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Given the aspirational target of limiting global temperature rise to below 1.5°C compared to 

pre-industrial temperatures agreed in Paris in December 2015, and the UK’s recently stated 

target of net zero emissions, there is urgency among UK policy makers to assess the technical 

potential for, and limitations of, Negative Emissions Technologies (NETs) in the UK. In this 

study we assess the maximum technical potential for a range of NETs, namely Bioenergy 

with carbon capture and storage, direct air capture of CO2 from ambient air, enhanced 

weathering of minerals, afforestation / reforestation, soil carbon sequestration and biochar. 

We also assess the impact of NET implementation on land, greenhouse gas balance, energy 

requirements, water use, nutrient use, albedo and cost. 
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The aggregate technical potential for land-based negative 

emissions technologies (NETs) in the UK is estimated to be 12-49 

MtC-eq./yr, representing around 8-32% of current emissions. The 

proportion of this potential that could be realized is limited by a 

number of cost, energy and environmental constraints which vary 

greatly between NETs. 

Introduction 
 

Future increases in global average temperature will be 

determined largely by cumulative emissions of CO2 1. As a 

result, net global CO2 emissions will need to reach near zero in 

order to limit temperature change. Negative Emissions 

Technologies (NETs) are likely to be important in reaching net 

zero emissions, or below, given the difficulty in completely 

eliminating greenhouse gas (GHG) emissions from all human 

activities. In order to avoid warming of more than 2ᵒC with a 

>50% chance, most recent scenarios from Integrated 

Assessment Models (IAMs) include the large-scale deployment 

of NETs within a few decades2-9. More stringent temperature 

limits imply an even greater need for NETs, deployed on 

shorter timescales10. Since society must decide which 

mitigation pathways are desirable to tackle climate change, 

information on the potential risks and opportunities afforded 

by all NETs is necessary. 

 

Two recent studies have examined the global technical 

potential for terrestrial NETs, and their impacts on land, 

greenhouse gas balance, energy requirements, water use, 

nutrient use, albedo and cost. First, Smith et al.11 reviewed and 

analysed the biophysical and economic limits to 

implementation for a number of NETs: (1) Bioenergy (BE
12

) 

with carbon capture and storage (CCS; together referred to as 

BECCS
13

), (2) direct air capture of CO2 from ambient air by 

engineered chemical reactions (DAC
14,15

), (3) enhanced 

weathering of minerals (EW
16-18

) where natural weathering to 

remove CO2 from the atmosphere is accelerated, and the 

products stored in soils, or buried in land/deep ocean and (4) 

afforestation and reforestation (AR
19-21

) to fix atmospheric 

carbon in biomass and soils. Second, Smith
22

, examined other 

land based options, namely (5) soil carbon sequestration (SCS) 

through changed agricultural practices (which include activities 

such as less invasive tillage with residue management, organic 

amendment, improved rotations / deeper rooting cultivars, 

optimized stocking density, fire management, optimised 

nutrient management and restoration of degraded lands
23,24

), 

and (6) converting biomass to recalcitrant biochar, for use as a 

soil amendment25. IAMs have so far focused primarily on 

BECCS5,26,27 and AR28-30. For reasons of tractability, the analysis 

of Smith et al.11 did not consider (7) manipulation of uptake of 

carbon by the ocean either biologically (i.e. by fertilizing 

nutrient limited areas31,32) or chemically (i.e. by enhancing 

alkalinity33). 

 

Figures 1 depicts the main flows of carbon among 

atmospheric, land, ocean and geological reservoirs for fossil 

fuel combustion (Fig. 1a), BE (Fig. 1b), CCS (Fig. 1c), and the 

altered carbon flows for BECCS (Fig. 1d), for DAC (Fig. 1e), EW 

(Fig. 1f), AR, SCS, biochar, and sequestration in construction 

materials (Fig. 1g – the latter not assessed here), ocean 

fertilization (Fig 1h – not assessed here), and biochar addition 

to soil as part of BECCS (Fig. 1i). 

 

In this study, the per-t-C impacts of negative emissions derived 

in 11,22, and areas available in the UK for land based NETs, are 

used to make preliminary estimates of the potential for, and 

impacts of, terrestrial NETs in the UK. The estimates consider 

the use of UK land specifically; they do not consider possible 

imports and exports of resources from land outside the UK.  
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Systemic, holistic issues need to be considered for NETS 

deployment
34

 and are probably the most immediate aspects of 

developing these technologies which need to be addressed. It 

must be noted that this is a preliminary, technology focussed 

assessment that takes no account of such socio-political 

aspects of NETs deployment, which when considered would be 

expected to lower considerably the technical potentials 

estimated here. Further, whilst the best available data have 

been used, different technologies are at different stages of 

development (e.g. AF and SCS widely applied already; DAC yet 

to be demonstrated at scale), and the quantity and quality of 

data varies greatly between technologies
11

. 

Figure 1. Schematic representation of carbon flows among 

atmospheric, land, ocean and geological reservoirs. See text 

for details (adapted from 
11,22

). 

 

Materials & Methods 
 

Sources of data used to estimate impacts of NETs on a per-t-

Ceq. are described in 
11

 and 
22

 except for values for EW where 

a detailed UK study exists
35

 and values from this study are 

used. For BECCS, dedicated energy crops are assumed as in 
11

. 

