An isotropic, homogeneous, horizontal, slap gas reservoir is bounded by an upper 27 

and a lower impermeable stratum. The gas reservoir has uniform thickness h, initial water 28 
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saturation Swi, and constant porosity. 1 

2) The gas reservoir has a highly compressible fluid of compressibility cg, 2 

compressibility factor Z, and viscosity µg, which change with pressure p. 3 

3) The fluid is produced, at a variable rate qg with initial pressure pi, through a 4 

vertically fractured well intersected by a fully penetrating, finite-conductivity fracture of 5 

half length yf, width wf, and constant porosity . 6 

4) Because of the stress-sensitive effect, the gas reservoir permeability kg and fracture 7 

permeability kf both change with pressure p.  8 

5) The gravity effect is negligible. 9 

 10 

Fig.1 Schematic of a vertical fractured well in a rectangular reservoir 11 

2.2 Pseudo-functions approach 12 

To investigate the effect of pressure-dependent rock and fluid properties on well 13 

flow tests, pressure dependent permeability can be implemented in analytical models. 14 

This is done by modifying the standard definition of pseudo-pressure (Russell et al., 1966) 15 

to include permeability as follows: 16 

( )
( )

( ) ( )

ip

gi i g

p

i gi gp

Z k p
p p pdp

p k p Z p




                                         (1) 17 

Many researchers (Franquet et al., 2004; Fang and Yang, 2009; Thompson et al., 18 

2010; Clarkson et al., 2012; Dou et al., 2015; Wang and Wang, 2016) have introduced 19 

pressure-dependent pseudo-pressure to model stress-sensitive gas reservoirs. By 20 

modifying the real gas pseudo-pressure expression in this way, it can “linearize” the flow 21 

terms in the partial differential equation, which makes well test analysis methods for 22 
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liquids adaptable to gas flow for reservoirs with stress sensitivity. 1 

A common approach to account for permeability variation in conventional reservoir 2 

simulators is to relate permeability to pressure changes by use of a parameter defined as 3 

the stress-sensitivity coefficient (Nur and Yilmaz, 1985). 4 

1 k

k p






                                                          (2) 5 

This parameter plays a very important role in the determination of permeability. For 6 

the practical purposes, the stress-sensitivity coefficient is assumed to be constant. Thus, 7 

permeability is able to be rewritten as the exponential function of pressure (Kikani and 8 

Pedrosa, 1991). 9 

( ) exp[ ( )]g gi ik p k p p                                              (3) 10 

 11 

Fig.2 Stress-dependent permeability 12 

Fig. 2 shows the relation of rock permeability and net confining pressure for cores 13 

with different initial permeability. These correlations were developed for Daniudi field in 14 

the Ordos Basin. In this figure, the thin black lines are exponential regression, and the 15 

stress-sensitivity coefficients are 0.016MPa
-1

, 0.039MPa
-1

 and 0.052MPa
-1

.
 
We can 16 

conclude that there is a greater degree of permeability reduction with low permeability 17 

cores than with high permeability cores. This behavior is extended to tight gas formations, 18 

which exhibit permeability lower than 0.3md. For the convenience of following 19 

calculation, we assume that stress-sensitivity coefficients are 0.03MPa
-1

 and 0.06 MPa
-1

. 20 
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 1 

Fig.3 Pseudo-pressure versus pressure 2 

Fig.3 demonstrates the relation between pseudo-pressure and actual pressure based 3 

on Eq.(1). As seen from Fig.3, three stress-sensitivity coefficients (i.e., γ =0, 0.03MPa
-1

, 4 

0.06MPa
-1

) are utilized to analyze the effect of stress-sensitivity on the reservoir 5 

depletion. It can be seen that pseudo-pressure decreases more with increase in 6 

stress-sensitivity coefficient at the same pressure. 7 

Recently, Ye and Ayala (2012) proposed a density-based approach to analyze 8 

unsteady state flow of natural gas reservoirs. One of the key features of the approach is to 9 

decouple of viscosity and compressibility from pressure depletion by using 10 

depletion-driven variables, named λ and β. On this basis, considering the effect of stress 11 

sensitivity, the pseudo-time factor in this work is defined as 12 

0

( ) /1
( )

