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Abstract 

This paper presents a stochastic approach to study the natural frequencies of thin-walled 

laminated composite beams with spatially varying matrix cracking damage in a multi-scale 

framework. A novel concept of stochastic representative volume element (SRVE) is introduced 

for this purpose. An efficient radial basis function (RBF) based uncertainty quantification 

algorithm is developed to quantify the probabilistic variability in free vibration responses of the 

structure due to spatially random stochasticity in the micro-mechanical and geometric 

properties. The convergence of the proposed algorithm for stochastic natural frequency analysis 

of damaged thin-walled composite beam is verified and validated with original finite element 

method (FEM) along with traditional Monte Carlo simulation (MCS). Sensitivity analysis is 

carried out to ascertain the relative influence of different stochastic input parameters on the 

natural frequencies. Subsequently the influence of noise is investigated on radial basis function 

based uncertainty quantification algorithm to account for the inevitable variability for practical 

field applications. The study reveals that stochasticity/ system irregularity in structural and 

material attributes affects the system performance significantly. To ensure robustness, safety 

and sustainability of the structure, it is very crucial to consider such forms of uncertainties 

during the analysis. 
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1. Introduction 

Laminated composites have gained huge popularity because of their weight sensitivity, 

high-strength and stiffness to weight ratios and long-term cost effectiveness. Such structures are 

extensively used in aerospace, marine, construction and other industries due to their application 

specific tailorable material properties. It is widely known that thin walled composite beams are 

used broadly in various applications of structural engineering, such as helicopter blades, wings, 

trusses in space structures, submarine hulls, cooling tower shafts, medical tubing, connecting 

shafts, transmission poles, tail boom of helicopter and tube like structures in missiles. Because 

of their inherent complexity, a laminated composite beam is difficult to manufacture accurately 

according to its exact design specifications, resulting in undesirable uncertain responses due to 

random material and geometric properties. Generally uncertainties are broadly classified into 

three divisions, namely aleatoric (because of variability in the structural system parameters), 

epistemic (because of lack of information of the structural system) and prejudicial (because of 

the absence of variability characterization) [1-3]. The performances of composite structures are 

influenced by the quality control processes, operating conditions and environmental effects. It 

can be observed that there are uncertainties in input forces, system descriptions, computation as 

well as model calibration. The production of composite laminates is subjected to large 

variability because of unavoidable fabricating imperfections, operational factors, inaccurate 

experimental data, lack of experience etc. Furthermore, because of various forms of damages 

and defects, effective material properties may vary substantially from the specified values. As a 

cumulative effect, the vibration characteristics of such composite structures show significant 

variability from the deterministic values. Therefore, the structural performance is subjected to a 

significant element of risk from safety and serviceability point of view. Moreover, uncertainties 

in input parameters can propagate through different modelling scales and influence other 

parameters and the final system output can have a substantial cascading effect because of the 

accumulation of the risk [4]. Such variability can result in significant deviations from the 



 

 

expected outputs (deterministic design values). Hence, it is of prime importance to characterize 

the probability distribution of the response parameters of interest (such as natural frequencies) 

by accounting for the variability in stochastic input parameters.  

Since late eighties, research activities are dedicated towards the development of 

appropriate analysis for thin-walled composite beams [5-6]. Bauld and Tseng [7] studied the 

static structural behavior of a thin-walled composite orthotropic member under various load 

patterns. Bauchau [8] studied thin walled composite beam models with effects of shear 

deformability. Cortínez and Piovan reported vibration and buckling analysis of thin-walled 

composite beams with shear deformability [9]. Various other studies on composite beams are 

found to be concentrated on deterministic analysis concerning statics and dynamic responses 

including aero-elastic effects [10-16]. An extensive review of literature on laminated 

composites reveals that most of the studies carried out so far are based on a deterministic 

framework, in spite of the possibility of significant probabilistic variability in the responses of 

such structures due to inevitable stochasticity in material and geometric parameters. Recently 

attempts have been made to carry out stochastic analysis for different responses of composite 

plates and shells [17-19]. The treatment of uncertainties to quantify the same for thin walled 

circular composite beam has received little attention. Of late, Piovan et al. have investigated the 

effects of parametric uncertainty on dynamics of thin-walled laminated composite beams [20]. 