Impact were scaled to the UK level by multiplying per-t-C-eq. 

impact values by available land areas for each technology 

defined from the UKERC spatial modelling of bioenergy study 

in the UK described in Lovett et al.
 36

 using a similar approach 

to that used for NETs at the global scale
11,22

. The difference in 

approach here is that available areas in the UK were used to 

constrain the potentials, rather than using exogenously 

estimated potentials from IAMs and / or literature values. 

Available land areas
36

 are: a) 8.5Mha for all land not excluded 

by all UKERC constraints, including a high naturalness score, 

6.4 Mha using “a”, but also excluding all Grade 1 and 2 (prime) 

agricultural land, and 1.5 Mha using “a”, but also excluding all 

Grade 1, 2 and 3 (prime and good quality) agricultural land. To 

put these land grades into context, about half of all agricultural 

land in England is Grade 3
37

, so including grade 3 land is 

realistic to avoid large scale competition with agriculture
35

. 

 

For EW, Renforth
35

 lists all of the potential mineral sources in 

the UK. The total resource suitable for EW available in the UK 

is 1669 Gt rock, mostly basic silicates with a negative emission 

potential of 0.082 t C/t rock, and a small proportion of these as 

ultrabasic rocks with a negative emission potential of 0.218 t 

C/t rock. The total negative emission potential of the total UK 

mineral resource is 117 Gt C 35, which is a maximum technical 

potential; the potential that could ever be realised in reality is 

likely to be much lower due to a number of constraints35. 

 

The negative emission potential is largely dependent on the 

rate at which it is spread onto soils after comminution18. Even 

if spread at 50 t rock/ha/yr, the highest rate considered in 

Renforth35 and Taylor et al.18, only 0.425 Gt mineral would be 

required to cover the 8.5 Mha of land available – a small 

fraction of the 1669 Gt rock potentially available in the UK, so 

the availability of suitable rock in the UK is not limiting. What 

limits the negative emission potential is the application rate 

with the rates used by Taylor et al.18 examined here: 

  

• 0.4 t rock/ha/yr is the rate at which lime is typically applied 

to agricultural land35 

• 10 t rock/ha/yr is the “low” rate examined in Taylor et al.18, 

similar to nutrient poor soils, even though this is considerably 

larger than the typical application rate for lime in agriculture 

• 50 t rock/ha/yr is the “high” rate noted in both Renforth35 

and Taylor et al.18. This would likely be inconsistent with 

agricultural use of the land, especially with mineral residues. 

 

Results 
 
Impacts of NETs on a per-t-Ceq. removal basis  

Values for impact of NETs on a per-t-Ceq. removal basis are 

shown in table 1. For full details see 11,22. 

 

[Tables attached as separate file] 

 

Table 1. Low and high per-t-Ceq. negative emissions impact 

values used in the calculation for UK impacts of NETs. All 

values for SCS and Biochar are from 22. All values for BECCS, 

AR, DAC and are from 11, and for EW from calculations based 

on 35, except for Potassium values for AR which were 

calculated from values in Ovington and Madgwick38, and 

Potassium values for BECCS (Miscanthus) calculated from 

values in Roncucci et al.
39

. All estimates are nominally for 2100 

except for costs which are for 2050. 

 

 

Page 4 of 17Environmental Science: Processes & Impacts

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Journal Name  COMMUNICATION 

This journal is © The Royal Society of Chemistry 20xx Environmental Science: Processes & Impacts, 2016, 00, 1-3 | 3 

Please do not adjust margins 

Please do not adjust margins 

UK land available for use for NETs 

Since implementation of BECCS and AR use land that can no 

longer be used for food production, the areas available for 

BECCS and AR in the UK are assumed to be those defined in 

the UKERC mask that excludes Grades 1-3 agricultural land (1.5 

Mha). Similarly, land used for growing feedstock for Biochar 

cannot be used for food so is assumed to be the same (1.5 

Mha). BECCS feedstock from agricultural residues would 

reduce competition for land, but only dedicated crops were 

considered here. SCS, however, can be practised on land 

without changing its land use, so is assumed to be any area not 

excluded by the UKERC mask (8.5 Mha). DAC has no land 

footprint (if one excludes area used to generate energy to 

power the process), so is not constrained by land availability. 

The ground rocks from the EW process can be spread onto 

land without changing its land use, so when applied at low 

rates of 10 t rock/ha/yr (thus not interfering with agricultural 

use of the land – though these rates are still higher than those 

regularly used in agriculture for liming
35

), could be used on 8.5 

Mha of land. If applied at high rates of 50 t rock/ha/yr, rock for 

EW could only be applied to land not used for agriculture 

(since the rates are incompatible with agriculture). Low and 

high rates are from Taylor et al.
18

. 

 

[Tables attached as separate file] 

 

Table 2. Summary of areas, negative emission potentials, 

impacts of NETs on water use, energy requirement, nutrient 

(N, P and K) requirements and albedo, and bottom-up 

estimates of cost in the UK. EW may supply nutrients such as P 

and can have variable impacts on albedo depending on the 

mineral used, though these effects are not quantified. See text 

for further details. *DAC potential is not constrained by area 

so impacts assessed at same level of implementation as BECCS 

(i.e. area of 1.5 Mha; 4.5-18 MtCeq/yr). ** EW – high rate of 

application (50 t rock/ha/yr) applied only to non-Grade 1-3 

land = 1.5 Mha; low rate of application (10 t rock/ha/yr) 

applied to available Grade 1-3 land = 7.5 Mha. High and low 

rock application rates from Taylor et al. (2016)
18

. 