( ) / ( ) /

t
g avg gi

g avg gi t avg ti

k p k
t dt

t p c p c


 

  
      
                                 (4) 13 

( ) /
( )

( ) / ( ) /

g avg gi

g avg gi t avg ti

k p k
t

p c p c


 

      

                                    (5) 14 

Apparently，β(t) and λ(t) are dimensionless. 15 

The relationship between λ(t) and β(t) can be presented as follows. 16 
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0

1
( ) ( )

t

t t dt
t

                                                       (6) 1 

Pavg is average reservoir pressure. The material balance equation for stress-sensitivity gas 2 

reservoirs is derived to calculate average reservoir pressure, which subsequently is used 3 

to calculate pseudo-time factor. In the case of ignoring the compressibility of reservoir 4 

rock and elasticity of irreducible water, the form is similar to the conventional material 5 

balance equation for gas reservoir 6 

( )
(1 )

( )

avg pi

avg i sc

p t Gp

Z t Z G
                                                  (7) 7 

Where Gp is cumulative production and Gsc is original gas in place. For a reservoir at 8 

constant flow rate, the cumulative production for a constant rate is Gp=qsc×t. If the well 9 

is in variable rate production, the trapezoidal numerical integral is incorporated to 10 

calculate the accumulative production for a given time. 11 

1 11
12

( ) ( ) [ ( ) ( )]( )k k k k

p p g g k kG t G t q t q t t t 

                               (8) 12 

 13 

Fig.4 Comparisons of  (t) and β(t) for different stress-sensitivity coefficients 14 

Fig.4 depicts the curves of β(t) and λ(t) versus time with stress-sensitivity 15 

coefficients under constant flow rate. As shown, in the initial stage, average reservoir 16 

pressure depletion can be ignored, λ(t)≈β(t)≈1.0, and viscosity-compressibility 17 
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-permeability changes do not dominate the unsteady state responses of the system. This is 1 

same with the phenomenon in liquid systems. As the production time increases, due to 2 

stress sensitivity, average pressure would decrease rapidly and gas seepage behavior, (t) 3 

and β(t) would gradually deviate from the seepage behavior of its corresponding liquid 4 

system ((t) <β(t) <1.0). 5 

2.3 Solution for the model  6 

Based on the above mentioned assumptions, modified pseudo-functions and 7 

dimensionless parameters in Table 1, the governing equation derived for fluid flow in a 8 

rectangular reservoir can be written as follows. Derivation of the reservoir model is 9 

presented in detail in Appendix A. 10 

2 2

2 2

D D D

D D D

p p p

x y t

  
 

  
                                               (9) 11 

Accordingly, the definite conditions can be simplified as  12 

( , ,0) 0D D Dp x y                                                    (10) 13 

( , , )(0, , )
0D eD D DD D D

D D

p x y tp y t

x x

 
 

 
                                (11) 14 

( , , )( ,0, )
0D D eD DD D D

D D

p x y tp x t

y y

 
 

 
                                (12) 15 

1

1

( , , )
( )D wD D D

D D D

D

p x y t
dy q t

x









 

  , ( , , ) 1D wD D Dp x y t                  (13) 16 

Laplace transform, point-source solution, and superposition principle are used to 17 

deal with Eqs. (9)- (13), then the pressure distribution function of an infinite-conductivity 18 

fractured well in Laplace domain can be obtained. Solution in Lapacian space is 19 

presented in detail in Appendix B. 20 

inf

0

1

2
( , , ) cos cos sinwD D

D D D n

neD eD eD eD

n y n y n
sp x y s H H

y n y y y

  



                (14) 21 

Where
cosh ( | |)

sinh

n eD D wD
n

n n eD

x x x
H

x



 

