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Abstract. We prove that the autonomous norm on the group of
compactly supported Hamiltonian diffeomorphisms of the standard
R2n is bounded.

Let (M,ω) be a symplectic manifold and let Ham(M,ω) be the group
of compactly supported Hamiltonian diffeomorphisms of (M,ω). Re-
call that a Hamiltonian diffeomorphism f is the time-one map of the
flow generated by the vector field XFt defined by ω(XFt ,−) = dFt.
Here F : M × S1 → R is a smooth compactly supported function and
F (x, t) = Ft(x) (see [9, Section 5.1] for details). The function F is
called a Hamiltonian of f . If F does not depend on time then f is
called autonomous. It is known that every Hamiltonian diffeomor-
phism is a product of autonomous ones [3]. The autonomous norm on
Ham(M,ω) is defined by:

∥f∥ = min{k ∈ N | f = a1 · · · ak, where ai is autonomous}.
It is a conjugation invariant norm and is known to be unbounded on
the group of compactly supported Hamiltonian diffeomorphisms of an
oriented surface of finite area [2, 4, 3, 6].

This paper is concerned with the group Ham(R2n) of compactly sup-
ported Hamiltonian diffeomorphisms of the Euclidean space equipped
with the standard symplectic form. We prove the following result.

Theorem. The diameter of the autonomous norm on Ham (R2n) is
bounded above by 3.

Proof. Let f ∈ Ham (R2n). Let f = am · · · a1, where ai ∈ Ham (R2n)
are autonomous diffeomorphisms with compactly supported Hamilton-
ian functions Fi : R

2n → R. Let B(r) be the Euclidean ball centered
at the origin, of radius r > 0 large enough so that it contains the union
of the supports of the functions Fi.
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Lemma. There exists an autonomous diffeomorphism h ∈ Ham (R2n)
such that hi(B(r)) ∩ hj(B(r)) = ∅ for 0 ≤ i ̸= j ≤ m.

The statement of the lemma means that h displaces the ball B(r) m
times. It follows from [5, Lemma 2.6] that there exists g ∈ Ham (R2n)
such that the following equality holds:

f = am · · · a1 = [h, g]ah1a
h2

2 · · · ahm

m ,

where ah
i

i = hiaih
−i and h is the diffeomorphism from the Lemma.

Observe that, since the supports of Fi ◦ hi are pairwise disjoint for i ∈
{1, . . . ,m}, we obtain that the composition ah1a

h2

2 · · · ahm

m is autonomous
with the Hamiltonian function equal to

F1 ◦ h+ F2 ◦ h2 + · · ·+ Fm ◦ hm.

Since the commutator [h, g] = h·(h−1)g is a product of two autonomous
diffeomorphisms we obtain that f is a product of three autonomous
diffeomorphisms. �

Proof of the Lemma. Let H1 : R → R be a smooth function satisfying
the following conditions:

(1) H1(y) = 0 for |y| > r + 1

(2) H ′
1(y) = r for |y| ≤ r.

Let H(x1, y1, . . . , xn, yn) = H1(y1). We have that dH = rdx1 and that
the induced Hamiltonian vector field X is equal to r ∂

∂x1
. Thus the

induced Hamiltonian diffeomorphism displaces the ball B(r) as many
times as we like. Taking an appropriate cut off function we obtain the
required compactly supported diffeomorphism h. �

Remarks. If f in the Theorem is contained in the kernel of the Cal-
abi homomorphism (see Section 8.B of [1] for a definition) then the
same argument shows that it is a product of up to three autonomous
diffeomorphisms with trivial Calabi invariant.

It is known that the Hofer norm on Ham (R2n) is unbounded [7]. The
kernel of the Calabi homomorphism does not admit nontrivial quasi-
morphisms, however, it is stably unbounded [8].

It is not difficult to see that the diameter of the autonomous norm on
Ham (R2n) is at least 2. To the best of our knowledge it is an open
question whether there exists a Hamiltonian diffeomorphism of R2n of
autonomous norm equal to 3.
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