 

Negative emissions potential of terrestrial NETs in the UK 

Negative emissions potential for BECCS, AR and Biochar 

implemented on 1.5 Mha of land in the UK are: 4.5-18, 5.1, 

1.73-11.25 MtC-eq./yr, respectively. SCS, implemented on 8.5 

Mha of land, would deliver 0.255-8.5 MtC-eq./yr. EW can be 

implemented on 1.5/8.5 Mha of land, delivering 7.0-16.5 MtC-

eq./yr. If 50 t rock/ha
/
yr is applied to 1.5 Mha of non-

agricultural land, and 10 t rock/ha/yr is applied to the 

remaining 7.5 Mha, the combined total potential of EW is 

16.36 + 6.14 = 22.5 Mt C/yr. 

  

The technical potential for DAC, while not assessed directly 

here, is high. In addition to land constraints being low, 

constraints from available storage sites for CO2 are also low in 

the UK. Around 21 GtC (equivalent to 210 MtC-eq./yr over a 

century) storage potential exists in UK coastal waters
40

. This 

would, however, be reduced for DAC by other CCS 

technologies (including BECCS) requiring access to the same 

storage sites. 

 

Environmental impacts of NETs in the UK 

For comparison of impacts of across all NETs (as in 
11

), DAC is 

compared at the same level of implementation of negative 

emissions as BECCS, i.e. 4.5-18 MtC-eq./yr. All other NETs are 

compared at the negative emission potentials described 

above. Table 2 summarises the impacts on water use, energy 

requirement, nutrient (N, P and K) requirements and albedo, 

and bottom-up estimates of cost (but see discussion for 

caveats regarding bottom-up calculation of costs). 

 

Discussion 
 

Total UK negative emissions potential  

The negative emissions potential for individual NETs in the UK 

range from ~0.3 (low estimate for SCS) to ~23 MtC-eq./yr (for 

EW applied to all available land). Most NETs have potential in 

the order of magnitude range of 1s – 10s Mt Ceq./yr, though 

DAC potential could be greater. Total UK emissions for all 

GHGs during 2010-2014 amounted to ~560 MtCO2-eq./yr 

(=153 MtC-eq./yr)
41

, so potentials in the range of 10 MtC-

eq./yr would represent around 7% of current total UK 

emissions. The results here for BECCS, biochar and DAC are 

similar to those found in another study of UK technical 

potential
42

: for BECCS the estimate here of 4.5-18 MtC-eq./yr 

compares to 5-22 MtCeq./yr, while for biochar the estimate 

here of 1.7-11 MtC-eq./yr compares to 3-13 MtC-eq./yr. 

 

Not all of the potentials of the individual NETs are additive. In 

particular, BECCS, AR and biochar are alternative uses of the 

same land / biomass resource, meaning deployment of one of 

these technologies precludes deployment of the others. The 

maximum aggregate land-based UK NETs resource is estimated 

to be 12-49 MtC-eq./yr (BECCS plus SCS plus EW), assuming no 

interaction between practices to increase soil organic carbon 

storage, the spreading of powdered rock onto soils for EW and 

the growth of biomass as a feedstock for BECCS. Though there 

is no literature explicitly examining potential interactions 

between these NETs, several can be hypothesized (such as EW 

raising soil pH and thereby decreasing the efficacy of soil 

organic carbon storage; acidity is known to slow 

decomposition
43

), so the values presented here should be 

regarded as the maximum aggregate potential range. This 

optimistic aggregate technical potential for land based NETs in 

the UK represents ~8-32% of current UK GHG emissions. DAC 

could increase this total further. The potentials should be 

regarded as preliminary since large uncertainties remain in the 

data used in this assessment
11

. 

 

An important limitation of this study is that it excludes the 

potential for national negative emissions from imported and 

exported resources. Compared to the global per-capita 

average, the UK has high energy demand and low land 

availability. Biomass is already imported into the UK for energy 

generation, and proposed strategies for meeting the UK’s 
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emissions targets include the possibility of the UK importing up 

to 800 PJ/yr by primary energy in the 2030s
44

. To the extent 

that the UK does become a net importer (or exporter), and 

depending on where emissions savings are credited, it could 

have greater (or lesser) negative emissions potential. 

 

Limitations of NETs 

As for the global analyses
11,22

, the main technical limitations of 

NETs in the UK are high cost and energy requirements for DAC; 

landscape, large areas logistics, energy requirements, and 

costs for EW; competition for land, water and nutrients (and 

potentially albedo impacts) for BECCS and AR; lower per unit 

potential for SCS; and albedo, land competition (and possibly) 

cost for biochar. For AR, changes in albedo could reduce the 

efficacy of the benefits through negative emissions. In Norway, 

about 50% of the benefit of the net C sink is lost when short 

vegetation is replace by needle leaved trees (largely due to 

snow cover disruption)
45

. At more southerly latitudes, such as 

the UK, one would expect the impact to be <<50% of the net C 

sink offset – due to both possibility of planting deciduous 

trees, and the decreased prevalence of snow. A full spatial 

assessment should be undertaken to quantify the impact. 