 
 ,

2 2 2/n eDs n y    (n=0,1,...,∞) 22 
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The fracture conductivity is generally finite and the pressure depletion along fracture 1 

is not uniform, which is closer to reality. Locke and Sawyer (1975) studied the transient 2 

pressure behavior of finite-conductivity vertical fractures in gas wells. Their solutions 3 

cannot be used to analyze transient pressure data because only specific cases were 4 

presented. Cinco-Ley and Dominguez (1978) presented general solutions for the transient 5 

pressure behavior of a well intersected by a finite-conductivity vertical fracture. This was 6 

done in the time domain and was extremely costly computationally, since the flux 7 

distributions at different times were coupled together. Wilkinson (1989) presented a 8 

number of new analytic results for the pressure transient behavior of hydraulically 9 

fractured wells, and combined these results into an approximate but accurate analytic 10 

solution which may be coded efficiently on a computer. The dimensionless conductivity 11 

was combined with wellbore storage. The solution was obtained in the Laplace domain 12 

and worked well for all values of the fracture conductivity and for all values of the 13 

Laplace transform variable s.  14 

2 2 2 2
1

1 0.4063
( ) 2

( 0.8997) 1.62522
fD

n fDfD

sf c
c sn c n s




 





 
  

            (15) 15 

The function can be combined into an approximate but accurate analytical solution which 16 

may be coded efficiently on a computer. Recently, Wang et al. (2014a) and Wang et al. 17 

(2014b) applied the function to multiple fractured horizontal wells and accurately 18 

validated it with previous works.  19 

Therefore, for a single finite vertical fracture well, the pressure distribution under 20 

constant rate can be written as follows.  21 

inf( , , ) ( , , ) ( )D D D D D D fDsp x y s sp x y s sf c                                  (16) 22 

Here, the first term on the right side is a solution for the model of 23 

infinite-conductivity vertical fractured well, and the second is the impact function of 24 

fracture conductivity in the Laplace domain. 25 

Eq.(16) can be presented in the real time domain by using inverse Laplace 26 

transformation 27 
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inf( , , ) ( , , ) ( , )D D D D D D D D D fDp x y t p x y t f t C                            (17) 1 

It is noted that 1( , , ) [ ( , , )]D D D D D D Dp x y t L p x y s  , and real-time variable is βtD, 2 

which is corresponding to Laplace variable s. 3 

Even if Wilkinson's solution in Laplace domain is derived on the assumption of the 4 

liquid flow model, but the correspondence between tD and s for liquid is equivalent to βtD 5 

and s for gas. Hence, Eq.(15) can be applied to take the effect finite conductivity of 6 

fracture into account in the work, only if confirming the correspondence between βtD and 7 

s. Wang et al. (2014b) applied the function to multiple fractured horizontal wells in the 8 

development of shale gas reservoirs and validated the reliability in the case of multiple 9 

fractures. 10 

Van Everdingen and Hurst (1949) pointed out that according to the superposition 11 

principle, the relationship between the pressure solution at a constant rate and the flow 12 

rate solution under constant bottom-hole pressure turned out to be 13 

2

1
( ) ( )D Dp s q s

s
                                                    (18) 14 

Then they can be inverted to the real domain numerous times by an algorithm (such 15 

as that of Stehfest numerical inversion) during the integration over the time and spatial 16 

domain. 17 

3 Model validation 18 

The solution proposed in this paper is validated with Eclipse numerical reservoir 19 

simulator (Fig. 5). Local grid refinement (LGR) method is utilized to model gas flow 20 

from matrix to fracture. The reservoir is assumed to be homogeneous with only gas flow 21 

under the condition of residual water saturation. The reservoir has finite length of 1000m 22 

and width of 400m. The value for BHP is held at 15MPa for the simulation. Fracture 23 

height is assumed to be equal to the formation thickness. The fracture half-length is fixed 24 

as 100m. The other basic reservoir and fracture parameters used for the simulations are 25 

summarized in Table 2. For the comparison, we make stress-sensitivity coefficient γ = 0 26 

and γ = 0.06MPa
-1

 in our model. The comparison suggests that there is a good agreement 27 
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between the solutions obtained in this work and the results from Eclipse. This indicates 1 

that our model is accurately validated. 2 

 3 

Fig.5 Comparison of flow rate and cumulative production between this model and numerical model (Eclipse) 4 

