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Abstract
We show that self-consistent partial synchrony in globally coupled oscillatory ensembles is a general
phenomenon.We analyze in detail appearance and stability properties of this state in possibly the
simplest setup of a biharmonic Kuramoto–Daido phasemodel as well as demonstrate the effect in
limit-cycle relaxational Rayleigh oscillators. Such a regime extends the notion of splay state from a
uniformdistribution of phases to an oscillating one. Suitable collective observables such as the
Kuramoto order parameter allow detecting the presence of an inhomogeneous distribution. The
characteristic andmost peculiar property of self-consistent partial synchrony is the difference between
the frequency of single units and that of themacroscopic field.

1. Introduction

Many physical systems can be represented as networks of oscillators, different examples ranging from the
mammalian brain [1], to power grids [2], out-of-equilibrium chemical reactions [3], spin-torque nanoscale
oscillators [4–6], gene-controlled clocks in bacteria [7], and so on. A large number of books, chapters, and
reviews devoted to the topic testify to the importance of this subject [8–17].

A general theory of oscillatory ensembles has not yet been developed. Indeed, such a theory requires taking
into accountmany different features, such as the structure of the single units and their heterogeneity, as well as
the topology and properties of the connections. Even in the simple context of globally coupled identical phase
oscillators, it is not generally knownwhat a kind of stationary regimes are to be expected. Roughly speaking, they
can be classified by referring to the distribution of phases in the limit of a large number of oscillators (the so-
called thermodynamic limit). If themutual interaction leads to phase attraction (at least below a certain
distance), the distribution of phases converges to a set ofDirac δʼs which correspond to different clusters. Full
synchrony is the extreme case, where all oscillators converge to the same trajectory, i.e. to a single cluster. In the
presence of amutual repulsion, a smooth phase distribution is observed instead. The splay state (or,
equivalently, the asynchronous regime) is a prototypical example, characterized by aflat distribution of the
phases and absence of a collectivemode. Finally, one can encounter chimeras, where a big cluster coexists with a
group of non-synchronized units [18]. Interestingly, in this state, the frequency of the cluster elements differs
from the frequencies of asynchronous ones.

Most of the efforts have been devoted to the study of clustered [19] and chimera states [20, 21] andmuch less
to the identification and analysis of regimes characterized by a smooth but non-uniformdistribution of phases.
Such regimes, typically characterized by a periodic collective evolution, are herein referred to as self-consistent
partial synchrony (SCPS). The simplest formof SCPS is a ‘rigid’ rotation of the distribution, i.e. a regimewhere
the instantaneous frequency of the oscillators coincides with that of the collectivemode. Such a regime can
emerge if the coupling strength vanishes for some finite value of the order parameter [22–24]. In a less trivial
formof SCPS (of primary interest here) the (average) frequency of the single units and that of themeanfield
differ from each other.Moreover, the two frequencies are generallymutually incommensurate, i.e. no locking
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phenomena are observed, when a control parameter is continuously varied. Thus, themicroscopic dynamics is
quasiperiodic. Examples of such dynamics are: integrate-and-fire (IF)neurons interacting throughfinite-width
pulses (the so-calledα-functions) [25]; nonlinearly coupled Stuart–Landau systems [26]; a Kuramoto-like
model obtained via phase reduction from the abovementioned Stuart–Landau ensemble. A variant of
quasiperiodic partially synchronous dynamics has been detected inmodels beyond phase approximation, i.e. in
globally coupledHindmarsh–Rose neurons and Stuart–Landau oscillators; here themacroscopic and
microscopic frequencies are equal only on average, but themotion of oscillators is additionallymodulated by a
generally incommensurate frequency [26, 27].

In theweak-coupling limit oscillators are effectively described by aKuramoto–Daido phasemodel [28–31]
with a suitable coupling function fDG ( ), where fD is the phase difference between any two interacting
oscillators. In the standard, widely used, Kuramoto–Sakaguchimodel [9, 32, 33] the coupling functionG is
assumed to be perfectly sinusoidal. In the last years it has become increasingly clear that this is quite a special
case: e.g.,multiple clusters in this setup are not possible [17, 34]. Amuch richer dynamics, including formation
of clusters [19] and of heteroclinic cycles (HCs) [35], is observed as soon as just one additional harmonic is added
toG.

In this paperwe further illustrate the richness of the Kuramoto–Daidomodel, by showing that SCPS
spontaneously emerges in aminimal extension of theKuramoto setup to a biharmonicmodel, whereG is
composed of just two harmonics. To further explore the ubiquity of SCPS, we study its emergence in an
ensemble of linearly coupled Rayleigh oscillators. They are two-dimensional limit-cycle oscillators; performing
numerically the reduction to aKuramoto–Daido phasemodel, we reconstruct the coupling functionwhich
turns out to contain a few harmonics. TheKuramoto–Daido setup is shown to reproduce the dynamics of the
original system.

The simplicity of the biharmonicmodel allows for a detailed analysis of SCPS, which can be seen as a
stationary solution of a continuity equation in a suitably rotating frame. Accordingly, the phase-distribution can
be accurately determined from the emergence of SCPS out of the splay state—through aHopf bifurcation—to
its collapse onto full synchrony as in [24, 36]. The additional stability analysis confirms the numerical evidence of
the onset of an instability and allows identifying the unstable direction.

As SCPS in the biharmonicmodel coexists with two-cluster states, we revisit their stability properties, to
understand under which conditions trajectories converge towards anHC [35, 37].Wefind thatmore harmonics
are needed to ensure that two-cluster states and the correspondingHCs are both unstable.Moreover, we find
thatHCs can be viewed at as a kind of quasiperiodic partial synchrony.

The paper is organized as follows. In section 2 themodel is briefly introduced and the conditions for the
stability of the fully synchronous and asynchronous regimes are recalled. The corresponding phase-diagram is
thereby presented for afixed amplitude of the second harmonic. In section 3, we analyze the occurrence of SCPS,
showhow it can be treated and finally develop the formalismneeded to perform the stability analysis. Section 4 is
devoted to a discussion of two-cluster states andHC analyzed in [35, 37]. Here, after briefly recalling some
knownproperties, we present a general analysis of the stability properties of two-cluster states, in the perspective
of shedding light on the general conditions under which such states can be effectively unstable (this is, for
instance the case of the LIFmodel proposed in [25]). The theoretical predictions are then extensively tested in
section 5. Therewefind that themean-field frequency is not necessarily smaller than the frequency of the splay
state as in the LIFmodel. Additionally we discover that SCPS can lose stability (through aHopf bifurcation) and
thereby lead to a collapse ontoHCs. Actually, in order to avoid spurious effects due tofinite computer accuracy,
aminimal heterogeneity is addedwhichmakes the oscillators slightly different fromone another. As a result, we
find a bistable regime, where SCPS coexists with stableHC. In section 6, we discuss SCPS in two other setups that
can be effectively described by a suitable Kuramoto–Daidomodel: a set of LIF neurons, and an ensemble of
Rayleigh oscillators. AKuramoto–Daido description of the formermodel was already presented in [38]where
the validity of the approximationwas investigated. Herewe analyze two-cluster states verifying their instability.
As for the Rayleigh oscillators, we reduce their description to aKuramoto–Daido phasemodel and show that, at
variancewith the other setups formerly considered, here instability of the splay state is due to harmonics higher
than the second one. Themain results and the still open problems are summarized in the last section.

