
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2016; 00:1–26
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/nme

Level-set topology optimization with many linear buckling
constraints using an efficient and robust eigensolver

Peter D. Dunning1∗, Evgueni Ovtchinnikov2, Jennifer Scott2, H. Alicia Kim3

1School of Engineering, University of Aberdeen, Aberdeen AB24 3UE, UK
2Scientific Computing Department, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX,

Oxfordshire, UK
3Structural Engineering Department, University of California, San Diego, USA

SUMMARY

Linear buckling constraints are important in structural topology optimization for obtaining designs that can
support the required loads without failure. During the optimization process the critical buckling eigenmode
can change; this poses a challenge to gradient based optimization and can require the computation of a
large number of linear buckling eigenmodes. This is potentially both computationally difficult to achieve as
well as prohibitively expensive. In this paper, we motivate the need for a large number of linear buckling
modes and show how several features of the Block Jacobi Conjugate Gradient (BJCG) eigenvalue method,
including optimal shift estimates, the reuse of eigenvectors, adaptive eigenvector tolerances and multiple
shifts, can be used to efficiently and robustly compute a large number of buckling eigenmodes.
This paper also introduces linear buckling constraints for level-set topology optimization. In our approach
the velocity function is defined as a weighted sum of the shape sensitivities for the objective and constraint
functions. The weights are found by solving an optimization sub-problem to reduce the mass, whilst
maintaining feasibility of the buckling constraints. The effectiveness of this approach in combination with
the BJCG method is demonstrated using a 3D optimization problem. Copyright c© 2016 John Wiley & Sons,
Ltd.

Received . . .

KEY WORDS: Topology optimization; buckling constraints; level-set method; block conjugate gradient
eigensolver; sparse direct linear solver

1. INTRODUCTION

The objective of optimum structural design is often to find the lightest structure that can support the
loading conditions without failure. There has been extensive research into developing and applying
optimization methods to structural design problems [1, 2]. However, structures that are optimized
for minimum weight often consist of beam-like members or thin panels. If these types of structure
are subject to compressive loads, then they may be prone to buckling, which ultimately limits the
capacity of the structure to carry load. Therefore, it is important to include buckling as a constraint
in structural optimization problems.

Topology optimization is one approach to design efficient structures that has received significant
attention [3, 4]. The idea is to open up the design space such that sizing, shape and connectivity of
the structure are considered simultaneously, leading to the greatest design freedom.

Buckling has been considered in both truss and continuum type topology optimization. In truss
type topology optimization, the design space typically consists of a fixed set of nodes connected

∗Correspondence to: School of Engineering, University of Aberdeen, Aberdeen AB24 3UE, UK.
E-mail: peter.dunning@abdn.ac.uk

Copyright c© 2016 John Wiley & Sons, Ltd.
Prepared using nmeauth.cls [Version: 2010/05/13 v3.00]

2 P. D. DUNNING ET AL.

by a large number of pin-jointed truss members, a so-called ground structure. The design variables
are usually member cross-sections, that can go to zero to allow a change in topology. Local Euler
buckling constraints can be specified on each member, although a modification of the design space
is often required to handle discontinuities when member areas go to zero [5]. However, the local
constraints may not prevent global buckling of the structure, because of the presence of hinges
[6]. Thus, a global buckling constraint is also included [7]. For continuum structures, it is difficult
to identify discrete structural members. Therefore, specific local buckling constraints are not used
[8]. Instead, a linear buckling analysis [8, 9, 10, 11] or a geometrically nonlinear analysis [8, 12]
is used to compute the critical buckling load. Buckling constraints have been used with several
continuum topology optimization methods including Simple Isotropic Material with Penalization
(SIMP) [12], Evolutionary Structural Optimization (ESO) [10] and a nodal design variable method
[8]. The level-set method is another approach to continuum topology optimization that has received
significant attention in that last 10 years [3, 4, 13, 14]. However, to the authors knowledge, buckling
constraints have not been included in level-set based topology optimization.

This paper is concerned with the design of continuum structures, where the critical load factor
is computed using a linear buckling analysis. The analysis is performed in two steps [15]. The first
solves a linear elastic problem using standard Finite Element Analysis (FEA) to obtain displacement
and stress values for the given loading. A generalized eigenvalue analysis is then performed, where
the eigenvalues are the buckling load factors and the eigenvectors correspond to the buckling mode
shapes. This is sometimes known as the buckling eigenvalue problem.

A number of key issues have been identified that can affect the convergence of optimization
problems involving linear buckling. One issue relates to the computation of buckling load factor
derivatives. The geometric or stress stiffness matrix used in the buckling eigenvalue problem is
dependent on the displacements from the linear elastic analysis, which are in turn dependent on the
design variables. However, this contribution to the gradient calculation is sometimes ignored for
simplicity, resulting in some error in the computed gradients [16]. Another issue is that repeated
eigenvalues are only directionally differentiable [17]. Ascent directions in the presence of repeated
eigenvalues can be computed by introducing additional requirements that the directional derivative
of all repeated eigenvalues must be positive [17, 18]. Non-differentiability can be avoided if the
problem is solved using semi-definite programming methods [7], although the addition of matrix
constraints significantly increases the computational cost. Bruyneel et al [16] also discuss how the
choice of optimizer can affect the convergence of buckling constrained problems and show that
the use of information from two consecutive iterations to approximate the curvature produces an
envelope of the responses and helps find a feasible solution. Moreover, methods that use an internal
move-limit strategy can improve convergence.

Another key issue is the switching of the critical buckling mode during optimization. A constraint
is usually posed that the lowest buckling load factor must be greater than one. However, the buckling
mode with the lowest load factor may change during optimization. This introduces a discontinuity,
as the mode shape and gradient information of the lowest mode will change, leading to slow
convergence, or even a failure to converge. Using a greater number of modes provides the optimizer
with more comprehensive information about the design space and can improve the convergence.
Bruyneel et al [16] showed for one example that increasing the number of buckling mode constraints
from 12 to 100 reduced the number of iterations to convergence from 44 to 6. For realistic structures
with complex topological configurations, such as 3D aircraft wings [19], even more buckling modes
may be required.

Topology optimization methods often use a fictitious weak material to model void regions in the
design space. The weak material has stiffness and density values several orders of magnitude than
the real material. This leads to large differences in the diagonal entries of the system matrices (such
as the stiffness matrix) large condition numbers and ill-conditioning [20]. Furthermore, topology
optimization methods that use the extended finite element method to model a material-void interface
can produce ill-conditioned matrices if element integration areas are small [21].

The efficient computation of a large number of buckling load factors and mode shapes for
large-scale topology optimization problems presents a significant computational challenge, as the

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
Prepared using nmeauth.cls DOI: 10.1002/nme

BUCKLING CONSTRAINED TOPOLOGY OPTIMIZATION 3

solution of a sequence of generalized eigenvalue problems with ill-conditioned matrices is required.
Currently, the most widely used solvers for such problems, such as ARPACK [22] (which is used by
the MATLAB [23] function eigs) and the F12 package from the NAG library [24], employ Krylov
subspace methods with a shift-and-invert technique. When used to solve a buckling problem, the
shift-invert technique requires the user to solve a sequence of large sparse linear systems of the
form (A− σB)u = f , where A and B are real symmetric ill-conditioned matrices. At present, such
systems can only be reliably solved using a sparse direct solver, such as the HSL MA97 package
[25] from the HSL mathematical software library [26] or the SPRAL SSIDS package from the
SPRAL library [27]. The solution involves two steps: the factorization of A− σB, which must be
done once for each shift σ, and the repeated solution of linear systems using the matrix factorization.
Although the second step is normally less computationally expensive than the first, it may account
for a substantial proportion of the eigenvalue computation time if it is performed a large number of
times, for example if a large number of eigenvalues are required.

For a fixed shift σ, Krylov solvers are theoretically optimal, as they, in a sense, require the
minimal possible number of shifted solves. For this reason, ARPACK remains a highly competitive
eigensolver more than two decades after its introduction. However, there are certain limitations
that hinder its efficient use. Firstly, even though a Krylov solver can compute several eigenvalues
simultaneously, the shifted systems are solved one after another, limiting the scope for parallel
computation. Further, Krylov solvers generally cannot reliably compute repeated eigenvalues, and
may miss eigenvalues that are close to each other. This is of particular concern to a linear buckling
constrained problem, where the minimum eigenvalue must be greater than one and the optimal
design may have several eigenvalues close to one. If a critical eigenvalue close to one is missed
then the optimizer does not receive gradient information for the eigenvalue and may change the
structure such that the eigenvalue becomes infeasible. This can slow down convergence, as the
missed mode oscillates between feasible and infeasible. Also, if a critical eigenvalue is missed
throughout the optimization, then the final design may not be feasible if the missed eigenvalue is
less than one. Both slow convergence and infeasible final designs are undesirable in optimization and
thus a solver that can guarantee that eigenvalues are not missed is preferred. Part of the reason for
ARPACK’s problems with nearly repeated eigenvalues is the fact that ARPACK counts eigenvalues
as they converge. The speed of convergence is determined by the relative separation of the computed
eigenvalue from the rest of the spectrum. As a result, well separated eigenvalues further down the
spectrum that are not wanted often converge before wanted eigenvalues. In practice, this implies
that the user must force the convergence to all wanted eigenvalues by using machine accuracy error
tolerance, even if such accuracy is not required, and compute more eigenvalues than are needed.