Table 1 Definition of dimensionless variables 5 

Variable Expression 

Dimensionless coordinate in the x direction D

f

x
x

y
  

Dimensionless coordinate in the y direction D

f

y
y

y
  

Dimensionless wellbore coordinate in the x direction 
w

wD

f

x
x

y
  

Dimensionless wellbore coordinate in the y direction 
w

wD

f

y
y

y
  

Dimensionless reservoir length 
e

eD

f

x
x

y
  

Dimensionless reservoir width 
e

eD

f

y
y

y
  
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Dimensionless time 2

t gi

D

gi ti f

k t
t

c y




  

Dimensionless fracture width 
f

fD

f

w
w

y
  

Dimensionless fracture conductivity 
f f

fD

f

k w
c

ky
  

Dimensionless pseudo pressure (constant flow rate) 
( )p gi p

D

sc gi gi

k hp p
p

q B




  

Dimensionless pseudo pressure (constant bottom-hole pressure) 
( )

( )

p

D

p wf

p p
p

p p
  

Dimensionless flow rate 
( )

( )

g gi gi

D

p gi p wf

q t B
q

k hp p




  

 1 

4 Parametric study on type curves 2 

The variables of interest include stress-sensitivity coefficient, reservoir size, fracture 3 

conductivity, and fracture half-length. They are analyzed to investigate the effects on 4 

pressure difference and flow rate. The fractured well, fluid and formation properties 5 

associated with generation of type curves are listed in Table 2. 6 

Table 2 Reservoir, well, fracture and fluid data 7 

Basic parameters                                            Value 

Initial formation permeability，ki (md)                              0.2 

Initial fracture permeability，kf (md)                             30000 

Porosity，     0.12 

Stress-sensitivity coefficient, γ (Mpa
-1

)                      0, 0.03, 0.06 

Water saturation, Swi                                            0.1 

Pay zone thickness，h(m)                                        20 

Gas specific gravity，rg                                         0.6 

Fracture half-length，yf (m)                            50, 75, 100, 150 

Fracture width，wf (m)                                        0.002 

Initial pressure，Pi (Mpa)                                     30.192 

Initial temperature，T(K)                                        370 

Bottom-hole pressure，Pwf (Mpa)                                  15 

Standard flow rate, qsc(10
4
m

3
/d)                                   1.5 
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Reservoir size, xe (m)×ye (m)               500×200, 1000×400, 2000×800 

Fracture conductivity, CfD                       0.03, 0.3, 1, 3,10, 30,300 

4.1 Effect of stress-sensitivity coefficient 1 

Fig.6 shows the effect of stress-sensitivity coefficient on pressure depletion for a 2 

vertical fractured well under constant flow rate. As shown, at the early production time, 3 

the curves agree with each other and the difference of pressure response between 4 

conventional and stress-sensitive models is small. In this period, only a small pressure 5 

difference is required to maintain constant flow rate. While in the late production time 6 

(boundary-dominated flow region), the curves bend upward, and the effect of 7 

stress-sensitivity coefficient on curve becomes more obvious. A bigger stress-sensitivity 8 

coefficient would lead to bigger pressure difference, indicating that a reservoir with 9 

bigger stress-sensitivity coefficient requires larger pressure difference to maintain 10 

constant flow rate. For example, for the reservoir with length of 1000m, width of 400m 11 

and fracture half-length of 100m, pressure difference with stress-sensitivity coefficient of 12 