2. Themodel

Wehereby consider theKuramoto–Daido typemodel of identical all-to-all coupled phase oscillators.
Performing a transformation to the co-rotating coordinate framewe set the frequency to zero, so that themodel
reads

2
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åf f f= -
N

G
1

, 1i
j

j i
˙ ( ) ( )

where the coupling constant has been eliminated by performing a suitable rescaling of time. Inmost of the paper
we consider the biharmonic coupling function

f f g f g= + + +G asin sin 2 . 21 2( ) ( ) ( ) ( )

A standardway to classify the configurations of an ensemble of oscillators is via the set of complex order
parameters

å= =b fZ R
N

e
1

e , 3m m
j

mi im j ( )

whereR1 is the famousKuramoto order parameter [9, 32], which is equal to 1 in the case of full synchrony and is
equal to 0 in splay states.

Bymaking use of this definition, equation (1) can be rewritten as

f b f g b f g= - + + - +R aRsin sin 2 . 4k k k1 1 1 2 2 2
˙ ( ) ( ) ( )

Thismodel was already considered in [35, 37]with an emphasis on analysis of clustered states (see the next
section) and has recently attracted a growing interest, especially in the presence of a distribution of oscillator
frequencies [39, 40].

For a=0 equations (1) and (2) reduce to the famousKuramoto–Sakaguchimodel. In this case it is known
that the fully synchronous solution f f=k is stable if and only if g p< 21∣ ∣ , while the stability condition of the
splay state is exactly opposite: asynchrony is stable for p g p< <2 3 21∣ ∣ and unstable otherwise. An SCPS
solution can arise only at the border between stability and instability of the two regimes.

This pointwise region can bemade structurally stable by assuming that g1 is a function of the order
parameterR1 and of the coupling strength e [24, 36] (such phasemodel can be obtained in the process of phase
reduction of a systemof nonlinearly coupled Stuart–Landau oscillators [26]). The resulting regimewas called
self-organized quasiperiodic dynamics.

In this paperwe show that adding a second harmonic is yet a simpler way to generate SCPS. In the presence
of a non-zero a, the stability of the fully synchronous state is determined by the condition

g g¢ = - - <G a0 cos 2 cos 0. 51 2( ) ( )

Themarginal stability line is composed of two sinusoidal curves G+, shown in the stability diagram infigure 1.
Altogether, the synchronous state is stable in the two yellow and green regions of the diagram.

Figure 1. Stability diagramof the biharmonicmodel (4) for a=0.2. The splay state is stable in the rectangular region
p g p< <2 3 21 (cyan and green areas); the fully synchronous solution is stable above the upper and below the lower solid curves
(yellow and green areas); two-cluster (anti-phase) states are stable inside the area delimited by the purple curve (i.e. below g p= 22
and above g p= 3 22 ). G+ and G- identify two pairs of sinusoidal curves where the synchronous state and the antiphase two-cluster
states solution lose stability, respectively. e1 and e2 denote two pairs of eyelets (bounded by G+ and G-)where non-trivial dynamics
between synchrony and asynchrony can be expected. The box identifies the parameter region numerically investigated in this paper,
see figure 2.

3
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On the other hand, the stability of the asynchronous state can be assessed by linearizing the continuity
equation for the probability density of the phases. As shown in [38], the evolution is diagonal in Fourier space
and the leading eivengalue d1 is that one characterizing the stability of the first Fouriermode of the perturbation.
In the present setup

d p g g= +cos i sin , 61 1 1[ ] ( )

so that d1depends only on g1. As a result, the splay state is stable in a rectangular regionwhere g <cos 01 (see the
cyan and green areas infigure 1). In the green areas, both the splay and the synchronous states are simultaneously
stable, while in thewhite areas both of them are unstable.

Altogether, the diagram infigure 1 has a reflectional symmetry with respect to both the horizontal and
vertical semi axes. Physically, there is only one symmetry: if f f - , the same dynamics is found upon
mapping g p g -21 1 and g p g -22 2. The additional symmetry is, therefore, only accidental.

3. Self-consistent partial synchronization

In the thermodynamic limit one can investigate the various regimes by studying the evolution of the probability
density fP t,( ) of oscillators with phasef at time t. It satisfies the continuity equation

⎡
⎣⎢

⎤
⎦⎥òf

y y f y f
¶
¶

= -
¶
¶

-
P

t
G P t P td , , . 7( )( ) ( ) ( ) ( )

The splay state corresponds to aflat and constant density p=P 1 2( ). As already illustrated in [38], SCPS
typicallymanifests itself as a rotating non-uniformdensity, which emerges past aHopf bifurcation. It is therefore
convenient to perform a change of variables, introducing the angle q f= - Wt and q f=Q t P t, ,( ) ( ). The
corresponding evolution equation takes the form

⎡
⎣⎢

⎤
⎦⎥òq

y y q y q
¶
¶

=
¶
¶

W- -
Q

t
G Q t Q td , , . 8( )( ) ( ) ( ) ( )

For a suitably chosenΩ there exists a stationary time-independent solution qQ0 ( ), which satisfies the equation
⎡
⎣⎢

⎤
⎦⎥ò y y q y q hW - - =G Q Qd , 90 0( ) ( ) ( ) ( )

where η is the probability flux.Notice that ph2 can be interpreted as the averagemicroscopic frequency of the
single oscillators in themoving frame. yQ0 ( ) can be expanded in Fouriermodes, (the harmonics coincide with
the generalized order parameters defined in equation (3) for afinite ensemble of oscillators)

åy = y
=-¥

+¥ -Q Z e , 10
m m

m
0

i( ) ( )

where *=-Z Zm n . The stationary solution can be obtained by solving equation (9)

q
h

p
=

+ - +Wq g q g- - - -
Q

Z aZi e e c.c.
. 110

1
i

2
i 21 2

( )
[ ]

( )( ) ( )

Since the phase of the solution is arbitrary, we are free tofix it by imposing thatZ1 is real. By considering that η
can be determined by imposing a normalization onQ0, the above equation contains four unknowns: W,Z1, and
Z2 (the last variable is complex). They can be determined self-consistently by imposing

òp
y y= yZ Q

1

2
d e 12k

ki
0 ( ) ( )

for k=1, 2. The solution can be found by searching for afixed point in a four-dimensional space.