In this paper, we opt for an alternative approach that exploits two time-tested techniques:
subspace, or block, iterations and the conjugate gradient (CG) method. The full details will be given
in Section 3: here we briefly summarize the advantages of such an approach. The block iterative
nature of the proposed eigensolver ensures that all wanted eigenvalues are computed and allows the
efficient exploitation of parallel capabilities of modern computer architectures, both via the use of
highly optimized Level 3 BLAS subroutines and the use of OpenMP for simultaneous shifted solves.
We need to solve several increasingly close eigenvalue problems and our eigensolver enables us to
exploit the previously computed eigenvalues and eigenvectors, significantly improving performance.
The reliability of block iterations allows the use of a relaxed error tolerance at early outer iterations
and a reduced tolerance as the iterations proceed. Finally, the use of CG delivers convergence similar
to that of a block Krylov method (the two are mathematically equivalent when applied to a linear
system with a matrix right-hand side [28]) at a considerable reduction in the computational cost.
We note that the block CG approach has been successfully used by several authors in combination
with preconditioning techniques [29, 30]. However, their experiments have been performed using
research software that is not be of library quality in terms of robustness, efficiency and reliability.
Our new eigensolver package SPRAL SSMFE, that implements the algorithm described in Section
3, is a fuly supported and maintained high-quality implementation that is included within the SPRAL
software library [27].

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
Prepared using nmeauth.cls DOI: 10.1002/nme

4 P. D. DUNNING ET AL.

The novel contributions of this paper are first, the demonstration, using a clear example, that a
large number of eigenmodes in linear buckling constrained optimization may be required for stable
convergence, second, the efficient and robust computation of such modes using the block Jacobi
CG (BJCG) eigenvalue solver SPRAL SSMFE is investigated, and third, a method for including
linear buckling constraints in level-set topology optimization is introduced. The paper is organized
as follows. Section 2 introduces the buckling constrained minimization of mass problem and the
linear buckling eigenvalue problem. The need for computing a large number of buckling modes
is highlighted using a simple example. The BJCG eigenvalue solver is introduced and discussed
in Section 3 and its performance is investigated in Section 4. The level-set method with buckling
constraints is detailed in Section 5. A 3D topology optimization example is presented in Section 6,
followed by conclusions in Section 7.

2. LINEAR BUCKLING OPTIMIZATION

2.1. Buckling constrained problem

The optimization problem studied in this paper is to minimize the mass of a structure, subject to a
constraint that the lowest positive buckling load factor is greater than or equal to one:

min
x

M(x)

s.t. K(x)u = f
[K(x) + αKs(x, u)]v = 0
α1 ≥ 1,

(1)

where x is a vector of design variables, K the structural stiffness matrix, u the displacement vector,
f the force vector,Ks the stress stiffness matrix, α a buckling load factor, with α1 the lowest positive
factor, and v a buckling mode shape eigenvector. The first two constraints comprise a linear static
equation, followed by a buckling eigenvalue problem. Additional constraints on the design variables,
x, may also be included. Note that K is symmetric positive definite and Ks is symmetric and, in
general, indefinite. Both matrices are also usually sparse.

Following the discussion in the introduction, convergence can be improved by including multiple
buckling load factors and associated modes in the problem formulation. Thus, the optimization
problem becomes:

min
x

M(x)

s.t. K(x)u = f
[K(x) + αKs(x, u)]v = 0
αm ≥ αm−1 ≥ · · · ≥ α1 ≥ 1,

(2)

where m is the number of load factors considered. Note that a buckling eigenvalue problem must be
solved each time the design is updated.

2.2. Illustrative example

A simple example is used to illustrate the advantage of including more modes in a buckling
constrained optimization problem. A 2D simply supported beam, subject to compressive load, is
reinforced with vertical springs, as shown in Figure 1a. The beam is discretized using 60 beam
elements, that have two nodes and three degrees of freedom per node (two translations and a
rotation). The axial stiffness is modelled as a simple bar and the bending stiffness is modelled
as an Euler-Bernoulli beam [15]. The beam has a circular cross section with a diameter of 0.1m and
Young’s modulus of 103. A spring is attached to each free node of the discretized beam.

The optimization problem is of the form (2); the stiffness values of the reinforcing springs are the
design variables x and their sum is the objective function M(x). Note that for this simple example,
u and Ks do not depend on the design variables, as the beam is loaded in pure compression and the
springs do not affect axial stiffness. The compressive force, f , is set to six times the Euler buckling

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
Prepared using nmeauth.cls DOI: 10.1002/nme

BUCKLING CONSTRAINED TOPOLOGY OPTIMIZATION 5

f 1.0 m (a)

(b) α1

α2

Figure 1. Beam buckling example: a) overview, b) first two buckling modes.

load of the unreinforced beam. The optimization problem is solved using the Sequential Quadratic
Programming (SQP) method [31, 32] implemented in the package NLopt [33]

The beam reinforcement problem is first solved using a single mode (m = 1) and derivatives of
the lowest positive eigenvalue with respect to the design variables are passed to the optimizer. The
load factors associated with the lowest two buckling modes are tracked during optimization using
an eigenvector orthogonality correlation method [34]. This procedure uses dot products between
the current and previous eigenvectors to match eigenvalues with the correct modes. The first two
buckling modes of the unreinforced beam are shown in Figure 1b. The convergence history of the
objective function and load factors are shown in Figure 2 and the solution is shown in Figure 3a.
During the first 20 iterations there is a switching of the critical mode every 2 or 3 iterations, which
severely slows down convergence. This is because only the derivatives of the current lowest load
factor are computed at each iteration and design changes that increase the first load factor often
decrease the second, although the change in the second load factor is two orders of magnitude
smaller. Despite the switching, the optimizer eventually increases both load factors and a converged
feasible design is obtained in 66 iterations.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 25 50 75

L
oa

d
fa

ct
or

O
bj

ec
tiv

e
va

lu
e

Iteration

Objective
Mode 1
Mode 2
α1
α2

Figure 2. Convergence history using only the first buckling mode.

(a)

(b)

0 1 x :

Figure 3. Optimal spring stiffness values for the beam reinforcement problem using a single mode with a)
no tracking, b) tracking.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
Prepared using nmeauth.cls DOI: 10.1002/nme

6 P. D. DUNNING ET AL.

One method for handling mode switching during optimization is to use mode tracking and
compute derivatives for the same mode at every iteration. Using this approach, the beam
reinforcement problem is again solved using a single mode (see Figure 3b). The convergence history
is shown in Figure 4; 30 iterations are required. However, the lowest buckling load factor of the final
design corresponds to the second buckling mode and is less than one and the design is infeasible.
This occurs because we did not consider the second mode, which becomes critical.

0.0

0.2

0.4

0.6

0.8

1.0

0.5

0.7

0.9

1.1

1.3

1.5

0 10 20 30

L
oa

d
fa

ct
or

O
bj

ec
tiv

e
va

lu
e

Iteration

Objective
Mode 1
Mode 2
α1
α2

Figure 4. Convergence history using mode tracking and the first buckling mode.

This example illustrates that if we only use derivative information from the current lowest load
factor, convergence may be slow while if we use mode tracking and derivative information from
a single mode, an infeasible solution may be obtained. This suggests that more modes must be
included. The convergence history using two modes (m = 2) and no mode tracking is shown in
Figure 5. Convergence is achieved in 15 iterations and both the first two load factors are equal to
one. The same solution is obtained when using mode tracking with the first two modes, as mode
switching does not occur in this simple example.

0.0

0.2

0.4

0.6

0.8

1.0

0.5

0.8

1.1

1.4

1.7

2.0

2.3

0 6 12 18

L
oa

d
fa

ct
or

O
bj

ec
tiv

e
va

lu
e

Iteration

Objective
Mode 1
Mode 2
α1
α2

Figure 5. Convergence history using the lowest two buckling modes.

This illustrates that by using more buckling modes during optimization the number of iterations
to obtain a feasible solution can be significantly reduced. For more complicated structures it may be
necessary to use tens or even hundreds of modes to find a feasible design or to improve convergence.
Theoretically, we need to include enough modes such that when switching occurs the most critical

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
Prepared using nmeauth.cls DOI: 10.1002/nme

BUCKLING CONSTRAINED TOPOLOGY OPTIMIZATION 7

(lowest load factor) mode was included in the previous iteration. This ensures that the derivative
information for the most critical mode is always included in the optimization. This is important
because an optimizer can only make decisions on how to update the design from the information
supplied. If critical derivative information is missing, then a gradient based optimizer may update
the design such that it is further from satisfying the optimality conditions, leading to slow, or even
failed convergence.

To determine a priori the required number of modes to ensure derivative information for the
most critical mode is always included in the previous iteration throughout the optimization is not
straightforward and beyond the scope of this paper. For now, we simply choose a number of buckling
constraints, perform the optimization, then determine a posteriori if mode switching caused slow
convergence. Ideally this would be done by computing a very large number of modes each iteration
and then determining the order of the current eigenvalues with respect to their order in the previous
iteration using a mode tracking method, as was done for the simple example in this section. For
larger, more complex 3D examples this approach is not computationally feasible. Instead, a simpler
approach is used whereby the same problem is solved using an increasing number of modes and the
convergence histories compared. If significantly increasing the number of modes (such as doubling)
does not reduce the number and magnitude of observed oscillations in the convergence of the
lowest buckling load factor, then it is reasonable to assume that enough modes are included to
avoid convergence issues resulting from mode switching.

3. SOLVING THE GENERALIZED EIGENVALUE PROBLEM

As we have already observed, at the heart of the buckling constrained optimization problem lies
a generalized eigenvalue problem that must be solved each time the design is updated. Moreover
a large number of buckling modes may be required to reduce oscillations during convergence and
obtain feasible designs. In Section 3.1, we introduce the block Jacobi conjugate gradient algorithm
(BJCG) for solving a generalized eigenvalue problem and then, in Section 3.2, we discuss how
this algorithm may be combined with shift-invert to efficiently and robustly solve the buckling
eigenvalue problem.