 

Bottom-up costs are known to be unreliable since they do not 

account for the effect of lowering costs through learning 

during implementation and economies of scale. Nevertheless, 

the per-t-Ceq. estimates show the likely relative costs of each 

technology, suggesting that SCS is the least expensive, but with 

biochar also having potential for cost negative implementation 

(through economic benefits realised from productivity co-

benefits) in part of the cost range, but also high upper 

estimates of cost. DAC is the most expensive NET, with upper 

estimates of cost also high for EW (wide cost range) and 

biochar. BECCS and AR have relatively low cost. Most of the 

costs (except for the upper estimates for DAC, biochar and 

EW) are in the range estimated in the AVOID programme 

which noted “costs in the order of magnitude of $US 

100/tCO2”
42

, which is equivalent to ~$US 370/tC-eq. Costs for 

specific technologies (converted from CO2-eq. to C-eq.) 

estimated in the AVOID programme
42

 were $US 110-150/tC-

eq. for biochar; >$US 460-550/tC-eq. for BECCS; and ~$US 550-

730/tC-eq. for DAC. 

 

SCS and biochar provide negative emissions with fewer 

potential disadvantages than many other NETs, though 

additional nutrients could be required unless the SCS is 

achieved by adding organic material. Though the negative 

emissions potential is lower than for DAC and BECCS, it is not 

insignificant, and is comparable to the potential for AR
11

. 

  

Permanence of emissions removal 

Carbon removals with any technology using liquid CO2 for CCS 

are subject to the integrity of the storage reservoir. CCS 

demonstration projects worldwide appear to be performing 

well at 30 MtCO2/yr
46

. UK reservoirs for liquid CO2 CCS have 

been mapped
40

, and are assessed to be ready for use.
 
Storage 

of captured carbon dioxide in solid form as carbonate 

minerals, by injecting liquid CO2 into basaltic rocks, may be 

rapid (95% in less than 2 years) and has been shown to be 

feasible in a small pilot study
47

. Solid storage is generally 

considered to be more permanent with lower risk of reversal. 

Permanence (and sink saturation) is more of an issue for SCS, 

AR and biochar. 

 

A drawback of SCS and AR is that of sink saturation. We 

express SCS and AR negative emission potential here as a 

yearly value, but the potential is time limited. SCS and AR 

potential is large at the outset (which trees are growing and 

while soil carbon stocks are increasing), but decreases as forest 

biomass / soils approach a new, higher equilibrium value
24

, 

reaching zero when the new equilibrium is reached. This sink 

saturation occurs after 10-100 years, depending on the SCS / 

AR option, soil / tree type and climate zone (slower in colder 

regions), with IPCC using a default saturation time of 20 years 

for soil sinks
48,49

. Since sinks derived from SCS and AR are also 

reversible
24

, practices need to be maintained, even when the 

sink is saturated, so any yearly costs will persist even after the 

negative emission potential has reduced to zero at sink 

saturation. Sink saturation also means that SCS implemented 

in 2020 will no longer be effective as a NET after 2040 

(assuming 20 years for sink saturation). The importance of this 

for NETs, is that NETs are most frequently required in the 

second half of this century
3,11

, so SCS and AR, may no longer be 

available after 2050, or will be less effective, if they are 

implemented for mitigation relatively soon. The same sink 

saturation issues apply partly to biochar, though the issue is 

less pronounced as biochar is more recalcitrant, and 

equilibrium (if it occurs) would be expected to take much 

longer, so that biochar should still be effective as a NET in the 

second half of this century even if implemented relatively 

soon. 

 

Conclusions 
The aggregate technical potential for land-based negative 

emissions technology (excluding direct air capture and 

imports/exports of resources from land outside the UK) is 

estimated to be 12-49 MtC-eq./yr, which is around 8-32% of 

current total UK emissions. The proportion of this technical 

potential that could be realized is limited by a number of cost, 

energy and environmental constraints, which will need to be 

overcome if the full potential of NETs is to be realized in the 

UK. More detailed, spatially explicit studies will help to better 

constrain the wide ranges presented here based on literature 

values. Further, systemic and holistic issues relevant to NETS 

deployment
34

 were not considered in this study and need to 

be addressed, and public acceptance for a variety of reasons 

(including perceived threats to health and safety) were not 

considered. Nevertheless, the methods applied in this study 

are useful in providing a preliminary technological / 

environmental assessment of the potential for, and limitations 

of, NETs at a national scale, allowing for more in-depth 

research and development to be targeted in future, to 

overcome the current barriers to implementation. 
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Table 1. Low and high per-t-Ceq. negative emissions impact values used in the calculation for UK impacts of NETs. All values for SCS and 2 

Biochar are from Smith (2016). All values for BECCS, AR, and DAC are from Smith et al. (2016) and values for EW were calculated from 3 

Renforth (2012), except for Potassium values for AR which were calculated from values Ovington & Madgwick (1959), and Potassium values 4 

for BECCS (Miscanthus) calculated from values in Roncucci et al. (2014). All estimates are nominally for 2100 except for costs which are for 5 

2050.6 

Technology NET rate per land Land area Water use Energy input Nitrogen Phosphorus Potassium Albedo impact Cost 

Low High Low High Low High Low High Low High Low High Low High Low High Low High 

t-
Ceq./ha 

t-
Ceq./ha 

ha/t-
Ceq. 

ha/t-
Ceq. 