3.1. Stability analysis
Consider an infinitesimal perturbation qq t,( ) of qQ0 ( ) and linearize equation (8), making use of equation (9).
One obtains

⎡
⎣⎢

⎤
⎦⎥ò

q
q

h
q
q

q y y q y
¶

¶
=

¶
¶

- -
q t

t

q t

Q
Q G q t

, ,
d , . 13

0
0

( ) ( )
( )

( ) ( ) ( ) ( )

By expanding the perturbation in Fourier series

òp
y y= yq q t

1

2
d , ek

kiˆ ( )

4

New J. Phys. 18 (2016) 093037 PClusella et al



one can rewrite the integral in the previous equation as

ò y y q y p q- =- + - ºq g q g- - - -G q t q q a Bd , i e e c.c.1
i

2
2 i1 2( ) ( ) ( ˆ ˆ ) ( )( ) ( )

so that

⎡
⎣⎢

⎤
⎦⎥

q
q

h
q
q

q q
¶

¶
=

¶
¶

-
q t

t

q t

Q
Q B

, ,
. 14

0
0

( ) ( )
( )

( ) ( ) ( )

This equation can be expressed as a Fourier series.With the help of equation (11), it is found

p p

p p

= - W + + - +

+ + - +

g g

g g

- -
-

- + + -

- -
-

- + + -

q

t
m q Z q Z q Z q Z q

a Z q Z q a Z q Z q

d

d
i e e

e e . 15

m
m m m m m

m m m m

i
1 1 1 1

i
1 1 1 1

i
2 2 2 2

i
2 2 2 2

1 1

2 2

ˆ
{ ˆ [ ˆ ˆ ] [ ˆ ˆ ]

[ ˆ ˆ ] [ ˆ ˆ ]} ( )

Themth Fouriermode of the perturbation is coupledwith the four nearest neighbormodes ( -m 2, -m 1,
+m 1, and +m 2) aswell as with the first twomodes; the latter coupling ismediated by the amplitude of higher

components of the stationary solution Q0. In otherwords, the correspondingmatrix is sparse: it is pentadiagonal
with two full rows. As each derivative ismultiplied bym, =q 00ˆ̇ . This is a straightforward consequence of the
conservation of the total probability; therefore q0ˆ can be eliminated as it does not contribute to the eigenvalues.
By further looking at the evolution equation for q2̂, we see that it involves -q 1ˆ , so that the negativemodesmust be
included aswell. Since *=-q qm m

ˆ ˆ , it is convenient to separate qmˆ into real and imaginary part ( = +q u vim m mˆ ),
so thatwe can exploit the relationships =-u um m, = --v vm m and thereby get rid of the negativem
components. The relevant eigenvalues m m+ i IR of the resultingmatrix can be then computed by considering a
sufficiently large number of Fouriermodes.

4. Clusters andHCs

Clustered states represent another class of stationary solutions. In the biharmonicmodel such states have been
already investigated in [35, 37]. Here belowwe summarize those results that are necessary to proceed aheadwith
our general considerations.

A two-cluster state consists of two families of oscillators with phasesα andψ, respectively. Both for the sake
of simplicity and since they are themost widely observed, here, wemostly focus on the symmetric case of equal-
size clusters. The phases of the two families follow the differential equations

a y a y a y= + - = - +G G G G0 2, 0 2. 16˙ ( ( ) ( )) ˙ ( ( ) ( )) ( )

The separation d a y= - satisfies the equation

d d d d= - - = -G G G2 , 17A
˙ ( ( ) ( )) ( ) ( )

whereGA is the anti-symmetric component ofG. Two-cluster solutions are identified by the zeros ofGA; d = 0
is always a solutionwhich corresponds to a single cluster (vanishing distance between the two clusters).

In the biharmonicmodel, the symmetric and anti-symmetric component of the coupling function are

d d g g d= +G asin cos 2 cos cos , 18A 1 2( ) ( ) ( )
d g d g d= +G asin cos sin cos 2 . 19S 1 2( ) ( )

There are various solutions of the equation d =G 0A ( ) besides d = 00 : d p=0 corresponds to an antiphase two-
cluster state. Two further solutions can be found by setting to zero the expression in parentheses in equation (18);
however, these solutions represent only one physicallymeaningful state. Indeed, given a two-cluster state
characterized by a separation d0, the same state can be seen as characterized by a separation p d-2 0, if the two
clusters are exchanged. These states exist only in the parameter region delimited by the curveswhere

g g =acos 2 cos 0. 201 2 ( )
This equationwith a plus sign defines the curve G+which coincides with the bifurcation linewhere the
synchronous state loses stability, see figure 1. (In fact, d =cos 10 means d = 00 , i.e. the two-cluster solution
bifurcates from the fully synchronous one.)Theminus sign, instead, corresponds to the curve G-where the two-
cluster state becomes the antiphase one. As a result, non-trivial clustered solutions with d p¹ exist only in the
regions delimited by G+ and G- (see the two pairs of eyelets e1 and e2 infigure 1).

The stability of a two-cluster state is determined by the value of the inter- and intra-cluster exponents. The
inter-cluster exponent lI measures the stability against perturbation of the phase-separation between the two
clusters. From equation (17) it follows

l d= - ¢G . 21I A 0( ) ( )

5
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In the biharmonicmodel, d g d g d¢ = +G acos cos 2 cos cos 2A 0 1 0 2 0( ) . The intra-cluster exponents lE measure
the stability of thewidth of each cluster. From the equations ofmotion it is readily found that

l d d=- ¢ + ¢  ¢ G G G0 . 22E A A 0 S 0[ ( ) ( ) ( )] ( )

The solutionwith the plus (minus) sign refers to the cluster that is lagging behind (leading) by d0. Themaximal
eigenvalue is therefore

l d d= - ¢ + ¢ - ¢G G G0 2. 23M A A 0 S 0[ ( ) ( ) ∣ ( )∣] ( )

The inter-cluster exponent of the antiphase solution, p g g¢ = - +G acos 2 cosA 1 2( ) , is negative in between the
upper and lower branch of G- and vanishes along G-, confirming that the clustered solutions bifurcate out of the
antiphase state. This region is almost complementary to the stability area of the synchronous state, since

p¢ ¢ <G G 0 0( ) ( ) in the regionwhere other clusters do not exist. The stability of the antiphase state to intra-
cluster perturbations is controlled by (see equation (23))

l g= - a2 cos , 24M 2 ( )
so that this state is stable within the region delimited by the purple curve infigure 1.

The non-trivial two-cluster state (d p¹0 ) is unstable against inter-cluster perturbations within the eyelets e2
(because of the one-dimensional nature of the equation for δ, it has opposite stability with respect to that of the
synchronous solution), while it is stable within e1. Its intra-cluster stability can be determined from
equation (23). By taking into account that d =G 0A 0( ) , wefind that

l g d d g g d= - - + + a2 cos 1 cos sin sin 4 sin cos . 25M 1 0 0 1 2 0( ) ∣ ( )∣ ( )

Therefore, such a two-cluster state is unstable for p g p< <2 3 21 . A detailed analysis for a= 0.2 reveals that
the solution is unstable alsowithin the eyelet e1.

This is not yet the end of the story. The opposite sign of the two exponents lE implies that, while thewidth of
one cluster decreases, that of the other one diverges. However, as already discussed in [35], once thewidth of the
‘exploding’ cluster becomes of order 1, nonlinear effects (not captured by a linear stability analysis) induce a
relative phase shift of the two clusters, so that the leading cluster becomes the lagging one: this implies a stability
‘exchange’. As a consequence, the long termbehavior can be assessed after averaging over the alternating periods
of stability and instability. Symmetry reasons imply that the time duration of such two periods are equal to one
another, so that the average exponent is, in general

l d= - ¢ + ¢G G0 2. 26a A A 0[ ( ) ( )] ( )

In the biharmonicmodel

l g d= - -cos 1 cos 2. 27a 1 0( ) ( )

In the region of interest, l < 0a if g >cos 01 , i.e thefluctuations of the cluster widths on average decrease,
without ever collapsing onto it. This is nothing but an attractingHC. Because of the finite computer accuracy,
these oscillations necessarily collapse on the otherwise unstable two-cluster state.