3.1. BJCG algorithm

We start with the problem of computing m extreme (leftmost and/or rightmost) eigenvalues and the
corresponding eigenvectors of the generalized eigenvalue problem

ABv = λv, (3)

where A and B are real sparse symmetric n× n matrices with B positive definite and m� n. The
main features of the BJCG algorithm are its high computational intensity and inherent parallelism:
the bulk of the computation is taken by dense matrix-matrix products and the simultaneous
computation of sparse matrix-vector products Avi and Bvi for a set of vectors vi. These features
facilitate efficient exploitation of highly optimized matrix-matrix multiplication subroutines from
the BLAS library and modern multicore computer architectures. The BJCG algorithm is based on
the block conjugate gradient method of [35, 36, 37] and is implemented as the software package
SPRAL SSMFE, which is available within the SPRAL mathematical software library [27].

In what follows, [u1 · · · uk] denotes the matrix with columns u1, . . . , uk, and for U = [u1 · · · uk]
and W = [w1 · · · wl] we denote [U W] = [u1 · · · uk w1 · · · wl]. Alongside the standard notation
(u,w) for the Euclidean scalar product of two vectors u and w, we also use the following ‘energy
scalar product’ and ‘energy norm’ notation: (u,w)H = (Hu,w) and ‖u‖2H = (Hu, u), where H is
positive definite or semi-definite. If (u,w)H = 0, then we say that u and w are H-orthogonal, and if
‖u‖H = 1, then we say that u is H-normalized.

The BJCG algorithm for (3) essentially performs simultaneous optimization (minimization or
maximization or both depending on which eigenvalues are of interest) of the Rayleigh quotient

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
Prepared using nmeauth.cls DOI: 10.1002/nme

8 P. D. DUNNING ET AL.

functional
ρ(u) =

(BABv, v)

(Bv, v)
=

(ABv, v)B
‖v‖B

(4)

on sets ofB-orthogonal vectors by a block version of the conjugate gradient (CG) method. Focusing
for simplicity on the minimization case, we observe that the CG method minimizes a functional ψ(u)
by iterating two vectors, the current approximation vi to the minimum point v∗ = arg minψ(v) and
the current search direction ui along which the next approximation vi+1 is sought in the following
manner:

vi+1 = vi − τiui, (5)
ui+1 = ∇ψ(vi+1) + σiu

i. (6)

Step (5) finds the minimum of ψ(v) in the direction set by ui, i.e. τi = arg minψi(τ), where
ψi(τ) = ψ(vi − τui). Step (6), referred to as the conjugation of search directions, computes the new
search direction ui+1 based on the gradient of ψ(v) at v = vi+1 and the previous search direction ui

(not present at the first iteration). The role of the scalar parameter σi is to make the search direction
closer to the ideal one, the error direction vi − v∗, which would result in an immediate convergence
on the next iteration. In the case of a quadratic functional ψ(v) = (Av, v)− 2(f, v) with a symmetric
positive definite A, the minimum of which solves the linear system Av = f , it is possible to choose
σi in such a way that all vi are optimal, i.e. each ψ(vi) is the smallest possible value achievable
by iterations (5)–(6). In the non-quadratic case, such optimality is generally not achievable. In [35]
various suggestions for σi have been studied thoroughly to arrive at the conclusion that most of them
are asymptotically equivalent and make the value ψ(vi+2) ‘nearly’ the smallest possible for a given
vi+1 and ui. It should be noted that the value of σi that makes ψ(vi+2) the smallest possible can be
computed by finding the minimum of ψ(v) among all linear combinations of vi+1, ∇ψ(vi+1) and
ui [30, 38], however, this locally optimal version of CG is numerically unstable [37].

When computing several eigenpairs by simultaneous optimization of the Rayleigh quotient (4), it
is necessary to maintain the B-orthogonality of approximate eigenvectors vij lest they converge to
the same eigenvector corresponding to an extreme eigenvalue. One way to achieve this, which has
an additional benefit of improved convergence, is to employ the Rayleigh–Ritz procedure. Given a
set of vectors z1, . . . , zk, k < n, this procedure solves the generalized eigenvalue problem

ZTBABZv̂ = λ̂ZTBZv̂, (7)

where Z = [z1 · · · zk]. The vectors ṽj = Zv̂j , where v̂j are the eigenvectors of (7), are called Ritz
vectors, and the corresponding eigenvalues λ̂j = ρ(ṽj) are called Ritz values. In what follows, we
refer to zi as the basis vectors of the Rayleigh–Ritz procedure, and we use the following ‘function
call’ notation for this procedure: for a given Z = [z1 · · · zk], Y = RayleighRitz(Z) is the matrix
whose columns are B-normalized Ritz vectors. The Ritz vectors are B-orthogonal by construction,
and if there exists a linear combination of the basis vectors that approximates an eigenvector of (3),
then there exists a Ritz vector that approximates this eigenvector to a comparable accuracy [39].

The above two ingredients, CG and the Rayleigh–Ritz procedure, are blended in the BJCG
algorithm in the following way. The line search step (5) is replaced by the Rayleigh–Ritz procedure
that uses all approximate eigenvectors vij and all search directions uij as the basis vectors, and a
matrix analogue of (6) is used for conjugation, which after simple manipulations yields the iterative
scheme

[V i+1 W i+1] = RayleighRitz(V i, U i), (8)
U i+1 = Ri+1 +W i+1Si. (9)

In (8), the columns of V i+1 approximate the eigenvectors of interest, i.e. if we are computing
ml ≥ 0 leftmost and mr ≥ 0 rightmost eigenvalues and corresponding eigenvectors, then the
m = ml +mr columns of V i+1 correspond to the ml leftmost and mr rightmost Ritz values. The
rest of the Ritz vectors are the columns of W i+1, and are used as the previous search directions

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
Prepared using nmeauth.cls DOI: 10.1002/nme

BUCKLING CONSTRAINED TOPOLOGY OPTIMIZATION 9

for conjugation (this is shown by [36] to be mathematically equivalent to using U i in (9) but
simplifies the calculation of the optimal conjugation matrix Si). In (9),Ri+1 = [ri+1

1 · · · ri+1
m], where

ri+1
j = ABvi+1

j − ρ(vi+1
j)vi+1

j are the residual vectors for vi+1
j , which are collinear to the gradients

of ρ in B-scalar product. For the elements σpq of the matrix Si the following formulae were derived
in [36] that ensure the asymptotic local optimality of the new search directions:

σpq = −
(ri+1
q , BABwi+1

p − ρ(vi+1
q)Bwi+1

p)

ρ(wi+1
p)− ρ(vi+1

q)
. (10)

While the columns of V i are B-orthonormal, some of the columns of U i may be nearly linearly
dependent on the rest of the basis vectors. Such vectors are removed from the set of basis vectors to
avoid numerical instability caused by the ill-conditioned matrix ZTBZ in (7). The number of Ritz
vectors then reduces accordingly, and Si has less rows than columns.

We observe that the most costly computational steps of the described algorithm in terms of the
number of arithmetic operations are:

1. The computation of sparse-by-dense matrix products V iB = BV i,AV iB , U iB = BU i andAU iB .
2. The computation of dense matrix-matrix products ZTBZA and ZTZB with Z = [V i U i],
ZA = AZB and ZB = BZ.

3. The computation of V i+1 and W i+1 from the eigenvectors of (7) by dense matrix-matrix
products.

4. The computation of sparse-by-dense matrix products W i+1
B = BW i+1 and AW i+1

B .
5. The computation of a dense matrix-matrix product W i+1Si.

(The A- and B-images of V i+1 and W i+1 can be alternatively computed from those of V i and
U i, which reduces the number of multiplications by A and B threefold at the cost of extra storage
[30].) The computational cost of the rest of the algorithm is negligible if m� n. We observe that
steps 2, 3 and 5 require dense matrix-matrix multiplications that can be efficiently performed by
highly optimized BLAS subroutines, e.g. those provided by Intel MKL library, which also has highly
optimized subroutines for sparse-by-dense matrix multiplications performed on steps 1 and 4.

3.2. Application of BJCG to the buckling eigenvalue problem

In this section, we show how we use the BJCG algorithm to compute buckling modes, i.e.
eigenvalues αi and eigenvectors vi of the generalised eigenvalue problem

(K + αKs)v = 0, (11)

where K and Ks are n× n real sparse symmetric matrices, K is positive definite and Ks is
indefinite. The eigenvalues of interest lie in the vicinity of 1, notably: any eigenvalues αi that lie in
the interval (0, 1] are required as well as several eigenvalues αi > 1 that are closest to 1, together
with the corresponding eigenvectors. As in the previous section, m denotes the number of wanted
eigenvalues; all eigenvalues are assumed to be enumerated in ascending order.

We observe immediately that (11) can be rewritten as the generalized eigenvalue problem

Ksv = βKv, (12)

where β = −α−1. The BJCG algorithm can be applied to this problem but convergence may be
very slow, as can be seen from the following simplified illustration that extends the informal
discussion of the convergence of block CG given in [30].† Suppose that we start the BJCG
iterations with the initial vectors v0

j = vj , j = 2, . . . ,m and with v0
1 close to v1 and K-orthogonal

to v2, . . . , vm. It can be shown that the BJCG iterations then reduce to single-vector CG iterations

†Rigorous convergence analysis of CG for eigenvalue computation is a very difficult, and virtually all available results
merely state that the convergence of CG is at least as fast as that of steepest descent, whereas in reality the convergence
of CG is much faster and is more adequately portrayed by a conjectured estimate of [30] and those of this section.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
Prepared using nmeauth.cls DOI: 10.1002/nme

10 P. D. DUNNING ET AL.

(5)–(6) for computing the zero eigenvalue of A1 = Ks − β1K, performed in the subspace that is
A1-orthogonal to v2, . . . , vm. Using the comparative convergence analysis techniques developed in
[35], it can be shown that these iterations are asymptotically close to the CG iterations for the system
A1v1 = 0 in that subspace. For the error vi1 − v1, we have ‖vi1 − v1‖2A1

= (A1(vi1 − v1), vi1 − v1) =

(A1v
i
1, v

i
1) = (βi1 − β1)(Kvi1, v

i
1), where βi1 = (Ksv

i
1, v

i
1)/(Kvi1, v

i
1). Therefore, from the standard

CG convergence estimate for ‖vi1 − v1‖A1 we obtain, after dropping asymptotically small terms, an
estimate similar to that conjectured in [30]:

βi1 − β1 .