However, most of the recent research follows a random variable based approach that neglects 

the spatially random variation of material properties. Consideration of random fields for 

modelling uncertainty in composite structures is practically more relevant. Moreover, 

consideration of spatially varying damage that often develops in the operational environments 

has not been accounted in scientific literature yet. 

 This paper presents a realistic analysis on stochastic natural frequency of thin-walled 

laminated composite beams with spatially varying matrix cracking damage in a multi-scale 

framework. A typical schematic description of damage development in composite laminates is  



 

 

 

Fig. 1 Occurrence of progressive damage in composites 

depicted in Figure 1, where the five identifiable damage mechanisms are indicated in the order 

of their occurrence [21]. In the early stages of damage accumulation, multiple matrix cracking 

dominates in the layers which have fibres aligned transverse to the applied load direction. Static 

tensile tests on cross-ply laminates have shown that the transverse matrix cracks can initiate as 

early as at about 0.4-0.5% applied strain depending upon the laminate configuration. Thus in 

the present investigation, spatially random distribution of matrix cracking is considered along 

with other stochastic input parameters to characterize the natural frequencies of thin-walled 

composite beams. The crucial issue of expensive computation involved in uncertainty 

quantification of composite structures and the development of radial basis function based 

uncertainty quantification algorithm to mitigate this lacuna is discussed in the following 

paragraph. 

One of the most prominent approaches followed for uncertainty quantification in 

composite structures is the Monte Carlo simulation (MCS) based approach. MCS is a 

computerized mathematical technique which allows to account for risk in quantitative analysis 

and decision making. This technique is mainly utilized to generate the uncertain variable output 



 

 

frequency using large number of samples. MCS technique can be broadly used to quantify the 

uncertainty of laminated composites in which thousands of FEM simulations are required to be 

carried out. Therefore, this technique has limited practical use because of its computational 

intensiveness unless some form of efficient modelling technique is applied to mitigate this 

lacuna. Moreover, due to consideration of matrix cracking damage in the present analysis, the 

entire process of obtaining natural frequency for a particular realization of Monte Carlo sample 

becomes a multi-step procedure (in the first step of the analysis, the effective material properties 

of damaged composite are obtained; subsequently these effective material properties are fed in 

the finite element model to compute global mass and stiffness matrices and thereby the natural 

frequencies) making it even more time consuming. An efficient radial basis function [22-23] 

based uncertainty quantification approach is developed in this article to quantify the 

probabilistic variability in free vibration responses of the structure due to spatially random 

stochasticity in the micro-mechanical and geometric properties along with matrix-cracking 

damage. In the present approach, the effect of uncertainty is accounted in the elementary micro-

level first and then these effects are disseminated towards the global responses via surrogates of 

the actual FEM models.  

To the best of the authors’ knowledge, there is no scientific literature available which 

deals with stochastic structural dynamics based on radial basis function for uncertainty 

quantification of thin-walled composite beams including the effect of matrix cracking in a 

probabilistic approach. Moreover, consideration of spatially random variability of the stochastic 

input parameters for laminated composites is very scarce to find in available literature. The 

present paper concentrates on these identified lacunas concerning the free vibration analysis of 

thin-walled composite beams. A novel concept of stochastic representative volume element 

(SRVE) is introduced in this article. Besides random-field based stochastic analysis of natural 

frequencies following a multi-scale framework, this article presents the effect of inevitable 

noise in RBF based uncertainty quantification algorithm to simulate the uncertainties associated 



 

 

with the actual field condition. This paper hereafter is organized as follows, Section 2: 

governing equations of thin walled composite beams including the effect of matrix cracking; 

Section 3: brief description of RBF based surrogate modelling; Section 4: RBF based approach 

coupled with the concept of SRVE for probabilistic characterization of natural frequencies and 

the algorithm to quantify the effect of noise; Section 5: results and discussion; Section 6: 

summary of results and perspective of the present work in the context to other contemporary 

researches in relevant fields and Section 7: conclusion. 