5.Numerical simulations

5.1.Microscopic analysis
We start by exploring the parameter region identified by the rectangle infigure 1, which includes the area where
highly symmetric synchronous and asynchronous states and two-cluster states are all unstable. (Because of the
abovementioned symmetry, the upper eyelet is characterized by an equivalent dynamics.)

The outcome of a direct integration of equations (1) and (2) (starting from an initial condition close to the
splay state) is summarized infigure 2: the symbols identify the different asymptotic states, while the curves
correspond to themarginal stability lines (determined theoretically, seefigure 1). The simulation of
equations (1) and (2)was performed forN=1000; larger ensemble-size have been considered for several points
without observing any essential difference. The transient timewas ´2 104 time units.

In order to avoid the spurious formation of clusters in theHC states, wemade the oscillators slightly
heterogeneous. Namely, their frequencies (all equal to zero in equations (1) and (2)) have been taken as
uniformly distributed in the interval - ´ ´- -0.5 10 , 0.5 1012 12[ ]. This diversity, which is crucial for the
detection ofHCs, had no influence on the other dynamical states. It has been checked that variation of the
inhomogeneity in the range -- -10 1010 14 has no essential effect on the parameters of theHC. For an automatic
detection of the states, all oscillators characterized by phase differences smaller than 10−8 have been identified as
belonging to the same cluster (this thresholdwas chosen by trial and error, after a visual inspection of the
observed regimes). Bymonitoring the number of clusters, we have found that their number varies in time only in
the case ofHCs. This is due to the fact that the two cluster-widths greatly change over time, as illustrated in

6
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figure 3(b), where the phase of each oscillator is plotted versus time in a co-rotating frame. Therewe see that time
intervals where the cluster amplitude is of order one alternate with relatively long periodswhere thewidth is
extremely small, thus yielding spuriously detected clusters. The asymmetry between the behavior of the two
clusters (one of them splits into two parts) follows from the non-perfectly equal size of the two clusters. The
periodic variation of the cluster-width is reflected in periodic variation of the order parameterR1 (figure 3(a)).
Furthermore, the average frequency of themean field is larger than that of oscillators, as can be appreciated from
the plot of themean-field phase (figure 3(b)); this difference emerges due to a permanent interchange of the
leading and lagging clusters, discussed in the previous section. Thus, theHC state can be interpreted as a special
formof quasiperiodic SCPS dynamics, with a smooth but non-stationary distribution. Amovie showing the
time evolution ofHCs is included in the supplementary data (see supplementarymovie 1).

Furthermore, we noticed that some regimes are approached after a very long transient. This is particularly
true close to the stability border of different states. The points that appear as SCPS for g » 4.752 , g p» 21 ,
converge to two-cluster states if the transient time is increased.Next, consider the thin ‘belt’ of SCPS states close

Figure 2.Map of dynamical regimes of the system (1) and (2), obtained via a direct numerical simulation, starting from a slightly
perturbed splay state. The explored area corresponds to the rectangle infigure 1.Notations are as follows. Black crosses: asynchronous
solutions, blue pluses: synchrony, green square: two-cluster states, red circles: SCPS,magenta stars: heteroclinic cycles. Cyan triangle
at g = 2.72 , g = 1.21 marks a three-cluster state. Black theoretical curves are the same as infigure 1. Themaphas been computed for
1000 oscillators, with the transient time ´2 104. The three black triangles correspond to points where SCPS ismarginally stable as
obtained from equation (15).

Figure 3.Dynamics of the heteroclinic cycle. (a)Time variation ofR1 reflects the so-called slow switching. (b)Evolution of the phases
of all oscillators (black) and of themean field (red)—after subtracting the average growth. For rather long epochs oscillators are
grouped into two clusters with almost identical phases. However, these states are unstable and alternately each groupwidens until its
width becomes of order one, and then shrinks again. Notice, that there is no transfer of elements between the two groups, but the
mean field frequency is larger than that of oscillators. Indeed, we see that in the coordinate frame co-rotatingwith the frequency w, the
phase b1 drifts away. Parameters are g p=2 , g = 1.351 ,N=1000 (the dynamics is preserved for the ensemble size as large as
N = 5000). The initial conditions are a perturbed splay state. Size of the two groups is close but not equal to N 2.
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to the theoretical curve, which denotes the border of stability of full synchrony. Computations show that upon
increasing the transient time, some points that appear as SCPS states infigure 2 progressively converge towards
anHC. Thus, the SCPS in the ‘belt’ domain is probably a very long transient regime.However, for the points in
themain domain of SCPS, e.g. for g p=2 , g = 1.51 , the SCPS dynamics seems to be the asymptotic state, at least
it survives for 107 time units.

Further states have been occasionally detected (see the cyan symbol infigure 2). In particular three-cluster
states are found for g = 4.752 and  g1.58 1.661 , where the degree of synchronizationmay even oscillate in
time (three-cluster states had been already observed in [35] for a slightly different amplitude of the second
harmonic).

A detailed quantitative analysis has been performed along the line g p=2 in the parameter space. The results
are shown infigure 4, where one can recognize three critical points: (i) g p= 2s signals the loss of stability of the
splay state; (ii) g = »aarccos 2 1.159f ( ) signals the loss of stability of the fully synchronous state; (iii)
g » 1.401p signals the loss of stability of SCPS.

Upon decreasing g1 from gs, SCPS isfirst born through aHopf bifurcation from the splay state;R1 andR2

become strictly larger than zero and afinitemean-field frequency W, which corresponds to the frequency of the
Hopf bifurcation, appears discontinuously. Simultaneously, themicroscopic frequencyω deviates from zero
because of themacroscopicmodulation, without revealing any lockingwith W.

Interestingly, W is positive and always larger thanω: this is at variancewith the scenario observed in [38],
where the opposite was found.However, we should also recall that an equivalent scenario is observed in the
upper eyelet, once the transformation f f - has been performed. In fact, such a change of variable would
lead to the scenario observed in LIF neurons. Notice that for Kuramoto-likemodel of nonlinearly coupled
oscillators [24, 36] both cases ( wW > and wW < ) are possible. Altogether, the existence of afinite difference
betweenmicroscopic andmacroscopic frequencies is a key signature of a quasiperiodic SCPS.

Upon further decreasing g1, we enter a regionwhere the dynamics converges toHCswhich are characterized
by a sudden increase of the (average)R1, while no discontinuity is exhibited by gR2 1( ).When, finally, gf is

approached, unsurprisinglyR1 andR2 converge to 1, while both W andω converge to the frequency of the fully
synchronous state. The nature of the bifurcation is not clear.We briefly comment in the next section, while
discussing the stability of SCPS.

Figure 4.Numerical results for g p=2 upon varying g1. The initial conditions for each point are perturbed splay states (one
oscillator-phase being slightly displaced). Panel (a) shows the resulting state after a transient 5 × 104, coded by an integer.Heteroclinic
cycles are coded by−1; for the other states, the code equals the number of clusters. Panels (b) and (c) exhibit thefirst and the second
order parameters, respectively. Black circles correspond to numerical simulations; red lines are the results obtained by solving
equation (11).Macroscopic andmicroscopic frequencies are shown in (d): black circles and green squares are the frequencies of the
mean field and of the oscillators, respectively, determined numerically (since the oscillators are slightly non-identical, the oscillator
frequency is obtained by averaging over all units). Red and blue curves correspond to the analytical solution. The vertical dotted lines
mark gf , gp, and gs, respectively (see text).
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The sudden jump observed for g g= p1 suggests the possible existence ofmultistability. Accordingly, we

have performed two additional series of simulations, by progressively increasing (decreasing) g1, and choosing
the new initial condition as a slightly perturbed version of the final configuration for the previous value of g1. As
shown infigure 5, a bistability region is indeed foundwhereHCs and SCPS are simultaneously stable.