(√
κ1 − 1
√
κ1 + 1

)2i

(β0
1 − β1), (13)

where κ1 is the ratio of the n-th to (m+ 1)-th eigenvalue of the matrix Ks − β1K (for BJCG, a
similar estimate without square roots is proved in [36]). Since β1 ≈ −1 and K is the discretization
of a partial differential operator, the n-th (i.e. the largest) eigenvalue of Ks − β1K is very large, and
hence the ratio in question is very small, leading to unacceptably slow convergence.

To achieve good convergence, we resort to the shift-invert technique. We pick a value α0 in the
eigenvalue region of interest and rewrite (11) as

(K + α0Ks)
−1Kv = γv, (14)

where
γ =

α

α− α0
. (15)

We observe that (14) is of the form (3) with:

A = (K + α0Ks)
−1, B = K (16)

and hence can be solved by the BJCG algorithm.
To illustrate how the transformation from (11) to (14) improves the convergence, let us assume

for simplicity that α0 = (αm + αm+1)/2. Then the leftmost eigenvalue of (14) is γ1 = αm/(αm −
α0) < 0, the rightmost is γn = αm+1/(αm+1 − α0) > 0, and the number of negative γi is m, i.e.
γm+1 ≥ 0. Just as with (12), the convergence rate for γ1 is determined by the ratio of the n-th to
m+ 1-th eigenvalue of the matrix (K + α0Ks)

−1K − γ1I , where I is the identity matrix, i.e. by
the ratio

κ1 =
γn − γ1

γm+1 − γ1
≤ −γn − γ1

γ1
= 1− γn

γ1
= 1− αm+1

αm

αm − α0

αm+1 − α0
= 1 +

αm+1

αm
≈ 2.

The substitution of this κ1 into (13) with γ1 and its approximations γi1 in place of β1 and βi1 yields

γi1 − γ1 .

(√
2− 1√
2 + 1

)2i

(γ0
1 − γ1) ≈ 0.03i(γ0

1 − γ1).

Thus, just two iterations reduce the eigenvalue error by three orders of magnitude.
When dealing with eigenvalues on both ends of the spectrum simultaneously, it is convenient to

use positive indices for the eigenvalues on the left margin: γ1 ≤ γ2 ≤ · · · , and negative for those on
the right margin: γ−1 ≥ γ−2 ≥ · · · (i.e. γ−j = γn−j+1). Let ml and mr be the number of wanted
eigenvalues of (11) to the left and right of α0 respectively. The same kind of reasoning as we used
for deriving (13) suggests the following estimate for further eigenvalues of (14):

γij − γj .
(√

κj − 1
√
κj + 1

)2i

(γ0
j − γj), (17)

where
κj =

γ−mr−1 − γj
γml+1 − γj

, κ−j =
γ−j − γml+1

γ−j − γ−mr−1
, j > 0. (18)

The estimate (17)–(18) has practical implications, in particular the following one.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
Prepared using nmeauth.cls DOI: 10.1002/nme

BUCKLING CONSTRAINED TOPOLOGY OPTIMIZATION 11

Remark 1
Since the density of the spectrum increases towards γ = 1, for a largemr, the value γ−mr − γ−mr−1

may be very small. Therefore, to avoid very slow convergence to γ−j that are close to γ−mr−1, the
block size m of BJCG should be set to a value that is larger than the actual number of wanted
eigenvalues. The effect of the increased block size can be seen from (18) where, if the block size is
increased by k > 0, one should replace γ−mr−1 with γ−mr−k−1, which reduces both κj and κ−j .
Note that the additional eigenvalues and eigenvectors need not be accurately computed. i.e. the
BJCG iterations should be stopped as soon as γ1, . . . , γml

and γ−1, . . . , γ−mr and corresponding
eigenvectors converge to required accuracy.

We note that the spectral transformation (15) maps the eigenvalues as follows. The eigenvalues
in the interval (0, α0) correspond to all negative γi. The eigenvalues of interest to the right of α0

correspond to the rightmost γi. The rest of the spectrum of (11) corresponds to a huge cluster of γi
around γ = 1. When using BJCG for solving (14), it is very important to set the number of wanted
leftmost eigenvalues ml exactly to the number of negative γi. Setting ml to a larger value will result
in a large number of iterations, as BJCG will try to compute an eigenvalue in the cluster at γ = 1.
For this reason, using an LDLT factorization for solving the shifted system (K + α0Ks)x = y (this
is needed for computing the product Ay (16) in BJCG) is strongly recommended (e.g. the direct
solvers HSL MA97 [25] or SPRAL SSIDS [27] may be used). Recall that an LDLT factorization
of the matrix K + α0Ks consists in finding a unit lower triangular matrix L, a block-diagonal
matrix D with 1× 1 and 2× 2 blocks on the main diagonal and a permutation matrix P such that
PT (K + α0Ks)P = LDLT . By the inertia theorem, the number of eigenvalues to the left and right
of the shift α0 is equal to the number of negative and positive eigenvalues of D, which allows quick
computation of the number of eigenvalues to each side of the shift after. Knowing the number of
eigenvalues to the left of α0 also helps avoid re-computation of the already computed buckling
modes after a new shift.

Remark 2
If the number of wanted buckling modes is very large, or the number of eigenvalues on each side of
the shift α0 are disproportional, multiple shifts should be considered. Note that for each choice of
shift α0, a factorization of K + α0Ks is required. Once the factorization has been performed, the
factors may be used repeatedly for solving any number of systems.

The decision on whether to use more than one shift can be made on the basis of a ‘trial run’,
whereby a portion (e.g. a quarter) of the wanted buckling modes is computed, and the time taken
by BJCG is extrapolated and compared with the factorization time. This can also be used to select
a better shift, based on the number of eigenvalues each side of the initial shift. If no new shift is
deemed to be necessary, the remaining buckling modes can be computed by BJCG in the subspace
K-orthogonal to the computed eigenvectors.

In this paper, the shift-invert solves are performed using a sparse direct linear solver. Alternatively,
an iterative method could be used. Such methods have the potential advantage of requiring much
less memory and so can be used to solve very large linear systems of equations. However, in
general, to achieve an acceptable rate of convergence, a preconditioner is required; unfortunately,
designing an efficient preconditioner is highly problem dependent and we are not aware of
such preconditioners for linear buckling problems. Note that if we were able to obtain such a
preconditioner, it would be unnecessary to solve the shifted system using a preconditioned iterative
method since SPRAL SSMFE can employ preconditioning directly, a feature not shared by Krylov
solvers, by essentially applying BJCG iterations to the problem T (K + αKs)v = 0, where T is
the preconditioner, without first converting to the shifted system (14). The design of an efficient
preconditioner is beyond the scope of this paper and is a topic for future research.

3.3. Application to topology optimization

As we have seen in §2, topology optimization algorithms require the solution of a sequence of
buckling eigenvalue problems. As the outer (optimization) iterations progress, these problems

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
Prepared using nmeauth.cls DOI: 10.1002/nme

12 P. D. DUNNING ET AL.

become ever closer to each other, which suggests using data from the previous outer iteration for
the acceleration of BJCG convergence on the next outer iteration

An obvious approach is to use the buckling modes from the previous outer iteration as the
initial approximations v0

1 , . . . , v
0
m for BJCG. Another option is to use the approximate eigenvalues

computed on the previous outer iteration and the estimate (17)–(18) to select α0. Note that κj is
an increasing function of γj , and κ−j is a decreasing function of γ−j . Hence, their maxima are
κml

and κ−mr , respectively. A good choice for α0 therefore should make the maximum of these
two values the minimal possible. There is an obstacle however: γml+1 may be difficult to compute.
To bypass this, assume that any negative αi is sufficiently far away from zero, so that γml+1 ≈ 1.
Let α̃j , j = 1,m, be the eigenvalues of (11) computed on the previous outer iteration. Assuming
γml+1 = 1, we obtain from (15) and (18) via elementary calculation

κml
=
αm+1 − α̃1

αm+1 − α0
, κ−mr

=
αm+1 − α0

αm+1 − α̃m
. (19)

We observe that κml
is an increasing function of α0 and κ−mr

is a decreasing one. Hence, the
maximum of the two is minimal when κml

= κ−mr
, which is attained at

α0 = αm+1 −
√

(αm+1 − α̃1)(αm+1 − α̃m). (20)

In practice, αm+1 is replaced by an approximation. We also note that if the block size of BJCG is
increased by k > 0 to improve convergence (cf. Remark 1), then in (20) αm+1 should be replaced
by an approximation to αm+k+1, or simply by qα̃m, where q > 1 (e.g. q = 1.1, which roughly
corresponds to k = m/10), which yields

α0 = qα̃m −
√

(qα̃m − α̃1)(q − 1)α̃m. (21)

This paper assumes a linear relationship between loads, deflections and stresses and that
deflections are small. These assumptions allow the use of a linear buckling analysis, which is an
efficient method for estimating the critical buckling load factor and is useful in engineering design.
However, linear buckling analysis often overestimates the critical load when imperfections and
nonlinearities are accounted for. When these factors are significant, nonlinear buckling analysis can
be performed. For topology optimization of geometrically nonlinear structures, Lindgaard and Dahl
[12] suggest using the arc length method for geometrically nonlinear analysis until an instability
is detected. A buckling eigenvalue analysis is then performed for the structure in the configuration
one step before the instability occurs. Therefore, when using this approach, it may be possible to
use the BJCG method to reduce the computational cost of the eigenvalue analysis when performing
optimization with nonlinear buckling constraints.