1000m3/t-
Ceq. 

1000m3/t-
Ceq. 

GJ/t-
Ceq. 

GJ/t-
Ceq. 

kgN/t-
Ceq. 

kgN/t- 
Ceq. 

kgP/t- 
Ceq. 

kgP/t- 
Ceq. 

kgK/t- 
Ceq. 

kgK/t-
Ceq. unitless unitless 

US$/t-
Ceq. 

US$/t-
Ceq. 

BECCS 3 12 0.1 0.4 2 2.5 -38.6 8.7 11 20 0.8 20 5.7 22 0 0.04 132 132 

AR 3.4 3.4 0.1 0.6 1.18 2.35 0 0 2 5 4 5 0.4 3.12 0.002 0.62 65 108 

SCS 0.03 1 1 33 0 0 0 0 80 80 20 20 15 15 0 0 -165 40 

Biochar 1.15 7.5 0.13 0.87 0 0 -50 -20 30 30 10 10 70 70 0.08 0.12 -830 1200 

DAC 1818 1818 0.001 0.001 0.073 0.11 2.6 45.8 0 0 0 0 0 0 0 0 1600 2080 

EW 0.82 10.91 1.22 0.09 0.0015 0.0015 3 46.2 0 0 0 0 0 0 0 0 92 5887 
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3 

 

Table 2. Summary of areas, negative emission potentials, impacts of NETs on water use, energy requirement, nutrient (N, P and K) requirements 7 

and albedo, and bottom-up estimates of cost in the UK. See text for further details. * DAC potential is not constrained by area so impacts 8 

assessed at same level of implementation as BECCS (i.e. area of 1.5 Mha; 4.5-18 MtCeq/yr). ** EW – high rate of application (50 t rock/ha/yr) 9 

applied only to non-Grade 1-3 land = 1.5 Mha; low rate of application (10 t rock/ha/yr) applied to available Grade 1-3 land = 7.5 Mha. High and 10 

low rock application rates from Taylor et al. (2016)18. 11 

 12 

Technology 

Area 
applied 

Negative Emission 
Potential Water use Energy required Nitrogen Phosphorus Potassium Albedo Cost 

 Low High Low High Low High Low High Low High Low High Low High Low High 

Mha 
Mt 
Ceq./yr 

Mt 
Ceq./yr km3/yr km3/yr PJ/yr PJ/yr ktN/yr ktN/yr ktP/yr ktP/yr ktK/yr ktK/yr unitless unitless B$US/yr B$US/yr 

BECCS 1.5 4.5 18 9.00 45.00 -173.7 156.6 49.5 360 3.6 360 25.7 396 0 0.04 0.59 2.38 

AR 1.5 5.1 5.1 6.02 11.99 0 0 10.2 25.5 20.4 25.5 2.0 15.9 0.002 0.62 0.33 0.55 

SCS 8.5 0.255 8.5 0 0 0 0 20.4 680 5.1 170 3.8 127.5 0 0 -0.04 0.34 

Biochar 1.5 1.725 11.25 0 0 -86.3 -225 51.8 337.5 17.3 112.5 120.8 787.5 0.08 0.12 -1.43 13.5 

DAC  4.5* 18* 0.33 1.98 11.7 824.4 0 0 0 0 0 0 0 0 7.2 37.44 

EW 1.5/8.5** 7.0 16.5 0.01 0.04 20.9 755.9 0 0 0 0 0 0 0 0 0.64 96.32 
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Response to reviewers’ comments - EM-COM-06-2016-000386 

 

Reviewer 1 comments to the editor: 

 

Comment: "However, its framing has a number of implicit implications which might be interpreted 

inappropriately by a policy audience and result in unintended consequences. This reviewer has 

relayed his concerns in the comments to authors, but to the editor, I would like to emphasize the 

following: 

Response: Thank you for this thoughtful assessment. We have revised the manuscript to address all 

of your points, as detailed below.  

 

Comment: • The paper takes a very `static’, `silod’ technological perspective of negative emissions 

technologies and is devoid of socio-political dimensions. Though it is a technical assessment and the 

academic community understands this the likely role of the socio-political aspects of negative 

emissions technology deployment in lowering potential must be emphasized for the policy audience.  

Response: We are not able to assess the likely role of the socio-political aspects of negative 

emissions technology deployment in lowering potential, since to our knowledge, this research has 

not yet been done, but we agree that it is a critical point and we have added it both to the framing in 

the introduction and again in the discussion – in the introduction: “Systemic, holistic issues need to 

be considered for NETS deployment
47

 and are probably the most immediate aspects of developing 

these technologies which need to be addressed. It must be noted that this is a preliminary, 

technology focussed assessment that takes no account of such socio-political aspects of negative 

emissions technology deployment, which when considered would be expected to lower considerably 

the technical potentials estimated here.” 

 

Comment: • It assumes that the knowledge that informs the numbers for each technology is of the 

same level of development when in fact the assumptions and research needs for the technologies 

are very different - making a like for like comparison inappropriate - but understandably necessary 

for this particular analysis. This should be emphasised better in the paper. 

