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Introduction

Fungal pathogens are more commonly associated with morbidity and mortality than generally
appreciated. In fact, a significant portion of the world population is infected by fungi, and an
estimated 1.5 million people die from life-threatening fungal infections each year [1]. One of
the most common fungal pathogens of humans is Candida albicans. The majority of the
human population is colonised with this fungus, and superficial infections of mucosal surfaces
are extremely common [2].

The morphological plasticity of C. albicans has long been implicated in the virulence of this
pathogen [3]. The two most important morphologies, yeast and hyphal cells, are both required
for virulence. Neither yeast-locked strains nor hyperfilamentous mutants are fully virulent in
experimental systemic infections. However, it is generally accepted that each of the two forms
fulfils specific functions during infection. While the yeast form is likely important for dissemi-
nation via the blood stream, the formation of filamentous hyphae contributes to adhesion and
invasion of host cells.

What’s Special about Hyphae?

The invasive nature of hyphae is intuitive and supported by multiple studies (Fig 1). (i) Hyphae
are the most common morphology observed during experimental infections and in patient
biopsies, and histological analysis clearly shows that hyphae are the dominant invasive form
[4]. (ii) Hyphae adhere more robustly and efficiently to host cells than yeast cells, largely owing
to two hypha-associated adhesins, Als3 and Hwp1 [5] (Fig 1a). However, in certain environ-
ments, such as dynamic endothelial-interactions, yeast cells [6] or short germ tubes [7] have
been reported to be more adherent than longer hyphae. (iii) Only hyphae invade efficiently
into human cells, which occurs via two routes; induced endocytosis and active penetration [8]
(Fig 1b). Induced endocytosis is mediated by the hypha-associated invasin, Als3, and is mainly
dependent on host activities—even killed hyphae are endocytosedas long as Als3 is expressed
on their surface. Active penetration, on the other hand, is a fungal-driven process that requires
fungal viability but not host activity. Both invasion routes require hyphae, and mutants defec-
tive in hypha formation are also defective in host cell invasion [9]. However, hypha-mediated
invasion of host cells by either route does not necessarily cause cell damage (Fig 1a–1c). Whilst
C. albicans hyphae formation appears to play a central role in host tissue invasion, other mor-
photypes are critical during infections of other host niches. For example, yeast cell dispersal
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Fig 1. Distinct stages of C. albicans-epithelial infection. (a) In experimental epithelial infections, C.

albicans yeasts form hyphae upon contact with epithelia and adhere tightly to the host cells. This is mediated

by a number of adhesins, including members of the Als family and Hwp1. (b) This is followed by initial

epithelial invasion via two routes—(i) fungal-driven active penetration and (ii) host-mediated induced

endocytosis. (c) Elongating and branching hyphae result in extensive interepithelial invasion. Surprisingly,
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likely plays a key role in seeding the bloodstream from biofilms formed on indwelling medical
devices [10]. (iv) Hyphal cells are involved in trace metal acquisition. During the transition
from commensalism to invasion, C. albicans utilises different assimilation strategies to gain
nutrients from host cells. Hyphae of C. albicans can efficiently bind the host iron storage pro-
tein ferritin [11] and host zinc [12] during invasion of epithelial or endothelial cells, promoting
fungal growth. Notably, the C. albicans ferritin-binding protein is Als3, suggesting multiple vir-
ulence functions for this protein, including adhesion, invasion, and iron acquisition. The pH-
regulated antigen 1 (Pra1) acts as a secreted zinc-binding protein and also possesses immune
evasion functions via binding complement regulators and thereby avoiding complement depo-
sition [13]. (v) Hyphae facilitate fungal escape from phagocytes and induce macrophage killing
via a two-step mechanism: initiation of pyroptosis and piercing of the macrophage membrane
[14]. (vi) Finally, the expression of other virulence-associatedgenes is linked to the morpholog-
ical transition. These include hypha-associated secreted aspartyl protease genes (SAP4-6) [15]
and the superoxide dismutase gene SOD5 [16], but also a small set of eight core response genes,
which are expressed under hypha-inducing conditions [17]. These hypha-associated virulence
genes may have distinct functions for invasion processes and may prepare the invading fungal
cells for impending host niches [18]. Therefore, hypha development is coupled to multiple
invasion-associated properties, but if invasion per se does not directly damage host cells, how
does this process occur?

How Do Hyphae Damage Host Tissue?