4. PERFORMANCE OF THE EIGENVALUE SOLVER

In this section, we use two linear buckling problems to benchmark the performance of our BJCG
eigenvalue solver SPRAL SSMFE and to highlight its potential for the efficient computation of a
large number of buckling eigenmodes during optimization. The two examples are rectangular blade
stiffened panels, simply supported and loaded in compression along their short edges, see Figure 6.
Both panels are 1 x 0.5 m and have evenly spaced blade stiffeners. The depth of the stiffeners is 25
mm and 30 mm, respectively. The material properties are Young’s modulus of 70GPa and Poisson’s
ratio of 0.32. The panels are discretized using 3-node shell elements, with six degrees of freedom
(dof) per node. The thickness of the shells are 4 mm and 3 mm, respectively. Different levels of
discretization are used to test the scalability of SPRAL SSMFE.

The tests are performed on a 16-core Intel(R) Xeon(R) E5-2687W CPU. and the GNU
gfortran compiler with flags -O3 -fopenmp are used. The factorization of the shifted matrices
K + α0Ks and subsequent solves is performed by HSL MA97 [26] run in parallel mode. The shifted
solves are performed by the solver subroutines from HSL MA97 called in an OpenMP parallel do
loop each using one MKL thread.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
Prepared using nmeauth.cls DOI: 10.1002/nme

BUCKLING CONSTRAINED TOPOLOGY OPTIMIZATION 13

!

(a) (b)

Figure 6. Buckling examples: a) Panel 1, b) Panel 2.

Unless specified explicitly, a shift of α0 = 1 and an eigenvector error tolerance of 10−4 is used
in the reported tests. The BJCG block size for computing k modes is set to k +max(10, k/10). All
reported timings are measured using the function clock gettime and are in seconds.

Table I displays SPRAL SSMFE solve and HSL MA97 factorization timings for different levels
of discretization for Panel 1, where 100 buckling eigenmodes are computed. The third column
presents the solve times divided by the dof in thousands. We observe a nearly-linear scaling of
the solve times with the problem size. Similar results are obtained for Panel 2. This shows the
potential of SPRAL SSMFE to efficiently compute buckling eigenvalues and eigenvectors for large-
scale optimization problems.

Table I. Timings for Panel 1 using different discretizations.

problem size solve time time per factorization
(dof) 103 dof time

8902 0.7 0.083 0.1
17576 1.4 0.079 0.2
37625 3.1 0.081 0.3
74383 6.7 0.090 0.5
144823 12.1 0.084 1.0
224522 19.6 0.087 1.6
394962 36.3 0.092 2.9
577643 54.7 0.095 4.6
728142 61.0 0.084 5.1
908065 83.1 0.092 7.4

Table II shows performance data for Panel 1 (using the 577,643 dof discretization) for different
numbers of buckling modes. The block sizem is set to the number of modes plus 10. We observe that
the number of BJCG iterations remains practically unchanged as the number of modes increases,
thanks to the increase in the block size, which improves the convergence to leftmost modes (see [36]
for the convergence analysis of BJCG). The last two columns show that the time per mode and the
number of shifted solves per mode decreases for larger numbers of modes. This is a promising result
when we consider that a large number of buckling eigenmodes may be required during optimization,
as discussed in Section 2.2.

Table II. Performance data for different numbers of modes for Panel 1 with 577,643 dof.

modes solve time iterations shifted time per shifted solves
solves mode per mode

20 22.5 16 443 1.13 22
40 29.7 17 712 0.74 18
60 38.1 17 981 0.64 16
80 48.9 14 1145 0.61 14
100 54.7 16 1394 0.55 14

Table III shows the results of using different shifts α0 for computing 100 modes for Panel 1 (using
the 577,643 dof discretization). We observe that the minimal number of BJCG iterations and shifted

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
Prepared using nmeauth.cls DOI: 10.1002/nme

14 P. D. DUNNING ET AL.

solves is attained at α0 = 20, which is very close to the optimal shift value of 20.3 predicted by (21)
with q = 1.1.

Table III. Performance data for different shifts for Panel 1 with 577,643 dof.

shift eigenvalues eigenvalues solve time iterations shifted
α0 left of α0 right of α0 solves

1 0 100 54.7 16 1394
5 4 96 52.5 14 1277

10 10 90 50.7 13 1172
15 30 70 44.3 11 1055
19 49 51 43.1 11 1040
20 55 45 41.3 11 1020
21 65 35 40.4 13 1027

21.3 66 34 40.0 13 1042
22 68 32 40.9 14 1062
25 88 12 49.2 17 1233

Table IV shows analogous results for Panel 2 (using a 539,291 dof discretization). In this case,
the best shift (in terms of the iteration number) is α0 = 11, which is further from the theoretically
optimal α0 = 14.4. This is due to the rapidly increasing density of the spectrum to the right from
α0, which makes the linear extrapolation αm+k+1 ≈ (1 + (k + 1)/m)α̃m used in (21) inaccurate.

Table IV. Performance data for different shifts for Panel 2 with 539,291 dof.

shift eigenvalues eigenvalues solve time iterations shifted
α0 left of α0 right of α0 solves

1 0 100 47.1 16 1275
2 3 97 46.0 16 1256
3 8 92 46.4 15 1211
4 15 85 43.0 15 1169
5 20 80 46.5 16 1168
6 23 77 43.5 14 1139
7 32 68 42.3 14 1125
8 37 63 39.4 12 1095
9 42 58 38.3 12 1080

10 49 51 38.5 11 1097
11 56 44 39.7 10 1092
12 63 37 40.3 11 1132
13 67 33 40.5 11 1157
14 73 27 43.7 14 1196

14.4 76 24 46.9 14 1233

Remark 3
To highlight potential problems with employing ARPACK in topology optimization, we used
ARPACK to compute the 100 leftmost eigenvalues of Panel 2 (539,291 dof) with α0 = 9 and
maximal accuracy, i.e. the ARPACK tolerance was set to zero. The leftmost eigenvalue α1 =
−1.1434995674 is closer to α0 than α100 = −18.472317385, so we expected that ARPACK would
compute all the wanted 42 eigenpairs that lie to the left of α0. However, 22 were missing, i.e.
ARPACK computed α23 to α122 instead of wanted α1 to α100

In Table V, we compare the computation of 200 modes using one shift α0 for the computation of
100 modes and then the remaining 100 modes using a new shift α100 + 5× (α100 − α90) ≈ α150.
For this example, we observe that when computing 200 modes, two shifts are preferable to a single
shift. However, the opposite is observed when a total of 100 modes are computed. Thus, the multiple
shift strategy may provide additional efficiency gains during optimization when a large number of
buckling modes is required.

Table VI compares the solve times for 100 modes for Panels 1 and 2 for various eigenvector
error tolerances. It takes approximately twice as long to compute eigenvectors with 10−8 accuracy

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
Prepared using nmeauth.cls DOI: 10.1002/nme

BUCKLING CONSTRAINED TOPOLOGY OPTIMIZATION 15

Table V. Times using a single shift and two shifts for 200 modes for Panels 1 and 2.

shifts Panel 1 Panel 2
factorization solve total factorization solve total

1 4.6 143.9 148.5 4.2 109.7 113.9
2 9.2 114.9 124.1 8.4 98.6 107.0

as with 10−2 accuracy. This suggests that using a relaxed tolerance at early outer iterations, when
the computed modes are far from optimal, and then a progressively smaller tolerance as the outer
iterations proceed is a potential strategy for reducing the overall optimization time.

Table VI. Times for different eigenvector error tolerances for 100 modes for Panels 1 and 2.

tolerance Panel 1 Panel 2

10−2 42.6 39.5
10−4 54.7 47.1
10−6 65.3 60.0
10−8 80.9 79.3

Figure 7 provides a justification for the use of the eigenvector error tolerance of 10−4 in most
tests by comparing the estimated discretization and solution errors in eigenvalues of Panel 1 using
728,142 dof. The discretization error is computed as the difference between the eigenvalues at two
different discretizations (728,142 and 908,065 dof), both computed with the eigenvector tolerance
set to 10−8, which makes the error in the computed eigenvalues close to machine accuracy. The
solution error is computed as the difference between eigenvalues with eigenvector tolerances of
10−4 and 10−8. We clearly observe that this difference is several orders of magnitude below the
discretization error, and hence using an eigenvector error tolerance of 10−4 provides useful results
for this example.

-16

-14

-12

-10

-8

-6

-4

-2

 0 10 20 30 40 50 60 70 80 90 100

lo
g
(e

rr
o
r)

eigenvalue

solution error
discretization error

Figure 7. Estimated discretization and solution errors in eigenvalues of Panel 1

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
Prepared using nmeauth.cls DOI: 10.1002/nme

16 P. D. DUNNING ET AL.

In summary, we have demonstrated the potential for the BJCG eigensolver SPRAL SSMFE to
efficiently compute a large number of buckling modes during optimization. Particular features
that are promising for efficient computation are: almost linear scaling with problem size, better
than linear scaling with the number of wanted modes, the ability to estimate the optimal shift
from previous eigenvalues, potential for efficiency gains using multiple shifts and the potential to
use an adaptive eigenvector convergence tolerance to reduce the overall optimization time. These
features will be explored and demonstrated further using a topology optimization example problem
in Section 6.

5. LEVEL-SET TOPOLOGY OPTIMIZATION WITH BUCKLING CONSTRAINTS

In this section we introduce linear buckling constraints for the conventional level-set method.