0.06 is 99.56% higher than that of constant reservoir permeability (γ=0) model. This is 13 

because a larger stress-sensitivity coefficient implies permeability decreases more as 14 

pressure decreases. If stress-sensitivity is not considered, constant permeability model 15 

would underestimate the required pressure difference to maintain an expected flow rate. 16 

Fig.6 also presents the effect of outer boundary on pressure difference under constant 17 

flow rate. It can be seen that at the same time, a larger pressure difference is required for 18 

smaller reservoir size to maintain constant flow rate, illustrating that the further the 19 

boundary distance, the later an upward trend will appear. 20 

Fig.7 shows the rate decline curves and cumulative production curves for three 21 

values of stress-sensitivity coefficient under constant bottom-hole pressure. It can be seen 22 

from the figure that flow rate decreases as production time increases while the flowing 23 

well bottom-hole pressure is maintained and production behaviors can be significantly 24 

affected by the stress-sensitivity coefficient. For a larger stress-sensitivity coefficient, a 25 

higher reduction in reservoir permeability is expected, leading to more rate decline and 26 

smaller cumulative production. This is because when reservoir pressure reduces, some 27 
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outflow parameters for the stress-sensitivity gas reservoir, such as permeability will also 1 

decrease, and the productivity will decline correspondingly. It is worth noting that 2 

stress-sensitivity mainly affects the early production time. As flow rates for all the 3 

stress-sensitivity coefficients reduce significantly at late production time, the effect of 4 

stress-sensitivity is much weak. 5 

 6 

Fig.6 Effects of stress-sensitivity coefficient and outer boundary on pressure behavior 7 

 8 

Fig.7 Effects of stress-sensitivity coefficient on production behavior 9 
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 1 

Fig.8 Effects of stress-sensitivity coefficient and outer boundary on flow rate 2 

Fig.8 shows the rate decline curves for three values of stress-sensitivity coefficient 3 

with different reservoir sizes under constant bottom-hole pressure. In the early production 4 

time, stress sensitivity has the dominant effect, while the reservoir size has the dominant 5 

effect in the late production time. Closer to the boundary distance, a downward trend will 6 

appear sooner. 7 

4.2 Effect of fracture conductivity 8 

 9 

Fig.9 Effects of fracture conductivity on pressure behavior (γ = 0) 10 
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Fig.9 depicts the pressure difference curves of constant permeability gas reservoirs 1 

at different fracture conductivity values. Fracture conductivity denotes the conductivity of 2 

fractures, the larger the fracture conductivity value, the stronger the fracture conductivity 3 

capacity; the smaller percolation resistance in the fracture leads to lower pressure 4 

difference with a corresponding shift down the curve, and a shorter duration of early flow 5 

stage. Hence, it can be suggested that the fracture conductivity value of 300 is very close 6 

to the infinite fracture conductivity in this case study. However, the pressure difference 7 

curves appear to overlap as time increases at a later stage.  8 

Correspondingly, Fig.10 depicts the production behaviors at different fracture 9 

conductivity values under constant bottom-hole pressure. In the early production time, the 10 

value of pressure difference is small and the fracture conductivity capacity has the 11 

dominant effect on production. So, a smaller fracture conductivity value will lead to 12 

lower flow rate and smaller cumulative production. While in the late production time, due 13 

to the certain bottom-hole pressure and the original gas in place, the cumulative curve 14 

appears to overlap. It can be seen that it is necessary to properly improve fracture 15 

conductivity to enhance well production and reduce pressure depletion in the hydraulic 16 

fracturing design. 17 

 18 

Fig.10 Effects of fracture conductivity on production behavior (γ = 0) 19 
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 1 