Response: We have now emphasised this in the introduction, by adding the following: “Further, 

whilst the best available data have been used, different technologies are at different stages of 

development (e.g. AF and SCS widely applied already; DAC yet to be demonstrated at scale), and the 

quantity and quality of data varies greatly between technologies
11

.” 

 

Comment: • Some of the calculations have used metrics which are questionable when transposed to 

a UK context and could have a substantial impact of overestimating some of the calculations. 

Response: The metrics questioned by the reviewer (EW potential and land available for each NET) 

have been reworked (EW) – see response to “comments to the authors” below. 

 

Comment: • Finally the paper completely avoids the systemic, holistic issues that need to be 

considered for NETS deployment – see Lomax, et al 2015 – which are probably the most immediate 

aspects of developing these technologies which need to be addressed.  These points, if not 

addressed, may result in policy makers interpreting the work in a manner which is inconsistent with 

the needs of the sector to inform UK decarbonisation strategy." 

Response: This is a very good point – we now cite Lomax et al. (2015) and note the need to address 

the systemic, holistic issues for NETs deployment in the introduction (and again in the conclusions). 

See further responses below. 

 

Referee: 1 

 

Comments to the Author 
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Comment: This paper presents quantitative results (in Tabels 1 and 2) that are essentially those 

found in Smith et al. 2016 (Nature Climate Change) downscaled to the UK given UK constraints on 

land area, as well as qualitative results (e.g. Limitations of NETs) that are repeating those found in 

that other paper. I suppose that the results for any particular country are worthwhile knowing, 

although it would be much more useful knowing the results for any given country in the context of 

results for other countries as well. Being based on the same assessment methods as the previous 

paper I do not have any serious critique about their validity. 

Response: Thank you for this observation. We have now been more circumspect in our statement of 

potentials and have added more discussion on uncertainties and systemic and holistic constraints to 

NETS deployment. 

 

Comment: I find the results to potentially misleading in terms of their level of certainty. All of these 

technologies are untested at large scale, implying large ranges of uncertainty in several respects. The 

cost estimates rely on other studies (in particular, reference 40, which appears not to be peer-

reviewed), and yet to me appear to be overly optimistic in terms of the width of the uncertainty 

band for some technologies (e.g. BECCS has a single point estimate, DAC has low and high estimates 

differing by only 30%, despite the fact that it is untested at scale). 

Response: We agree that uncertainty was not adequately flagged in the original submission, and we 

now refer to the levels of uncertainty (often quite large) in the estimates in the discussion, e.g. this 

sentence added to the section on potentials: “The potentials should be regarded as preliminary since 

large uncertainties remain in the data used in this assessment
11

”.  

 

Comment: What is driving the overall finding (30 - 130 MtC-eq / yr) is the range of estimates for 

Enhanced Weathering (EW), and yet these are the results that are the least transparent. If I multiply 

the NET rate per land in Table 1 (which for EW is a point estimate, which contradicts the level of 

uncertainty that I understand to exist) to the available land area listed in Table 2, I arrive at a value 

of 2023 t-Ceq / yr for EW. It is completely unclear how the authors then derive a range of 25.5 - 102 

MtCeq/yr. Aside from EW, which we don't even know the feasibility of, Table 2 suggests a range of 5 

- 25 MtC-eq/yr. This in turn corresponds to about 3 - 18% of current UK emissions. 

Response: The EW estimates have been reworked to include only mineral resource from the UK, to 

make the estimate comparable with the estimate for other NETs (where domestically available land 

is the limiting factor). Values from Renforth (2012) are now used. 

 

Comment: I find the presentation of the limitations of NETs to be overly simplistic, and ultimately 

not appropriate for this article. In addition to costs, land availability, energy and water requirements, 

there are also issues of a lack of public acceptance for a variety of reasons (including perceived 

threats to health and safety). This is a subject for a review article, or a research article focused on 

any of these issues. It would be better to remove it here. 

Response: We disagree that the biophysical and cost limitations should not be presented – we feel 

that this adds considerable value to the article – but we acknowledge that we did not address public 

acceptance at all – this we have now addressed in a caveat included at the end of the discussion – to 

emphasise again (since it appears this was not clear) that we are assessing only the biophysical and 

cost limitations to NETs and that public acceptance for a variety of reasons (including perceived 

threats to health and safety) are another consideration not quantified in this article. 

 

Comment: I found Figure 1, which was essentially copied from Smith et al. (2016) to be unnecessary. 

In Table 1, I assumed that the values for "Land area" should be the inverse of those for "NET rate per 

land," and yet the numbers didn't really fit. 

Response: The land area is determined from land availability (Lovett et al., 2014), and land area error 

for EW has been corrected (reviewer2 also spotted this). While stylistically and superficially similar, 
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Figure 1 differs from that in Smith et al. as it includes soil carbon sequestration, biochar and biochar 

as a by-product of BECCS. It has not been published before and we feel it is a useful explanatory 

figure to help the reader understand the mechanism by which each NET removes carbon from the 

atmosphere and the reservoirs in which that carbon is stored. 

 

Referee: 2 

 

Comments to the Author 

 

Comment: Overall this reviewer considers this to be a useful set of analysis that helps to inform the 

debate, and I agree with most of the analysis.   The work: 

• Clearly states assumptions for system boundary of assessing the scale of UK based negative 

emissions technologies potential.   