5.2.Macroscopic analysis
For amore detailed characterization of SCPS, we have determined the corresponding probability distribution by
solving equation (11), as discussed in section 3. Thismethod allows to obtain the phase distribution evenwhen it
is unstable. As it can be seen infigure 4 (see the thin solid lines), the results are consistent with the direct
numerical simulationswherever SCPS is stable.Moreover, it is found that SCPS exists also in the interval g g,f p[ ]
and it reconnects to the fully synchronous state. As for themicroscopic frequencyω, given by

w ph= W + 2 ,

it also agrees with the numerical simulations.
The stability analysis carried out in section 3 allows determining gp by solving the eigenvalue problem (15). A

typical spectrum is plotted infigure 6. Therewe see that, with a few exceptions, the eigenvalues tend to align
along the imaginary axis. Besides the zero associated to the conservation of the total probability, there exists a

Figure 5. Illustration of themultistability in the collective dynamics, for g p=2 upon varying g1. Black symbols correspond to
perturbed splay initial conditions (see alsofigure 4); red curves correspond to slow increase of g1. Panels (a)–(c) are similar to those in
figure 4, panel (d) shows the frequency difference. Computations with slow decrease of g1 are not shown because their results coincide
with the black symbols.

Figure 6.Eigenvalues of SCPS for g p=2 and g = 1.451 . Circles and crosses correspond to a truncation after 100 and 500modes,
respectively.
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second zero eigenvalue which follows from the invariance under phase-translation of the probability density. In
panel (b)we see that the real part of the eigenvalues decreases exponentially with their imaginary component.
The plateau seen for large mI is a consequence of the finite numerical accuracy of the simulations. Interestingly,
finite-size effects are practically absent (at least in this parameter region): a larger number of Fouriermodes leads
to eigenvalues with a larger frequency (imaginary component) and an exponentially small real part.

In practice, SCPS ismarginally stable, as there is an infinite number of eigenvalues with a practically
vanishing real part. The evolution of a uniformdistribution initially confined to an interval of size p - D2 0

offers the chance to appreciate the role of theweakly attracting directions. As seen infigure 7, the gap size goes to
zero, but it does so in an extremely slowway, namely as t1 ln .

In the past, the evidence of a similarly slow convergencewas found for the splay state itself. In the context of
pulse-coupled oscillators with an analytic velocityfield a similar set of exponentially decreasing real parts had
been observed [41, 42]. In the context of Kuramoto–Daidomodels, the strength of the real part is directly
proportional to the amplitude of the Fourier component of the coupling function (see equation (C2) in [38]), so
that, when the number of Fouriermodes isfinite, infinitelymany strictlymarginal directions are present (in the
thermodynamic limit). This is reminiscent of theWatanabe–Strogatz theorem [43, 44]which implies that (for a
strictlymono-harmonic coupling function) infinitelymany directions are not only linearlymarginally stable but
actually correspond to conservation laws.Our results show that the existence of conservation laws breaks down
alreadywhen two harmonics are considered. In fact, although exactlymarginally stable directions are detected in
the analysis of the splay state (here only two Fouriermodes are present, so that only two directions can be strictly
(un)stable), the same is no longer true for SCPS, as allmodes have aweak butfinite stability.

Infigure 8we plot the real and imaginary part of themost unstable eigenvalue versus g1. The data confirms
that linear instability occurs below gp: the bifurcation is ofHopf type. SCPS ismaximally unstable around

g » 1.331 . By further decreasing g1, both the real and the imaginary parts decrease to zero, while approaching gf .

Figure 7.Evolution of an initially flat distributionwith a gapD 0( ) for g = 1.51 and g p=2 , where SCPS is stable. The inverse
gap-width D1 is shown as a function of time, for pD =0 7( ) and p 5, (black and red lines, respectively).

Figure 8. Stability analysis of the splay state for the biharmonicmodel. Real and imaginary part of the eigenvalues for themaximally
unstable direction for g p=2 are shown versus g1. The left (right) scale refers to the real (imaginary) part. The solid and dashed lines
correspond to the real and imaginary components, respectively. The full circle identifies the point where the fully synchronous
solution changes stability.
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From the dependence of the real part, it seems that the scaling behavior is quadratic in the distance from the
critical point. The nature of the bifurcation is unclear: simulations close to gf are not reliable. It is nevertheless

instructive to notice that theweak instability is consistent with the observation of SCPS over extremely long time
scalesmentioned in the beginning of this section. The correct identification of the critical point is further
confirmed infigure 2, where the triangles are the outcome of the stability analysis for three different choices
of g2.

6.Other setups

So far, we have discussed the occurrence of SCPS in a simple Kuramoto–Daido setupwhere the coupling
function is composed of just two Fourier harmonics. TheKuramoto–Daido representation generally holds in
theweak coupling limit; however, the bi-harmonic coupling functionmay be too simple amodel and it is
therefore worth comparingwith other setups. As recalled in the introduction, SCPSwas first observed in pulse-
coupled LIF neurons [25]. In [38], it has been shown that the system can be effectively described by aKuramoto–
Daidomodel with a coupling function containing several non-negligible harmonics. In the first subsectionwe
show that such harmonics contribute to destabilizing the two-cluster states that are, in fact, never observed. In
the second subsectionwe discuss an ensemble of two-dimensional Rayleigh oscillators each described by two
variables, showing that SCPS can be generated in this case as well. A phase reductionworks also in this latter case,
where the higher harmonics play a different role: they are responsible for the destabilization of the splay state,
giving rise tomore structured cluster states.

6.1. LIF neurons
One of the important open questions in the study of ensembles of phase-oscillators is that of determining a priori
whether a given coupling functionG gives rise to either smooth distributions, ormacroscopic clusters, or both.
In this perspective it is instructive to explore the difference between the scenario seen in the biharmonicmodel
and that observed in an ensemble of LIF neurons. In such a case themodel can be reduced to aKuramoto–Daido
setupwith

j j= - + + -a j n j n- -G g g g g1 e e 281 2
1

3
1

4( ) ( ) ( )( ) ( )

(see [38] for a precise definition of the various parameters—notice that herewe are using a different notation
—j instead off—since in the above equation the phase is normalized between 0 and 1). Correspondingly we
change notations in this paragraph. Straightforward calculations reveal that two-cluster states exist also in the
abovemodel, themain difference being, however, that now (for a = 6), the average exponent l > 0a , so that
two-cluster states are effectively unstable, i.e. no any spurious cluster is appearing due to the finite precision of
computations. This explains why they have never been seen in numerical simulations.