Fig.11 Effects of fracture conductivity on pressure behavior (γ = 0.06 MPa-1) 2 

Fig.11 depicts the pressure difference curves for a constant stress-sensitivity 3 

coefficient of 0.06 MPa
-1

 varying the fracture conductivity values under constant flow 4 

rate, whereas Fig.12 depicts the behaviors of flow rate and cumulative production for a 5 

constant stress-sensitivity coefficient of 0.06 MPa
-1

 under constant bottom-hole pressure. 6 

The trend of curves is much consistent with that of Fig.9 and Fig.10, respectively. Lower 7 

fracture conductivity leads to more pressure depletion as expected, which indicates that 8 

fracture conductivity is important for stimulating production. The difference between 9 

Fig.11 and Fig.9 is that all the curves bend upward due to the effect of stress sensitivity in 10 

the late production time. From Fig.12, it can be seen that stress sensitivity has an effect 11 

on production compared to Fig.10, illustrating that the flow rate and cumulative 12 

production are much lower than that of constant permeability gas reservoirs. 13 
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 1 

Fig.12 Effects of fracture conductivity on production behavior (γ = 0.06 MPa-1) 2 

4.3 Effect of fracture half-length  3 

Fig.13 shows the effect of fracture half-length yf on pressure difference for a 4 

constant stress-sensitivity coefficient of 0.06 MPa
-1

 under constant flow rate. At the same 5 

time point, the smaller the fracture half-length is, the larger the pressure difference will be. 6 

It illustrates that a shorter fracture will require much bigger pressure difference to 7 

maintain a certain flow rate. Moreover, in the early production time, the slopes of the 8 

curves of fractured wells with different fracture half-lengths slightly vary, which implies 9 

that the rate of the pressure difference at different fracture half-lengths is approximate. It 10 

should be noted that differences of the three pressure difference curves with fracture 11 

half-length of 75m, 100m and 150m are less obvious compared to that with fracture half 12 

length of 50m. This demonstrates that fracture length is no longer favorable, hence need 13 

for optimized length. However, due to the effect of stress sensitivity, the curves will up 14 

warp in the late production time as expected. 15 
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 1 

Fig.13 Effects of fracture-half length on pressure behavior (γ = 0.06 MPa-1) 2 

 3 

Fig.14 Effects of fracture half-length on production behavior (γ = 0.06 MPa-1) 4 

Fig.14 shows the effect of fracture half-length on production for a constant 5 

stress-sensitivity coefficient of 0.06 MPa
-1

 under constant bottom-hole pressure. As 6 

shown, in the early production time, larger fracture half-length leads to higher flow rate 7 

and larger cumulative production as expected. While in the late production time, due to a 8 

certain pressure difference and original gas in place, the cumulative curve appears to 9 

overlap. It can be seen that it is necessary to keep suitable fracture length to enhance well 10 
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production and reduce pressure depletion in the hydraulic fracturing design. 1 

Conclusions 2 

In this article, we establish a mathematical model for gas well with finite 3 

conductivity in rectangular reservoirs and present the modified pseudo-functions 4 

approach to account for the pressure-dependent fluid properties including stress-sensitive 5 

permeability and viscosity-compressibility product. Based on our work, several 6 

conclusions can be further emphasized as follows: 7 

1) We have extended the applicability of the pseudo-functions approach (Ye and 8 

Ayala, 2012) to vertical fractured wells with significant stress sensitivity effect. The 9 

effect is captured through the modification of pseudo-pressure and pseudo-time 10 

factor, which take into account stress sensitivity and corresponding change in gas 11 

properties. 12 

2) The modified formulation is validated and verified with Eclipse numerical 13 

reservoir simulator, and the successful analytical match demonstrates that the 14 

proposed model effectively captures production performance of gas reservoirs 15 

exhibiting significant stress sensitivity. 16 

3) Reservoirs with bigger stress-sensitivity coefficient require larger pressure 17 

difference to maintain constant flow rate. Correspondingly, larger stress-sensitivity 18 

coefficient leads to higher rate decline and smaller cumulative production under 19 

constant bottom-hole pressure. 20 

4) Fracture conductivity and fracture half-length mainly affect the pressure 21 

depletion in the early production time under constant flow rate. When the fractured 22 

well is produced under constant bottom-hole pressure, higher fracture conductivity 23 

and larger fracture half length lead to higher flow rate and larger cumulative 24 

production in the early production time. 25 
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Nomenclature 1 