5.1. The level-set method

In level-set topology optimization, the structure is defined using an implicit function φ(χ) ≥ 0 χ ∈ Ω,
φ(χ) = 0 χ ∈ Γ,
φ(χ) < 0 χ /∈ Ω,

(22)

where Ω is the structure domain, Γ the structure boundary, φ(χ) the implicit function and χ ∈
Ωd, where Ωd is the design domain containing the structure, Ω ⊂ Ωd, as shown in Figure 8.
Thus, the structure boundary is defined as the zero level-set of the implicit function. The design
domain is discretized such that the implicit function is defined at a finite number of points and
interpolated between these points using shape functions in a similar manner to a finite element (FE)
discretization. Several optimization methods use implicit functions to describe the structure. In this

! ! ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! ! ! ! ! !

!

Ω

ϕ < 0

ϕ > 0

ϕ = 0

Ωd

Figure 8. A structure described using an implicit function

paper, the conventional level-set method is used [3]. The implicit function is initialized as a signed
distance function, where the magnitude is the shortest distance to the structure boundary and the sign
is defined by (22). The implicit function is updated by solving the following advection equation:

∂φ

∂t
+∇φ(χ, t)

dχ

dt
= 0, (23)

where t is the structural optimization evolution time. Equation (23) can be discretized and rearranged
to give an update formula for optimization:

φk+1
i = φki + ∆t|∇φi(χ)|Vn,i, (24)

where k is the outer iteration number, i a discrete grid point, ∆t the time step and Vn,i is a
velocity function defined normal to the boundary and a positive value indicates inward boundary

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
Prepared using nmeauth.cls DOI: 10.1002/nme

BUCKLING CONSTRAINED TOPOLOGY OPTIMIZATION 17

movement. The velocity function dictates the change in the implicit function and the movement
of the zero level-set that defines the structure boundary. Maintaining the signed distance property
of the implicit function is important for the stability of the conventional level-set method. In our
implementation, velocity values are only defined at the boundary and then extended to all grid nodes.
We use a velocity extension strategy that maintains the signed distance function by keeping velocity
values constant along a line normal to the boundary. We also reinitialize the implicit function to a
signed distance function every 30 iterations during optimization. For full details of our numerical
implementation of the conventional level-set method in 3D see [40].

To perform optimization with the level-set method, the velocity function in (24) is usually defined
using shape derivatives of the objective and constraint functions. Shape derivatives usually take the
form of a boundary integral of a shape sensitivity function multiplied by the velocity function:

∂f(Ω)

∂Ω
=

∫
Γ

(sfVn)dΓ, (25)

where sf is the shape sensitivity function for generic function f . In this work, the velocity function
is defined as a weighted sum of the shape sensitivity functions for the objective and constraints

Vn(λ) = λfsf +

m∑
i=1

λisi, (26)

where sf and si are the shape sensitivity functions for the objective and constraints, respectively,
and λ are the weight values. The weights are obtained by solving the following sub-problem:

min
λ

∆f (Vn(λ))

s.t. ∆gi (Vn(λ)) ≤ Gi , i = 1 . . .m
λmin ≤ λ ≤ λmax

(27)

where Gi is the target change for constraint function gi, set to maintain constraint feasibility, and
∆f is an approximation for the change in f for a given velocity function, which is obtained by
using numerical integration to evaluate (25). Full details on this approach for handling constraints
in level-set based optimization are given in [41].

5.2. Buckling constraints

An important aspect of structural optimization using the level-set method is the formulation of
the structural stiffness and mass properties from the implicit function. Here, an efficient fixed grid
approach is used, where the background FE mesh remains fixed and the properties of elements cut
by the boundary are approximated using a volume weighted approach:

Ēi = µiE,
ρ̄i = µiρ,

(28)

where E and ρ are the Young’s modulus and density of the structural material, the over bar denotes
the effective material properties for element i used to build the FE matrices and µi is the volume-
fraction, defined as:

µi =
V oli
V oli

(1− µmin) + µmin, (29)

where V oli is the volume of element i that lies inside the structure, V oli is the total volume of the
element and µmin is a small positive value to avoid singular matrices, µmin = 10−6.

A well-known issue in topology optimization involving linear buckling is the occurrence of
spurious modes in the void region of the design space [11, 12]. One method for preventing such
modes is to penalize stresses in elements with a low volume-fraction, which effectively increases
the eigenvalues of the spurious modes making them non-critical. We use a continuous function that

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
Prepared using nmeauth.cls DOI: 10.1002/nme

18 P. D. DUNNING ET AL.

depends on the element volume-fraction to penalize stresses:

µi(µi) =
µi

1− µmin(1− µ−pi)
, (30)

where µi is a factor that multiplies the stresses in element i, which are used to compute the element
stress stiffness matrix, and p is a penalization factor, chosen here as 3. The effect of the penalization
is shown in Figure 9.

!

µ

µ

Figure 9. Stress penalization factor.

Shape sensitivities of buckling load factor eigenvalues must be computed to derive the velocity
function that updates the implicit function and optimizes the structure. Our approach is to first
compute element-wise derivatives of the buckling eigenvalues with respect to a change in the
volume-fraction:

dαi
dµj

= −v
T
i (∂K/∂µj + αi ∂Ks/∂µj) vi

vTi Ksvi
− ũTi

∂K

∂µj
u, (31)

where the sub-script j is the element number and ũi is the solution to an adjoint problem:

KT ũi = −αi v
T
i (∂Ks/∂u) vi
vTi Ksvi

. (32)

The element-wise derivatives are then interpolated at the boundary using a weighted least squares
method to obtain the shape sensitivities [42]. Note that the derivative in (31) includes the part
dependent on the change in the stress stiffness matrix with a change in displacement vector through
the solution of the adjoint equation (32).

The level-set topology optimization method only uses first order gradient information when
computing the shape sensitivities that are used to define the velocity function that updates the design
(26). In general, buckling eigenvalues are nonlinear with respect to the design variables. Therefore,
if too large a step is taken for an outer iteration the linear approximation of the buckling eigenvalues
may result in the design becoming infeasible or less feasible. To partially alleviate this problem, we
introduce a scaling factor, ζ, for the time step in the implicit function update equation (24):

φk+1
i = φki + ζ∆t|∇φi(χ)|Vn,i. (33)

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
Prepared using nmeauth.cls DOI: 10.1002/nme

BUCKLING CONSTRAINED TOPOLOGY OPTIMIZATION 19

The scaling factor is dynamically chosen during optimization. Initially ζ = 1, then if any buckling
constraint becomes infeasible, or less feasible, it is reduced by half, to a minimum of 0.25. If
three successive outer optimization iterations do not detect a constraint becoming infeasible, or less
feasible, then ζ is doubled, to a maximum of 1. This strategy allows the time step to reduce when
the nonlinearity of the buckling load factors disrupts convergence, but also to increase to improve
convergence rate.

Our aim is to minimize structural mass, whilst ensuring all critical buckling eigenvalues are above
1.0. As the optimum solution is approached, many eigenvalues are close to 1.0. This increases the
possibility of repeated eigenvalues, that are difficult to handle with gradient based optimization as
they are only directionally differentiable. From a practical engineering perspective, it is often good
design practice to avoid several failure modes occurring simultaneously, which is the case for a
structure with several buckling eigenvalues near 1.0. These observations motivate our use of a loose
definition of the linear bucking constraint. The idea is to set a range of values for which a buckling
constraint is considered active by the optimizer. Here we consider any buckling eigenvalue between
1.0 and 1.2 to be active. This is implemented in the present algorithm by setting the constraint
change target Gi in the velocity sub-problem (27) depending on the value of the load factor αi:

Gi =

 1.0− αi αi ≤ 1.0,
10−3 1.0 < αi < 1.2,
1.2− αi 1.2 ≤ αi.

(34)

The small positive value of 10−3 is used to encourage the optimizer to choose a search direction that
increases the load factor, which reduces the likelihood of the buckling constraint becoming violated
from the nonlinearity of the buckling load factors.

6. EXAMPLE

In this section, a 3D topology optimization example for the linear buckling constrained mass
minimization problem (2) is solved using the level-set method described in the previous section.
The benefit of using multiple buckling modes is investigated. The efficiency of the BJCG eigenvalue
solver SPRAL SSMFE is also demonstrated by comparing the computation time with that of
ARPACK. Other key features of the solver are also investigated, such as reusing eigenvector
information.

All tests are performed on a 16-core Intel(R) Xeon(R) E5-2687W CPU. The shift value for
SPRAL SSMFE is computed using the eigenvalues from the previous outer iteration and (21) with
q = 1.1. However, the number of eigenvalues to the left of the computed shift may exceed the
required number. In this case, first we set the eigenvector tolerance to 1.0 to switch off error control
and approximately solve the buckling eigenvalue problem for all eigenvalues to the left of the chosen
shift. This provides a good estimate of the required eigenvalues and (20) is used to compute a new
shift. The buckling eigenvalue problem is then solved to the desired tolerance using the new shift.
ARPACK cannot guarantee that all required eigenvalues are found if a shift inside the spectrum is
chosen. Therefore, a more robust strategy is adopted for ARPACK in which the shift is chosen as
half the lowest eigenvalue from the previous optimization iteration. For both eigenvalue solvers the
initial shift for the first iteration is chosen as 1.0.

The factorization of the stiffness matrix, used to solve the linear static (1) and adjoint (32)
problems, and of the shifted matrix (14), required to solve the buckling eigenvalue problem, are
again computed using HSL MA97 [25]. The highly optimized BLAS subroutines provided by the
Intel MKL library are also utilized. The Intel compiler with flags -O3 -openmp -fp-model
precise -fp-model source is employed.