It is natural to askwhether this holds true for arbitrarily largeα, when the SCPS becomes increasingly close
to full synchrony.We proceed by expandingGA around 0 in the limit of largeα. One first finds

n
n

¢ = -
+

-tG
a g

0 e 1 ,A ( ) ( )

which is negative and finite. Comparisonwith equation (17), implies that the synchronous solution is always
unstable. As for the second derivative, the leading order

a
n n

 =
-
+

t
G

a g
0

e 1

2
A

3( )
( )

is positive and increasingly large. As a result, on the basis of thefirst two polynomial terms of dGA ( ), onefinds
that it vanishes also for

d
n
a

=
2

. 290

2

3
( )

This phase shift identifies a two-cluster state; its value decreases as the cubic power of the pulse-width (equal to
a1 ). Under this quadratic approximation, the slope ofGA in 0 and d0 are equal and opposite to one another, so

thatl = 0T . Thismarginal value requires going one order beyond in the perturbation analysis. The computation
of the third derivative shows that it is negative and of order a4. As a result its contribution to the derivative in d0

is of order a d a» 14
0
2 2. Thismakes the sumof the derivatives in 0 and d0 slightly negative and proves that the

two-cluster state is always effectively unstable.
If we recall the definition ofGA, onemight be surprised to see that its expansion around 0 contains the

second, even, power ofj. One should however remember that the original functionG is continuous but not
even of class  ;1( ) so it is not unnatural to expect a discontinuity of some derivative in zero.
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In smoothmodels, in the vicinity of the bifurcationwhere the synchronized solution loses its stability (e.g.,
for the biharmonicmodel) one canwrite

j ej j= - +G A . 30A
3( ) ( )

If >A 0 and e > 0, then there exists a second zero d e= A0 , which corresponds to the clustered solution.
Therefore

l e j e= - = - <A2 3 0, 31T 0
2 ( )

so that smooth interaction functions necessarily lead to effectively stable two-cluster states (at least with respect
to intracluster perturbations).

Evenmore, equation (27) yields that in the biharmonicmodel no effectively unstable clustermay exist: only
HCs. For these clusters to exist, higher harmonics are needed.

6.2. Rayleigh oscillators
In order to provide further evidence on the ubiquity of SCPS, we present a numerical study of globally coupled
identical Rayleigh oscillators4. The equations are

z w e- - + = +gx x x x X Y¨ 1 Re e i , 32k k k k
2 2 i( ˙ ) ˙ [ ( )] ( )

where = å-X N xk k
1 and = å-Y N xk k

1 ˙ are twomeanfields, while e is the coupling strength. Finally, the
control parameter γ accounts for a phase shift of the coupling term: it determines whether the interaction is
attractive or repulsive.

It is well-known that uncoupled units in equation (32) exhibit limit-cycle oscillations, while the nonlinearity
parameter ζ determines the stability of the limit cycle. Belowwe consider z = 5; for this parameter the
transversal Lyapunov exponent is−7.358. Therefore, adiabatic elimination of the amplitude is rather
meaningful.

An appropriate order parameter is

r = X xrms rms , 33( ) ( ) ( )

Figure 9. Self-consistent partial synchrony is observed inmodel (32) for a rather broad range of γ values. Panel (a) shows the final state:
the y variable corresponds to the number of clusters, if it does not varywithin a long time interval, or to−1, otherwise (such a regime
appears at the border between the synchronous and two-cluster states and between SCPS and nine-cluster states; possibly these states
simply suggest the presence of very long transients). Thus, the state coded by zero corresponds to SCPS. Panel (b) shows the order
parameter. In the two-cluster states it is almost one, because the clusters are close to each other. In the SCPS state it varies between
»0.4 and »0.8. Finally, panel (c) shows the frequency difference betweenmicroscopic andmacroscopic dynamics, which differs from
zero in SCPS.

4
This system is equivalent to the van der Pol equation; they are related via the variable substitution x x 3˙ .We prefer this formulation

of themodel for technical reasons.
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where ‘rms’means rootmean square of the time evolution. The splay state is characterized by a constantmean
field and thereby r = 0. In the fully synchronous state, for identical oscillators, themicroscopic and
macroscopic dynamics are equivalent to one another so that r = 1.

The scenario resulting forN=1000, e = 0.05, z = 5, and transient time ´7.5 105 is reported infigure 9.
It is reminiscent of that observed in the biharmonicmodel, with some differences. SCPS establishes itself in
between the parameter rangewhere full synchrony is stable (below g » -0.6) and the regionwhere ρ is
negligible (above g » 0.05). In this case, themeanfield is slower than the individual oscillators, as in the upper
eyelet of the biharmonicmodel, see figure 2. The regime characterized by a vanishing ρ is not asynchronous but a
symmetric nine-cluster state (see also below). In fact, the splay state turns out to be unstable in the full range of γ
values that we have explored. Finally, in the interval - -0.6, 0.2[ ]we see a slow convergence towards a two-
cluster state (the large value of the order parameter ρ is due to the closeness between the two clusters).

The dynamics of the coupled system equation (32) can be better understood by performing a phase
reduction. This can be done by introducing a phase variable for each individual oscillator,making reference to
the uncoupled limit (i.e. e = 0): f p= t T2k k , where tk is the time elapsed from the passage through a chosen
origin x=0, >x 0˙ , whileT is the oscillation period.

In theweak coupling limit, the original Rayleigh oscillators (32) can bemapped onto aWinfreemodel

åf w
e

f f= + G
N

Z , 34k k
j

j0
˙ ( ) ( ) ( )

where fG( ) is the phase response curve (PRC), while fZ ( ) is the forcing function. fG( ) can be obtained by
following a standard approach: it corresponds to the phase shift imposed by an infinitesimal kickwhen the phase
of the oscillator isf. The resulting PRC is reported infigure 10 (see the red dotted curve). The forcing functionZ
is instead obtained by expressing the coupling termdue to the jth oscillator +g x xRe e ij j

i[ ( ˙ )]as a function of fj

(see the blue dotted curve infigure 10). Finally, following [12, 38], one can furthermap theWinfreemodel (34)
onto aKuramoto–Daidomodel, by computing the convolution ofΓ andZ, i.e.

òf f y y y= G -G Z d . 35R ( ) ( ) ( ) ( )

The resulting coupling function corresponds to the black curve infigure 10. Fourier analysis shows that even
modes are absent: this follows from the symmetry of the limit cycle: addingπ to the phase results in changing the
sign of both the PRC and forcing term.

In order to test the validity of the Kuramoto–Daido reduction, it has been simulated for eight harmonics.
The resulting scenario is in close agreement with that one exhibited by the original ensemble of Rayleigh
oscillators, including the observation of nine-cluster states.Within theKuramoto–Daido representation, one
can easily perform a stability analysis of both the splay and synchronous state. As discussed in [38], the stability of
the splay state is determined by the imaginary components of the Fouriermodes ofGR. In table 1we show the
contribution of thefirst eight non-vanishing components for g = 0.2, where a zero order parameter is
observed. In fact, the splay state turns out to be unstable because of the contribution of the 7th and higher
harmonics. This is at variance with the biharmonicmodel, where the stability was determined by the first
Fouriermode.

As for the fully synchronous state, its stability is determined by the sign of ¢G 0R ( ). The bifurcation point
where it changes stability is g - 0.573 in agreementwith the numerical simulations of the originalmodel (32).