Dimensionless variables: 2 

tD dimensionless time 

pwD dimensionless well bottom pressure 

pD dimensionless pseudo pressure 

qD dimensionless flow rate 

CfD dimensionless fracture conductivity 

xD dimensionless coordinate in the x direction 

yD dimensionless coordinate in the y direction 

xwD dimensionless wellbore coordinate in the x direction 

ywD dimensionless wellbore coordinate in the y direction 

xeD dimensionless reservoir length 

yeD dimensionless reservoir width 

wfD dimensionless fracture width 

s time variable in Laplace domain, dimensionless 

inf

Dp  
dimensionless pseudo pressure pD of infinite-conductivity fracture 

in Laplace domain 

Dp  
dimensionless pseudo pressure pD of finite-conductivity fracture in 

Laplace domain 

( )fDf c  impact function of dimensionless conductivity in Laplace domain 

Dq  
dimensionless flow rate qD of finite-conductivity fracture in Laplace 

domain 

Field variables: 3 

x coordinate in the x direction, m 

xe reservoir length, m 

xw wellbore coordinate in the x direction, m 

y coordinate in the y direction ,m 

ye reservoir width, m 
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yw wellbore coordinate in the y direction, m 

h reservoir thickness, m 

Gsc geological reserves, 10
4
m

3
 

wf fracture width, cm 

yf fracture half-length, m 

pi initial pressure, MPa 

pm reference pressure, MPa 

pwf wellbore pressure, MPa 

pf fracture pressure, MPa 

pavg average pressure, MPa 

pp pseudo-pressure, MPa 

qg gas flow rate, 10
4
m

3
/d 

qsc standard gas flow rate, 10
4
m

3
/d 

Gp cumulative production, 10
4
m

3
 

Swi initial water saturation, fraction 

kgi initial permeability in the gas reservoir,10
-3

μm
2
 

kfi initial permeability in the fracture,10
-3

μm
2
 

kg gas reservoir permeability, 10
-3

μm
2
 

kf fracture permeability, 10
-3

μm
2
 

 porosity, fraction 

Bg formation volume factor, m
3
/ m

3
 

cgi initial gas compressibility, MPa
-1

 

cg gas compressibility, MPa
-1

 

cti initial total compressibility, MPa
-1

 

ct total compressibility, MPa
-1

 

μgi initial gas viscosity, mPa·s 

μg gas viscosity, mPa·s 

Zi initial gas compressibility factor, fraction 
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Z gas compressibility factor, fraction 

rg specific gravity, fraction 

T temperature, K 

γ stress-sensitive coefficient, dimensionless 

β pseudo-time factor, dimensionless 

t time, day 

αp coefficient, 3.6×24×2π×10
-7

 

αt coefficient, 3.6×24×10
-3

 

Special subscripts: 1 

D dimensionless 

g gas property 

f fracture property 

i initial condition 

sc standard condition 

w wellbore property 

inf infinite condition 
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Appendix A-Derivation of the model 1 

The analytical model for the stress-sensitive gas reservoir can be derived based on 2 

the solution for the governing equation seepage in porous media. The equation that 3 

governs the flow is 4 

( ) ( ) (1 ) ( )

( ) ( ) ( ) ( ) ( )

g g wi g

gi g gi g t gi

k p k p S c pp p p p p p

x k p Z p x y k p Z p y k Z p t



  

          
      

            
5 

                  (A-1) 6 

The initial condition is 7 

( , ,0) ip x y p                                                    (A-2) 8 

The outer boundaries are assumed to be closed so that: 9 

ep( x , y,t )p(0, y,t )
=0

x x




 
； ep( x, y ,t )p( x,0,t )

0
y y


 