The default convergence tolerance of machine precision is used for ARPACK while the tolerance
is set to 10−12 for SPRAL SSMFE. For the example studied here, this SPRAL SSMFE tolerance
provides a similar order of magnitude in the eigenvector energy norm error (see Section 3.2)
as ARPACK with the default tolerance. For example, at iteration one, the errors for the first 10

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
Prepared using nmeauth.cls DOI: 10.1002/nme

20 P. D. DUNNING ET AL.

eigenvectors range between 5.2× 10−13 to 1.1× 10−12 for SPRAL SSMFE and between 1.2×
10−13 to 1.3× 10−12 for ARPACK.

The optimization problem is shown in Figure 10. The initial structure contains eight circular holes
that extend through the width of the domain. All degrees of freedom (dof) on one face are fixed
and a uniformly distributed load totalling 36,000 units is applied to the top. The design domain
is discretized using unit sized 8-node brick elements [15] giving a total of 144,000 elements and
153,842 nodes. Each node has three dof and, with the fixed dof removed from the system, the
size of the stiffness and stress stiffness matrices is 456,768. The material properties are E = 103,
Poisson’s ratio of 0.3 and ρ = 1.

60

96

25

fixed

Figure 10. Topology optimization example: Initial design, loading and boundary conditions.

The buckling constrained mass minimization problem (2) is first solved using 5, 10 and 25
buckling modes. A comparison of timings for ARPACK and SPRAL SSMFE is shown in Table
VII, where the buckle solve time is defined to be the time spent solving the buckling eigenvalue
problem (not including the shift-invert phase) and the outer iteration time is the total time for one
complete optimization iteration. SPRAL SSMFE shows a significant reduction of 60% to 75% in
the buckle solve time compared with ARPACK. Table VII also shows that for ARPACK the buckle
solve time accounts for between 68% and 77% of the total time (i.e. the most significant part), but
is only around 45% of the total time when SPRAL SSMFE is used. There are four other operations
that contribute significantly to the average outer iteration time: the linear solve (1), computation
and factorization of the shift-inverted matrix (16), adjoint solve (32) and velocity sub-problem solve
(27). Note that the adjoint solve does not require a matrix factorization, as the stiffness matrix
factorization is saved from the linear solve phase. Also, the code for computing the adjoint load
vector (32) is not optimized for speed. The linear solve and shift-invert times are essentially constant,
as these operations are independent of the number of modes. However, the adjoint solve and velocity
sub-problem times do increase with the number of modes. The increase is more significant for the
velocity sub-problem because, as the number of buckling constraints is increased, the sub-problem
is more difficult to solve and thus requires more iterations and gradient computations.

Figure 11 shows the buckle solve time per outer iteration using 10 modes. It is observed that the
SPRAL SSMFE solve time is more consistent than ARPACK, for which the solve time generally
increases as the optimization progresses. One contributing factor is that the separation of the
buckling eigenvalues reduces as the optimization progresses. For example, the ratio of the 10th

to 1st eigenvalue on the first iteration is 1.61, but reduces to 1.08 at the end of the optimization.
We note that this does not affect the performance of SPRAL SSMFE because the BJCG algorithm
is cluster robust, i.e. its convergence is not adversely affected by the eigenvalue clustering [36].

Convergence for different numbers of modes using SPRAL SSMFE is shown in Figure 12. For
this example, using 5 bucking modes is insufficient to obtain a feasible solution because of mode
switching throughout the optimization. Feasible solutions are obtained using 10 or more modes and

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
Prepared using nmeauth.cls DOI: 10.1002/nme

BUCKLING CONSTRAINED TOPOLOGY OPTIMIZATION 21

Table VII. Average (Ave.) times for SPRAL SSMFE and ARPACK.

SPRAL SSMFE Ave. time (s)
No. modes linear solve shift-invert buckle solve adjoint solve sub-problem outer iteration

5 17.4 19.3 44.8 12.4 0.5 96.8
10 17.3 19.2 49.5 12.2 4.0 108.8
25 17.4 19.8 82.7 28.3 26.3 183.8

ARPACK

5 17.3 18.8 117.2 12.6 0.8 171.3
10 17.3 20.4 197.6 11.1 3.0 256.0
25 17.7 21.2 241.2 28.2 22.1 337.8

0

50

100

150

200

250

300

350

400

0 100 200 300

B
uc

kl
e

so
lv

e
tim

e
(s

)

Iteration

ARPACK

SPRAL_SSMFE

Figure 11. Buckle solve time using 10 modes.

these are all very similar (within 1% of the objective function). However, significant oscillations in
the lowest buckling load factor are observed for fewer than 25 modes, especially near the optimum,
which can increase the number of required iterations. This is highlighted by 20 modes taking 128
more iterations to converge than 25 modes. Oscillations still occur when using 25 modes, but are less
frequent and of smaller magnitude, making convergence more reliable. Looking at the convergence
of the objective function, using more modes slows the rate of convergence because the mass reduces
more slowly. This is because a greater number of modes introduces more constraints into the
problem, and this leads to the optimizer taking smaller steps to satisfy these constraints at each
iteration. The problem was also solved using 50 modes and the oscillations in the lowest buckling
load factor were comparable to using 25 modes and the convergence was similar. Thus, for this
example, it appears that 25 modes is sufficient to prevent mode switching disrupting convergence,
particularly near the optimum.

During optimization, the buckling eigenvalues become very close. However, the minimum
difference between eigenvalues is 10−5 and therefore we did not observe any difficulties with
repeated eigenvalues in the present study and no treatment was necessary. However, if a repeated
buckling eigenvalue occurs, it may be possible to adapt the approach used by Xia et al. [18] to obtain
an ascent direction for the repeated eigenvalue.

The solution obtained using SPRAL SSMFE with 10 modes is shown in Figure 13; the solutions
obtained using more modes are very similar. The structure is composed of two main diagonal struts
that support the uniform loading. These struts have I-beam cross sections that the optimizer has

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
Prepared using nmeauth.cls DOI: 10.1002/nme

22 P. D. DUNNING ET AL.

!

(a)

(b)

Figure 12. Topology optimization convergence: a) buckling load factor, b) mass fraction.

orientated to maximise bending stiffness in the direction of buckling. The first 10 buckling modes
of the optimum solution are shown in Figure 14. The first 10 modes contain both global and local
buckling modes. The modes 1, 2, 3 and 6 are global buckling modes, affecting large areas of the
structure. The remaining modes buckle locally over a small area of the structure.

These local modes were investigated to ensure that they are not artificial modes caused by the
numerical approximation of stiffness and stress in intermediate volume-fraction elements. The
detailed results of the investigation are omitted for brevity. The results show that the buckling
eigenvectors for the local modes significantly deform solid elements (µ = 1) and that similar local
modes were obtained when using a more conservative penalization scheme for stress. Therefore, we
conclude that the local modes shown in Figure 14 are real physical modes that should be included
in the optimization.

We now investigate two features of SPRAL SSMFE that can be used to further reduce the buckle
solve time: the reuse of eigenvectors and employing a relaxed eigenvector convergence tolerance.
In the following investigations, 25 modes are used. When eigenvectors from the previous outer

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
Prepared using nmeauth.cls DOI: 10.1002/nme

BUCKLING CONSTRAINED TOPOLOGY OPTIMIZATION 23

Figure 13. Topology optimization solution.

α = 1.000 α = 1.029 α = 1.046 α = 1.055

α = 1.070 α = 1.073 α = 1.076 α = 1.081

α = 1.083 α = 1.088

Figure 14. Buckling mode shapes of the solution. Contour colours indicate the relative magnitude of the
eigenvector, with blue being zero and red being maximum.

iteration are used as the initial guess for the buckling eigenvalue problem, the reduction in average
buckle solve time reduces from 83 to 70 seconds, a saving of more than 15%.

The results of using different convergence tolerances are summarised in Table VIII. It is clear that
using a relaxed tolerance gives a significant reduction in the buckle solve time, although the accuracy
of the eigenvectors also reduces. The eigenvectors are used to compute gradients of the buckling
load factors, (31) and (32). Thus, inaccurate eigenvectors can lead to errors in the gradients, which
can slow down or prevent convergence. This effect is observed for all tolerance values greater than
10−12, as the optimizer fails to find a feasible design as the optimum is approached. As suggested in
Section 4, a variable tolerance scheme can be considered, where a larger value is used in the early
outer iterations for efficiency and then reduced to increase the eigenvector accuracy as the optimum
is approached. To demonstrate this, a simple strategy is used where a tolerance of 10−4 is used for
200 outer iterations and then reduced to 10−12. Using this strategy, a feasible solution is found in
349 iterations and the overall average buckle solve time is 30% lower than using a tolerance of
10−12 throughout, Table VIII.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
Prepared using nmeauth.cls DOI: 10.1002/nme

24 P. D. DUNNING ET AL.

The error in the gradients arising from inaccurate displacement vectors was studied by Amir
et al. [43] in the context of the termination criterion of iterative solvers. Large inaccuracies can
be tolerated by using consistent sensitivities, where the approximation error is included in the
sensitivity calculation. Unfortunately, this involves performing an adjoint solve for all expressions
used in the iterative solve, which can add significant computational cost in practice. The suggested
alternative is to use termination criteria that are correlated with the function value and sensitivity,
instead of the usual practice of defining the termination criterion in terms of the residual. This
ensures that the approximation is sufficiently accurate for optimization, although not necessarily
accurate in terms of the residual. Obviously, any scheme that uses an adaptive tolerance would have
to ensure a sufficient level of accuracy for convergence.

Table VIII. Times for different eigenvector error tolerances for 25 modes and reusing eigenvectors.

tolerance Ave. buckle solve time (s)

10−4 33.3
10−6 40.9
10−9 52.2
10−12 69.7

variable 48.8

7. CONCLUSIONS

In this paper, the linear buckling constrained mass minimizaton problem was studied in the
context of topology optimization. A method for including linear buckling constraints in level-set
based topology optimization was introduced. The buckling constraints were handled by defining
the velocity function as a weighted sum of the shape sensitivities and solving an optimization
sub-problem to find a velocity function that reduced the objective whilst maintaining constraint
feasibility.