As discussed above, hypha formation has long been known to be associated with a number of
pathogenic properties and is a prerequisite for damage induction. However, the identification
of a specific C. albicans factor that directly induces cell damage had remained elusive. This
missing link between hyphal morphogenesis and damage induction has now been identified as
a cytolytic toxin called Candidalysin, a 31 amino acid peptide [19] (Fig 1d). Candidalysin is
generated from its parent protein, Ece1, which is encoded by the gene ECE1. ECE1 is one of the
eight core filamentation genes in C. albicans and was first discovered in the 1990s due to its
high expression during hypha formation [20]. However, its molecular function remained
unknown for almost a quarter of a century. In silico analysis suggested that Ece1 is a polypep-
tide consisting of a secretion signal peptide followed by eight short peptides, each separated by
lysine/arginine residues. Previous studies had shown that these dibasic amino acids can be rec-
ognised by a subtilisin-like serine protease, Kex2, in the Golgi apparatus [21]. Proteomic analy-
sis confirmed that Ece1 is produced by C. albicans hyphae and is sequentially processed at
arginine/lysine residues by Kex2 and another serine protease, Kex1, respectively, followed by
peptide secretion [19]. Candidalysin is one of these peptides. Candidalysin adopts an α-helical
structure and, when secreted in sufficient quantities, intercalates and permeabilises host epithe-
lial membranes to induce cell lysis. The presence of cholesterol in target membranes enhanced
the lytic activity of Candidalysin, suggesting that membrane sterols may contribute to target
specificity. Additional molecular analyses demonstrated the importance of Candidalysin, since
deletion of only the Candidalysin-encodingregion from the ECE1 gene abolished the ability of
C. albicans to damage epithelial cells in vitro and significantly attenuated C. albicans virulence
in two in vivo models of mucosal infection: a cortisone acetate-treated mouse model of oropha-
ryngeal candidiasis and a zebrafish swim bladder infection model [19]. Therefore, it appears

this invasion itself does not cause damage to the epithelium. (d) Simultaneous secretion of the fungal peptide

toxin, Candidalysin (red pentagons), lyses the host epithelia and causes tissue destruction.

doi:10.1371/journal.ppat.1005867.g001

PLOS Pathogens | DOI:10.1371/journal.ppat.1005867 October 20, 2016 3 / 5



that production of Candidalysin rather than hypha formation per se is the mediator of host cell
damage. Given that Candidalysin is a hypha-associated factor, these observations finally pro-
vide the elusive missing link between filamentation and host cell damage and explain why C.
albicans hyphae are the destructive morphology during mucosal infections. This work also
identifies Candidalysin as one of the very few “classical virulence factors” in human pathogenic
fungi [22].

How Do Epithelial Cells Detect Candidalysin to Induce Immunity?

While Candidalysin is critical for fungal pathogenicity, our immune system is not helpless
against this peptide toxin. Candidalysin is recognised by host epithelial cells and has been iden-
tified as the hyphal moiety that triggers the “danger response” pathway in epithelial cells. This
pathway comprises NF-kB and PI3K signalling along with strong activation of MAPK signal-
ling, resulting in activation of the transcription factor c-Fos via the p38 pathway and MKP1 via
the ERK1/2 pathway [23,24]. Hence, when encountering yeast cells, our mucosal tissues toler-
ate these as benign colonisers but when encountering damage-inducing hyphae, Candidalysin
induces the danger response pathway. In this way, the host is able to discriminate between the
commensal and pathogenic states of C. albicans. These signalling events ultimately induce epi-
thelial cytokine production and recruit immune cells (phagocytes and dendritic cells) to defend
against infection. Intriguingly, the epithelial danger response has learned to respond to Candi-
dalysin at levels below those required to induce cell lysis. For example, p-MKP1, c-Fos, and the
nondamage-associated cytokine G-CSF were induced by sublytic concentrations (�3 μM) of
Candidalysin, and by a modified nontoxic version of the peptide. We propose that this dual
function of Candidalysin is the result of a coevolutionary event; the fungus has developed an
efficient peptide toxin to damage host membranes and, in response, the host has evolved a sen-
sitive Candidalysin detection system to identify and defend itself against this common mucosal
pathogen.

Given the worldwide prevalence of mucosal C. albicans infections [1], the identification of
the first cytolytic peptide toxin produced by a human fungal pathogen has therapeutic potential
for the treatment of mucosal candidiasis.
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