 
                (A-3) 10 

The inner boundary condition for constant flow rate is given by 11 

( ) ( )( , , )

( ) ( )

f

f

y

g g iw sc

gi g p gi sc scy

k p q t Tp x y t pp
dy

k p Z p x k h Z T 








                       (A-4) 12 

The inner boundary condition for constant bottom-hole pressure is given by 13 

 , ,w wfp x y t p                                                   (A-5) 14 

Substituting the pseudo-pressure function into equation the diffusivity equation 15 

(A-1), considering flow of a real gas through a stress sensitive formation can be 16 

expressed as follows:  17 

2 2

2 2

( ) ( ) (1 ) ( ) ( ) ( )

( )

p p wi g g p

t g

p p p p S p c p p p

x y k p t

 



   
 

  
                     (A-6) 18 

Since the diffusion coefficient on the right side is a function of pressure, and the 19 

governing equation is still non-linear. The traditional method is to approximate it at a 20 

constant, which will produce a large error in the pseudo-steady state. In this paper, 21 

permeability variation is incorporated into the pseudo-functions approach—an approach 22 

recently proposed for analyzing unsteady state flow of natural gas reservoirs by 23 

modifying the definition of pseudo-time factor. Substituting the pseudo-time factor 24 
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function into the diffusivity equation (A-6), the governing equations can be simplified 1 

as follows: 2 

2 2

2 2

( ) ( ) (1 ) ( )p p wi gi gi p

t gi

p p p p S c p p

x y k t

 

 

   
 

  
                          (A-7) 3 

Correspondingly, the boundary conditions are 4 

( , ,0)=0pp x y                                                    (A-8) 5 

(0, , ) ( , , )
=0

p p ep y t p x y t

x x

  


 
；

( ,0, ) ( , , )
0

p p ep x t p x y t

y y

  
 

 
       (A-9) 6 

( , , ) ( )f

f

y

p w g i sc

p sc scy

p x y t q t T p
dy

x h Z T

 










                                (A-10) 7 

( , , )= ( )p w p wfp x y t p p                                            (A-11) 8 

Eq. (A-7) has been turned into a formal linear equation, the same as the form of 9 

"fluid seepage model", though the existence of pseudo-time factor β(t) in the right end 10 

of the differential equation, we can obtain the analytical solution. 11 

By use of the definition of the dimensionless variables in the Table 2, Eqs. (A-7)- 12 

(A-11) can be written as Eqs. (9) - (13) in Section 2.3 of this article. 13 

Appendix B-Detail the solution in Laplacian space 14 

Gringarten and Ramey (1973) exploited Newman's product method by noting that 15 

instantaneous Green’s and source functions for multidimensional flows through porous 16 

media can be constructed as a product of the respective 1D functions.  17 

The vertical fractured well in a closed, rectangular reservoir is parallel to the y axis. 18 

In this case, the pressure distribution can be obtained by considering the intersection of 19 

a plane source in the x direction and slab source in the y direction in a closed linear 20 

reservoir. The source functions are respectively given by 21 
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Symbolically, the instantaneous source function for the vertical fractured well may 1 

be written as  2 
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Eq. (B-3) is a convolution (or superposition) integral and its Laplace transform 4 

with respect to time, is given by 5 

    
2

, ,
DD x D D yfD D D

eD eD

sp L S x S y
x y


                               (B-4) 6 

For convenience, we assume that  7 

   = , ,
Dx D D yfD D DV S x S y                                         (B-5) 8 

Inserting Eqs. (B-1) and (B-2) into Eq. (B-5), we obtain 9 
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Taking the Laplace transforms of both sides of Eq. (B-6), we obtain 11 
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To obtain the Laplace transform of functions, the following relation should be 13 

useful: 14 
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Simplifying Eq. (B-7) further gives 3 
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where 
2 2 2 , 0,1,2,...,n eDs n x n                                (B-12) 6 

Here we obtain the pressure distribution of the vertical fractured well in Laplace 7 

domain 8 
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