We demonstrated that the switching of the critical buckling eigenmode during optimization can
result in slow convergence, or a failure to find a feasible solution. To remedy this we propose using
more buckling eigenmodes during optimization to provide the optimizer with more information and
hence prevent mode switching from disrupting convergence. In the context of topology optimization,
this can lead to a large number of eigenmodes of ill-conditioned matrices being computed at each
iteration.

The reliable and efficient computation of a large number eigenmodes presents a significant
computational challenge. The BJCG eigensolver method has several features that can be exploited to
address this challenge. First, eigenvalue and eigenvector information from the previous optimization
iteration can be used to speed up the convergence of the BJCG method in the current iteration. The
eigenvalues can be used to estimate the optimal shift value and previous eigenvectors can be used
as the initial guess for the new eigenvectors. Also, a larger eigenvector convergence tolerance can
be used in the early stages of optimization to reduce the overall computation time. However, in our
example it was found that a smaller tolerance was required near the optimum to increase gradient
accuracy and achieve convergence. This suggests that an adaptive tolerance scheme may be an
efficient strategy, where the tolerance is reduced from a large starting value during optimization.

A 3D optimization problem was used to demonstrate the effectiveness of the level-set topology
optimization method and the efficiency of the BJCG eigenvalue solver, implemented in the package
SPRAL SSMFE. The level-set method was able to obtain feasible designs for the mass minimization
problem with as many as 50 linear buckling constraints. Buckling eigenvalue solution times using
SPRAL SSMFE were compared with APRACK. The results show that a significant reduction in
the buckling solve time can be achieved by using SPRAL SSMFE, especially when eigenvalue and
eigenvector information is reused and an adaptive eigenvector tolerance scheme employed. For a

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
Prepared using nmeauth.cls DOI: 10.1002/nme

BUCKLING CONSTRAINED TOPOLOGY OPTIMIZATION 25

very large number of modes, SPRAL SSMFE can also employ a multiple shift strategy to further
reduce overall computation time.

ACKNOWLEDGEMENTS

The authors acknowledge the support from Engineering and Physical Sciences Research Council, fellowship
grant EP/M002322/1 and grant EP/J010553/1. We also thank Dr. Bret Stanford (NASA Langley) for useful
discussions.

REFERENCES

1. Haftka RT, Gürdal Z. Elements of Structural Optimization. Third Revised and Expanded edn., Kluwer Academic
Publishers: Dordrecht, 1992.

2. Spillers WR, MacBain KM. Structural Optimization. Springer: Dordrecht, 2009.
3. Deaton JD, Grandhi RV. A survey of structural and multidisciplinary continuum topology optimization: post 2000.

Structural and Multidisciplinary Optimization 2014; 49(1):1–38.
4. Sigmund O, Maute K. Topology optimization approaches a comparative review. Structural and Multidisciplinary

Optimization 2013; 48(6):1031–1055.
5. Rozvany GIN. Difficulties in truss topology optimization with stress, local buckling and system stability constraints.

Structural Optimization 1996; 11(3-4):213–217.
6. Zhou M. Difficulties in truss topology optimization with stress and local buckling constraints. Structural

Optimization 1996; 11(2):134–136.
7. Kocvara M. On the modelling and solving of the truss design problem with global stability constraints. Structural

and Multidisciplinary Optimization 2002; 23(3):189–203.
8. Rahmatalla S, Swan CC. Continuum topology optimization of buckling-sensitive structures. AIAA Journal 2003;

41(6):1180–1189.
9. Lund E. Buckling topology optimization of laminated multi-material composite shell structures. Composite

Structures 2009; 91(2):158–167.
10. Rong JH, Xie YM, Yang XY. An improved method for evolutionary structural optimisation against buckling.

Computers and Structures 2001; 79(3):253–263.
11. Neves MM, Rodrigues H, Guedes JM. Generalized topology design of structures with a buckling load criterion.

Structural Optimization 1995; 10(2):71–78.
12. Lindgaard E, Dahl J. On compliance and buckling objective functions in topology optimization of snap-through

problems. Structural and Multidisciplinary Optimization 2013; 47(3):409–421.
13. Allaire G, Jouve F, Toader A. Structural optimization using sensitivity analysis and a level-set method. Journal of

Computational Physics 2004; 194(1):363–393.
14. Wang MY, Wang X, Guo D. A level set method for structural topology optimization. Computer Methods in Applied

Mechanics and Engineering 2003; 192(1-2):227–246.
15. Cook RD, Malkus DS, Plesha ME, Witt RJ. Concepts and applications of finite element analysis. 4th edn., John

Wiley & Sons, Inc.: United States, 2002.
16. Bruyneel M, Colson B, Remouchamps A. Discussion on some convergence problems in buckling optimisation.

Structural and Multidisciplinary Optimization 2008; 35(2):181–186.
17. Seyranian AP, Lund E, Olhoff N. Multiple-eigenvalues in structural optimization problems. Structural Optimization

1994; 8(4):207–227.
18. Xia Q, Shi T, Wang MY. A level set based shape and topology optimization method for maximizing the simple or

repeated first eigenvalue of structure vibration. Structural and Multidisciplinary Optimization 2011; 43(4):473–485.
19. Dunning PD, Stanford BK, Kim HA. Level-set topology optimization with aeroelastic constraints. 56th

AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. AIAA SciTech, American
Institute of Aeronautics and Astronautics, 2015; 1–19.

20. Wang S, de Sturler E, Paulino GH. Large-scale topology optimization using preconditioned krylov subspace
methods with recycling. International Journal for Numerical Methods in Engineering 2007; 69(12):2441–2468.

21. Makhija D, Maute K. Numerical instabilities in level set topology optimization with the extended finite element
method. Structural and Multidisciplinary Optimization 2014; 49(2):185–197.

22. Lehoucq RB, Sorensen DC, Yang C. ARPACK Users Guide: Solution of Large-Scale Eigenvalue Problems with
Implicitly Restarted Arnoldi Methods. SIAM: Philadelphia, 1998.

23. MATLAB. version 8.2.0.701 (R2013b). The MathWorks Inc.: Natick, Massachusetts, 2013.
24. The NAG library. The Numerical Algorithms Group (NAG), Oxford, United Kingdom www.nag.com.
25. Hogg JD, Scott JA. HSL MA97: a bit-compatible multifrontal code for sparse symmetric systems. Technical Report

RAL-TR-2011-024, Rutherford Appleton Laboratory 2011.
26. HSL. A collection of Fortran codes for large-scale scientific computation 2013. http://www.hsl.rl.ac.uk.
27. SPRAL. Sparse Parallel Robust Algorithms Library 2015. http://www.numerical.rl.ac.uk/spral/.
28. O’Leary DP. The block conjugate gradient algorithm and related methods. Linear Algebra and its Applications

1980; 29:293–322.
29. Arbenz P, Hetmaniuk UL, Lehoucq RB, Tuminaro RS. A comparison of eigensolvers for large-scale 3D

modal analysis using AMG-preconditioned iterative methods. International Journal for Numerical Methods in
Engineering 2005; 64(2):204–236.

30. Knyazev AV. Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate
gradient method. SIAM Journal on Scientific Computing 2001; 23(2):517–541.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
Prepared using nmeauth.cls DOI: 10.1002/nme

26 P. D. DUNNING ET AL.

31. Kraft D. A software package for sequential quadratic programming. Technical Report DFVLR-FB 88-28, Institut
für Dynamik der Flugsysteme, Oberpfaffenhofen 1988.

32. Kraft D. TOMP - Fortran modules for optimal control calculations. ACM Transactions on Mathematical Software
1994; 20(3):262–281.

33. The NLopt nonlinear optimization package 2014. http://ab-initio.mit.edu/nlopt.
34. van Zyl LH. Use of eigenvectors in the solution of the flutter equation. Journal of Aircraft 1993; 30(4):553–554.
35. Ovtchinnikov EE. Jacobi correction equation, line search and conjugate gradients in Hermitian eigenvalue

computation I: Computing an extreme eigenvalue. SIAM Journal on Numerical Analysis 2008; 46(5):2567–2592.
36. Ovtchinnikov EE. Jacobi correction equation, line search and conjugate gradients in Hermitian eigenvalue

computation II: Computing several extreme eigenvalues. SIAM Journal on Numerical Analysis 2008; 46(5):2593–
2619.

37. Ovtchinnikov EE. Computing several eigenpairs of Hermitian problems by conjugate gradient iterations. Journal
of Computational Physics 2008; 227(22):9477–9497.

38. Takahashi I. A note on the conjugate gradient method. Information Processing in Japan 1965; 5:45–49.
39. Saad Y. Projection methods for solving large sparse eigenvalue problems. Lecture Notes in Mathematics 1983;

973:121–144.
40. Dunning PD, Stanford BK, Kim HA. Coupled aerostructural topology optimization using a level set method for 3D

aircraft wings. Structural and Multidisciplinary Optimization 2015; 51(5):1113–1132.
41. Dunning PD, Kim HA. Introducing the sequential linear programming level-set method for topology optimization.

Structural and Multidisciplinary Optimization 2015; 51(3):631–643.
42. Dunning PD, Kim HA, Mullineux G. Investigation and improvement of sensitivity computation using the area-

fraction weighted fixed grid FEM and structural optimization. Finite Elements in Analysis and Design 2011;
47(8):933–941.

43. Amir O, Stolpe M, Sigmund O. Efficient use of iterative solvers in nested topology optimization. Structural and
Multidisciplinary Optimization 2010; 42(1):55–72.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
Prepared using nmeauth.cls DOI: 10.1002/nme