Figure 10.Phase response curveΓ (red dashed line), the forcing functionZ (blue dotted) of theWinfreemodel equation (34), and the
coupling functionGR of theKuramoto–Daido reduction (black) for g = -0.4.
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For larger values of γ and below−0.2, the Kuramoto–Daidomodel possesses two-cluster states. Following
the analysis outlined in section 4, we conclude that two-cluster states are effectively stable. In fact, for g = -0.4,
the inter-cluster exponent l d= - ¢ = -G 0.0669I A 0( ) is negative, while l =+ 0.0869E , and l = -- 0.1146E .
Accordingly the average exponent l = -0.01385a is negative, in spite of one of the two intra-cluster exponents
being positive. Altogether, the scenario is similar to that observed in the biharmonicmodel.

7. Conclusions

In this paper we have shown that SCPS is a general phenomenon, arising inmany setups of globally coupled
oscillators. This regime naturally emerges if the system is close to the border between full synchrony and
asynchrony. In fact, theminimal requirement for SCPS to arise is the presence of twoharmonics in the coupling
function fG ( ). This condition is naturally fulfilled inweakly coupled oscillators away from theHopf
bifurcation. As an example we have indeed verified that SCPS arises also in an ensemble of Rayleigh oscillators,
where an approximate coupling function containing eight Fouriermodes suffices to quantitatively reproduce
the dynamics of the originalmodel. Altogether, SCPS is yet another dynamical regime that cannot be produced
by the standardKuramoto–Sakaguchimodel. In fact, both SCPSwith andwithout frequency difference can be
obtained in amodel, based on strictly sinusoidal coupling function, but it requires a dependence on the coupling
strength and/or the phase shift of the sine-function on the order parameter, i.e. SCPS can be observed in case of
nonlinear coupling only. This limitation disappears for ourminimal Kuramoto–Daidomodel.

Themathematical structure of Kuramoto–Daidomodels allows for a semi-analytic treatment: it is not only
possible to determine the probability distribution of the phases, but also to perform a linear stability analysis and
thereby determine the parameter range, where SCPS can be effectively observed. In the biharmonicmodel and
the Rayleigh oscillators, the loss of stability of SCPS drives the system towards aHC,which can itself be
interpreted as a (more structured) formof SCPS: here, besides a difference between themicroscopic andmean
field frequencies, a pulsation of the amplitude is present. In LIF neurons, instead, SCPS is always stable, while
two-cluster states are always unstable.

It would be interesting to discover whether and under which conditions other kinds of bifurcation can drive
SCPS towardsmore complex forms of collective dynamics. This question is related to that of identifying the
number of relevant collective variables. A fairly trivial answer can be given in the case of perfect clusters, as it
boils down to studying low-dimensional networks composed of a few ‘supernodes’ (the clusters themselves).
The question ismuch less trivial in the context of smooth distributions such as those associated to SCPS.
Possibly, the first example of a complex behavior in a globally coupled partially synchronized systemwas given in
[45], where theMorris–Lecar neuronal oscillators were analyzed numerically. However, this is a setupwhere
phase-reduction is not globally possible.More recently, evidence of a chaotic collective behavior has been found
in a population of quadratic IF neurons [46], where, however, the higher dynamical complexity is triggered by
the presence of delayed interactions. So the questionwhether identical phase-oscillators can lead to collective
chaos is still open.

Another open general problem is that of using the information encoded in the coupling function to predict
whether SCPS and/or cluster states can be generated. In the case of a sinusoidal coupling, the situation is
simplified by the fact that clusters are not possible: their existence is excluded by theWatanabe–Strogatz theory
[43, 44], see also [17, 34]. Thus, when the splay and synchronous states are both unstable, SCPS is the only
possible solution. Inmore general contexts cluster states sometimes coexist with SCPS, aswell as with chimera-
like solutions.

Table 1.Eigenvalues associated to the stability
of the splay state for γ=0.2. The index
refers to the Fouriermodewhich they are
associatedwith.

Index Real part Imaginary part

1 −1.6×10−2 2.1×10−1

3 −5.6×10−2 1.5×10−2

5 −1.6×10−2 1.9×10−2

7 3.0×10−3 1.0×10−2

9 4.0×10−3 1.7×10−3

11 1.5×10−3 5.0×10−4

13 3.8×10−4 4.3×10−4

15 7.9×10−5 1.8×10−4

14

New J. Phys. 18 (2016) 093037 PClusella et al



Acknowledgments

Wewish to acknowledge APikovsky andMZaks for useful discussions. This work has been financially
supported by the EUproject COSMOS (642563).

References

[1] BuzsákiG 2006Rythms of the Brain (Oxford:OxfordUniversity Press)
[2] FangX,Misara S, XueG andYangD 2011 IEEECommun. Surv. Tutorials 14 944–80
[3] CraciunG and Pantea C 2008 J.Math. Chem 44 1
[4] Grollier J, CrosV and Fert A 2006Phys. Rev.B 73 060409
[5] LiD, ZhouY, ZhouC andHuB2010Phys. Rev.B 82 140407
[6] PikovskyA 2013Phys. Rev.E 88 032812
[7] Prindle A, Samayoa P, Razinkov I, DaninoT, Tsimring L S andHasty J 2012Nature 481 39–44
[8] Winfree AT 1980TheGeometry of Biological Time (Berlin: Springer)
[9] KuramotoY 1984Chemical OscillationsWaves andTurbulence (Berlin: Springer)
[10] Strogatz SH2000PhysicaD 143 1–20
[11] PikovskyA, RosenblumMandKurths J 2001 Synchronization. AUniversal Concept inNonlinear Sciences (Cambridge: Cambridge

University Press)
[12] GolombD,Hansel D andMatoG 2001Mechanisms of synchrony of neural activity in large networksNeuro-informatics andNeural

Modeling (Handbook of Biological Physics vol 4) ed FMoss and SGielen (Amsterdam: Elsevier) pp 887–968
[13] Manrubia S C,Mikhailov A S andZanetteDH2004Emergence of Dynamical Order: Synchronization Phenomena in Complex Systems

(LectureNotes in Complex Systems vol 2) (Singapore:World Scientific)
[14] Acebron J A, Bonilla L L, Vicente C J P, Ritort F and Spigler R 2005Rev.Mod. Phys. 77 137–75
[15] Arenas A,Díaz-Guilera A, Kurths J,MorenoY andZhouC 2008Phys. Rep. 469 93–153
[16] BreakspearM,Heitmann S andDaffertshofer A 2010 Frontiers Hum.Neurosci. 4 190
[17] PikovskyA andRosenblumM2015Chaos 25 097616
[18] YeldesbayA, PikovskyA andRosenblumM2014Phys. Rev. Lett. 112 144103
[19] OkudaK 1993PhysicaD 63 424–36
[20] Schmidt L, Schönleber K, Krischer K andGarcía-Morales V 2014Chaos 24 013102
[21] Sethia GC and SenA 2014Phys. Rev. Lett. 112 144101
[22] FilatrellaG, PedersenNF andWiesenfeld K 2007Phys. Rev.E 75 017201
[23] Giannuzzi F,MarinazzoD,Nardulli G, PellicoroMand Stramaglia S 2007Phys. Rev.E 75 051104
[24] PikovskyA andRosenblumM2009PhysicaD 238 27–37
[25] vanVreeswijk C 1996Phys. Rev.E 54 5522–37
[26] RosenblumMandPikovskyA 2015Phys. Rev.E 92 012919
[27] Ehrich S, PikovskyA andRosenblumM2013Eur. Phys. J. Spec. Top. 222 2407–16
[28] DaidoH1993PhysicaD 69 394–403
[29] DaidoH1993Prog. Theor. Phys. 89 929–34
[30] DaidoH1996PhysicaD 91 24–66
[31] DaidoH1996Phys. Rev. Lett. 77 1406–9
[32] KuramotoY 1975 Self-entrainment of a population of coupled nonlinear oscillators International Symposium onMathematical