• The analysis is clearly based on literature reviews and explicitly stated as such. 

• The demerits of bounding an analysis for UK based negative emissions technologies is well 

made in the paper as are the flaws of setting the system boundary at this loci. 

The reviewer has a number of concerns which I would recommend are addressed before the paper is 

published.  These have been broken into general issues and those relevant to the analysis and 

calculations. 

Response: We thank the reviewer for this overall assessment – and we address their specific 

concerns below. 

 

Comment: General Issues: 

• The paper is very good at highlighting the weaknesses in its assessment of the technologies 

but omits one very important flaw.  The work implicitly assumes that the technologies are at the 

same level of development such that they may be considered: (1) to be directly comparable now; 

and (2) that they will all be able to ramp up in a linear rate to 2050.  The need for varied levels of 

further research, different levels of uncertainty of assessments / assumptions and the differences in 

the level of investment and value chain development for the different technologies will be highly 

varied.  This must be emphasised in the work to avoid miss-interpreted by the policy community. 

Response: We acknowledge that both the differences in the level of development of each NET and 

that the uncertainties in the assessments / assumptions were not adequately dealt with in the 

original submission (as also pointed out by reviewer 1). We have now addressed both issues in the 

framing of the paper at the end of the introduction. 

 

Comment:  Direct comparability of land footprint of the technologies is inconsistent – most 

significantly for the following technologies: 

DAC footprint is not comparable with the other technologies p5 line 6 due to the lack of accounting 

for the energy generation footprint required which could be substantial. 

Response: We acknowledge that the energy generation footprint is not included and we state this 

explicitly: “DAC has no land footprint (if one excludes area used to generate renewable energy to 

power the process), so is not constrained by land availability”. If the energy were to come from 

nuclear power the UK land footprint would be negligible, but if from wind or solar would be 

prohibitive. 

 

Comment: The EW role is a little unclear as it is unlikely that it will be feasible at scale in the UK 

unless the minerals are imported which blurs a system boundary.  The footprint of the value chain is 

also not included and therefore questions the direct comparability of this metric with other 

technologies. The reviewer appreciates that these calculations are fraught with substantial variations 

for these particular technologies depending on the assumptions used but the need to explicitly state 

that some metrics are not directly comparable should be made in the paper. 
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Response: We agree that the system boundaries were blurred by not considering only UK mineral 

sources for EW. We have remedied this by reworking the EW figures so that they only include EW 

available from domestically (UK) mined minerals, now largely using the values from Renforth (2012).  

 

Comment: The work tends to be technology centric and siloed in its assessment of the 

environmental and policy implications and completely avoids the systemic, socio-political issues that 

need to be considered for negative emissions deployment; though it does allude to markets p6 line 

2-3 - it fails to explore this further.  This concern is most salient in the conclusion which states that 

further analysis of this type as this being a fundamental basis to advance the negative emissions 

agenda.  It is simply one very small component, the most significant being to advance the integration 

of negative emissions into current policy to calibrate - in a bottom up manner - the opportunities for 

NETS which is likely to establish a lower bound capacity for each technology.  Arguably this is the 

most important aspect of understanding their future role - see Lomax, et al 2015 

Response: We agree that these aspects were inadequately dealt with in our original submission, with 

the very same issues also raised by reviewer 1. We now cite Lomax et al. (2015) and note the need 

to address the systemic, holistic issues for NETs deployment – in the introduction and in the 

conclusions. See also responses to reviewer 1.  

 

Comment: Though this reviewer is aware that the authors have stated that this is a technical 

assessment which will be appropriately contextualised by the academic community.  The reviewers 

comments are seeking to address the capacity for miss-interpretation of the paper by policy makers 

and those who consider negative emissions as a mechanism to continue combusting fossil fuels in 

the medium term.  The nascent state of understanding of these technologies by many audiences is 

such that the latter is prevalent and needs to be addressed for the sake of a more balanced 

discourse in this sector. 

Response: We agree that these aspects were inadequately dealt with in our original submission, with 

the very same issues also raised by reviewer 1. We have addressed this in our enhanced introduction 

(framing) and in the conslusions. 

 

Comment: Comments relating to the calculations 

It is difficult to critique numbers too deeply as they are taken directly from literature reviews in 

some of the main author’s previous published papers here and here. 

Response: Thank you for this comment – indeed the potentials and impacts are from previously 

published papers. We have replaced the EW values largely with those from Renforth (2012). 

 

Comment:  Generally the numbers in the paper seem appropriate. However, three points are worth 

raising, one of might make a substantive difference to the final computations. 

Response: See detailed responses below. 

 

Comment: Most importantly, their estimate of sequestration per hectare per year for Enhanced 

Weathering seems orders of magnitude too high (238 tC-eq/ha/year).  

Response: We have replaced the values used in the global analysis with those from a UK specific 

study reported in Renforth (2012) – the per-hectare values are indeed much smaller. Thank you for 

pointing out this error. 

 

Comment: From the citation in the original paper here, this number actually relates to in-situ 

carbonation of peridotite formations in Oman, which is very different to the ex-situ spreading of 

ground olivine on land that they consider here. As a point of comparison, Kohler et al. 2012 

estimates that even in their most optimistic case, ex-situ EW across the Amazon basin could 

conceivably reach 7.5 tC-eq/ha/year. The UK value would be far lower. Phil Renforth looked at this in 

more detail for the UK in this paper in 2012. 
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Response: Thank you. We concur that the UK-specific analysis from Renforth (2102) is more 

appropriate for use in this study than the values originally used, derived from a global study. We 

have replaced the values from the global analysis with those from the UK-specific study reported in 

Renforth (2012) as suggested by the reviewer. 

 

Comment: Ideally it would also be good to consider the life cycle sequestration once mining, milling 

and distribution are considered. 

Response: Mining, milling and distribution are considered under the energy and cost categories. We 

refer to Renforth (2012). 

 

Comment:  Under Soil Carbon Sequestration, it is not clear that this would involve additional input of 

external nutrients (N, P, K) beyond that already being applied to UK cropland. For example, practices 

typically reported to increase soil carbon sequestration rates in the literature usually do not involve 

increases in inputs. It would be valuable to clarify this. 

Response: This has now been clarified by adding more detail in the discussion: “SCS and biochar 

provide negative emissions with fewer potential disadvantages than many other NETs, though 

additional nutrients could be required unless the SCS is achieved by adding organic material”. 

 

Comment: Under Afforestation and Reforestation, the albedo point raises the question of whether 

the net effect in the UK specifically would likely be positive or negative. The current numbers are 

drawn directly from the global analysis, which presumably entailed tropical, temperate and boreal 

effects. It would be useful to clarify where on the spectrum the UK would fall. 

Response: Additional information has been added to the discussion. In Norway, about 50% of the 

benefit of the net C sink is lost, so at more southerly latitudes of the UK, one would expect the 

impact to be <<50% of the net C sink offset – due to both possibility of planting different species 

(deciduous trees are possible) and the decreased prevalence of snow which gives the largest impact 

on albedo when low vegetation is replaced with needle leaved trees. This has been added to the 

discussion. 

 

Comment: I have no problems with the rest of Table 1 or how they translate the numbers in to Table 

2. 

Response: Thank you. We hope the above responses / changes address your concerns. 

 

Referee: 3 

 

Comments to the Author 

 

Comment: The authors show in a "crisp" and efficiently written manuscript the potentials of and 

limits to a variety of NETs for the UK. Given the need and urgency of further research in the area of 

negative emissions, this short communication, based on 2-3 recently published articles, provides a 

first-cut assessment of options and opportunities for the UK to contribute substantially to mitigate 

global warming through their NE potentail. The article will be a great contribution to filling research 

gaps and national NE emissions assessments and I hence recommend to publish as is. 

However, if space allows, it would be beneficial to the reader to consider and further elaborate on 

following issues: 

Response: Thank you for these constructive comments. 

 

Comment: 1) The importance of BECCS and the differences between BECCS from agriculture and 

forestry could be better explained (both types considered?). Furthermore, the discussion would 

benefit from a sentence on BECCS from agricultural residuals which would allow for food and energy 

production from the same arable land area and might reduce competition for land (and food 
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production) and enhance potentials (and sustainability). This might be implicit from the studies cited 

(e.g. AVOID), but is not that obvious for the general reader... 

Response: The assumption about BECCS for dedicated energy crops has been added to the M&M. 

These nuances about agricultural residues are now discussed in the discussion section. 

 

Comment: 2) The discussion section might further benefit from the mentioning of the needs for 

spatially explicit (higher resolution) potentials assessments that e.g. could identify realizable 

potentials (e.g. by considering different (optimal) technologies for different regions within UK, 

optimize logistics (one of the main problems for NETs) and suitable formations for storage. 

Furthermore, such detailed assessments could better consider environmental constraints such as 

ESS and protection areas etc... 

Response: Protected areas are already considered (see M&M), but we have added the need to 

better spatially explicit assessments to the discussion. 

 

Comment: The intervals between min/max and high/low shares seem to be substantial and 

combining the authors' approach with more detailed bottom-up assessments might reduce these 

gaps substantially... literature examples for such approaches possibly to be considered are e.g.  

Biomass enables the transition to a carbon-negative power system across western North America, 

Dan Sanchez et al. 2015, Nature Climate Change; BECCS in South Korea – Analyzing the negative 

emissions potential of bioenergy as a mitigation tool, Florian Kraxner et al. 2012, Renewable Energy; 

How negative can biofuels with CCS take us and at what cost? Refining the economic potential of 

biofuel production with CCS using spatially-explicit modeling, Nils Johnson et al. 2013, Energy 

Procedia; 

Response:  These are excellent points, which we have now added to the discussion. 

 

Comment: 3) To my understanding, for the presented analysis it is correct to not consider NEs from 

imported feedstock since otherwise the boundary conditions would possibly need to be defined 

more accurately (!?) E.g. when considering imported biomass, this might need to be expanded 

towards consequent/linked AR and SCS activities in the locations of origin of the important biomass 

etc... would this have to be accounted (at least partially) for UK-produced NEs? 

Response: We have now used the UK as the strict boundary condition, since we now only consider 

domestically (UK) available mineral for EW. 

 

Comment: Congratulations for a great contribution that should be seen as a basic step towards 

further and more accurate calculations, assessments and modeling approaches. 

Response: Thank you very much. We to hope that by providing these preliminary estimates of 

potentials and biophysical and cost limitations, further studies will refine and improve upon the 

estimates presented here. 
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