Problems in Theoretical Physics (LectureNotes Physics vol 39) edHAraki (NewYork: Springer) p 420
[33] SakaguchiH andKuramotoY 1986Prog. Theor. Phys. 76 576–81
[34] Engelbrecht J R andMirollo R 2014Chaos 24 013114
[35] Hansel D,MatoG andMeunier C 1993Phys. Rev.E 48 3470–7
[36] RosenblumMandPikovskyA 2007Phys. Rev. Lett. 98 064101
[37] KoriH andKuramoto Y 2001Phys. Rev.E 63 046214
[38] Politi A andRosenblumM2015Phys. Rev.E 91 042916
[39] KomarovMandPikovskyA 2013Phys. Rev. Lett. 111 204101
[40] KomarovMandPikovskyA 2014PhysicaD 289 18–31
[41] CalamaiM, Politi A andTorcini A 2009Phys. Rev.E 80 036209
[42] Olmi S, Politi A andTorcini A 2014 Frontiers Comput. Neurosci. 8 8-1
[43] Watanabe S and Strogatz SH 1993Phys. Rev. Lett. 70 2391–4
[44] Watanabe S and Strogatz SH 1994PhysicaD 74 197–253
[45] Han SK,Kurrer C andKuramotoY 1995Phys. Rev. Lett. 75 3190–3
[46] PazóD andMontbrió E 2016Phys. Rev. Lett. 116 238101

15

New J. Phys. 18 (2016) 093037 PClusella et al

http://dx.doi.org/10.1109/SURV.2011.101911.00087
http://dx.doi.org/10.1007/s10910-007-9307-x
http://dx.doi.org/10.1103/PhysRevB.73.060409
http://dx.doi.org/10.1103/PhysRevB.82.140407
http://dx.doi.org/10.1103/PhysRevE.88.032812
http://dx.doi.org/10.1038/nature10722
http://dx.doi.org/10.1038/nature10722
http://dx.doi.org/10.1038/nature10722
http://dx.doi.org/10.1016/S0167-2789(00)00094-4
http://dx.doi.org/10.1016/S0167-2789(00)00094-4
http://dx.doi.org/10.1016/S0167-2789(00)00094-4
http://dx.doi.org/10.1103/RevModPhys.77.137
http://dx.doi.org/10.1103/RevModPhys.77.137
http://dx.doi.org/10.1103/RevModPhys.77.137
http://dx.doi.org/10.1016/j.physrep.2008.09.002
http://dx.doi.org/10.1016/j.physrep.2008.09.002
http://dx.doi.org/10.1016/j.physrep.2008.09.002
http://dx.doi.org/10.3389/fnhum.2010.00190
http://dx.doi.org/10.1063/1.4922971
http://dx.doi.org/10.1103/PhysRevLett.112.144103
http://dx.doi.org/10.1016/0167-2789(93)90121-G
http://dx.doi.org/10.1016/0167-2789(93)90121-G
http://dx.doi.org/10.1016/0167-2789(93)90121-G
http://dx.doi.org/10.1063/1.4858996
http://dx.doi.org/10.1103/PhysRevLett.112.144101
http://dx.doi.org/10.1103/PhysRevE.75.017201
http://dx.doi.org/10.1103/PhysRevE.75.051104
http://dx.doi.org/10.1016/j.physd.2008.08.018
http://dx.doi.org/10.1016/j.physd.2008.08.018
http://dx.doi.org/10.1016/j.physd.2008.08.018
http://dx.doi.org/10.1103/PhysRevE.54.5522
http://dx.doi.org/10.1103/PhysRevE.54.5522
http://dx.doi.org/10.1103/PhysRevE.54.5522
http://dx.doi.org/10.1103/PhysRevE.92.012919
http://dx.doi.org/10.1140/epjst/e2013-02025-8
http://dx.doi.org/10.1140/epjst/e2013-02025-8
http://dx.doi.org/10.1140/epjst/e2013-02025-8
http://dx.doi.org/10.1016/0167-2789(93)90102-7
http://dx.doi.org/10.1016/0167-2789(93)90102-7
http://dx.doi.org/10.1016/0167-2789(93)90102-7
http://dx.doi.org/10.1143/ptp/89.4.929
http://dx.doi.org/10.1143/ptp/89.4.929
http://dx.doi.org/10.1143/ptp/89.4.929
http://dx.doi.org/10.1016/0167-2789(95)00260-X
http://dx.doi.org/10.1016/0167-2789(95)00260-X
http://dx.doi.org/10.1016/0167-2789(95)00260-X
http://dx.doi.org/10.1103/PhysRevLett.77.1406
http://dx.doi.org/10.1103/PhysRevLett.77.1406
http://dx.doi.org/10.1103/PhysRevLett.77.1406
http://dx.doi.org/10.1143/PTP.76.576
http://dx.doi.org/10.1143/PTP.76.576
http://dx.doi.org/10.1143/PTP.76.576
http://dx.doi.org/10.1063/1.4858458
http://dx.doi.org/10.1103/PhysRevE.48.3470
http://dx.doi.org/10.1103/PhysRevE.48.3470
http://dx.doi.org/10.1103/PhysRevE.48.3470
http://dx.doi.org/10.1103/PhysRevLett.98.064101
http://dx.doi.org/10.1103/PhysRevE.63.046214
http://dx.doi.org/10.1103/PhysRevE.91.042916
http://dx.doi.org/10.1103/PhysRevLett.111.204101
http://dx.doi.org/10.1016/j.physd.2014.09.002
http://dx.doi.org/10.1016/j.physd.2014.09.002
http://dx.doi.org/10.1016/j.physd.2014.09.002
http://dx.doi.org/10.1103/PhysRevE.80.036209
http://dx.doi.org/10.3389/fncom.2014.00008
http://dx.doi.org/10.1103/PhysRevLett.70.2391
http://dx.doi.org/10.1103/PhysRevLett.70.2391
http://dx.doi.org/10.1103/PhysRevLett.70.2391
http://dx.doi.org/10.1016/0167-2789(94)90196-1
http://dx.doi.org/10.1016/0167-2789(94)90196-1
http://dx.doi.org/10.1016/0167-2789(94)90196-1
http://dx.doi.org/10.1103/PhysRevLett.75.3190
http://dx.doi.org/10.1103/PhysRevLett.75.3190
http://dx.doi.org/10.1103/PhysRevLett.75.3190
http://dx.doi.org/10.1103/PhysRevLett.116.238101

	1. Introduction
	2. The model
	3. Self-consistent partial synchronization
	3.1. Stability analysis

	4. Clusters and HCs
	5. Numerical simulations
	5.1. Microscopic analysis
	5.2. Macroscopic analysis

	6. Other setups
	6.1. LIF neurons
	6.2. Rayleigh oscillators

	7. Conclusions
	Acknowledgments
	References