2. Governing Equations for thin walled composite beam with matrix cracking damage 

Nuismer and Tan’s [24] work on matrix cracking in composites is extended to a 

spatially random stochastic framework for studying the free vibration response of a thin-walled 

composite beam following a novel SRVE approach. To obtain the expression for equivalent 

elastic properties, a composite thin walled beam under general in-plane stochastic loading [𝝈𝒙̅̅ ̅, 

𝝈𝒚̅̅ ̅, 𝝉𝒙𝒚̅̅ ̅̅ ]( ) is considered, where   represents the stochastic character. The matrix cracks are 

assumed to exist in the central lamina group as shown in the Figure 2(a). The analysis has been 

carried out by considering uniform crack spacing of 2L  in the central composite lamina. A 

symmetry along the mid-plane of the laminate is considered, due to which only one quarter can 

be analysed. The modelled portion (as shown in Figure 2(b)) of the length L has been divided 

into two sublaminates, wherein sublaminate 1 denotes the central lamina ply group and 

sublaminate 2 denotes the outer lamina ply group.  The assumed uniformity of the load, 

geometry and material properties have been considered along the y axis where the 

displacements can be obtained from the following equations [24], 

( ) ( , )( )i iu u x z                                                          (1) 

( ) ( ) ( ) ( , )( )i i

yv y v x z                                                          (2) 

( ) ( , )( )i iw w x z                                                          (3) 

 



 

 

 

 

(a) (b) 

Fig. 2 (a) Laminated composite containing cracked ply; (b) One-quarter of laminated composite 

unit-cell 

where, y denotes the uniform strain along y-direction and subscript i denotes the material ply 1 

and 2. The homogenized properties across the lamina thickness can be expressed as, 

( )

1
(X( )) (X( ))

( )
i

i i

i H

dz
H



 


                                                (4) 

where a bar is used to indicate the through-the-thickness average of the variable X  and the 

subscript i  which refers to sublaminate 1 or 2. A simple linear variation of the out of plane 

shear stress across the lamina thickness is assumed. In the present study,  / 90m n s


configuration of laminate is considered for the purpose of analysis. Nuismer and Tan [24] found 

that the solution of the in-plane normal response of composite laminate decouples from the 

solution of the in plane shear response due to the assumption of the orthotropy of the laminates 

and that is why each of the response i.e. normal and shear are considered separately. Therefore, 

the reduced laminate stiffness matrix which is having the effect of the matrix cracking in 90  

ply group is given by the following equation [24], 
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where the terms of the above matrix can be written as following, 
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where H is lamina thickness and ijQ are the transformed layer stiffness components. 

The values of 1 , 2  and 4 are written below, 
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The values of 1  and 2 are given below, 
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The matrix A ( ) can be derived by averaging two of the sublaminates i.e. 90ply group and 

    ply group for accounting the effect of the matrix cracking which is the reduced matrix for 

the total laminate composite structure. Therefore the extensional stiffness matrix can be written 

as below, 

( ) ( ) ( )A t A                                                                    (15)  

The coefficient of an orthotropic plate can be determined by using classical laminated theory 

[25-26]. The constitutive equation for the laminate is as follows: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

N A B

M B D K

    
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     
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                                                   (16) 

where, N  and M  denote the vectors of the three forces and three moments respectively, while 

  and K  are the vectors of strain and curvature and the stiffness coefficients A , B  and D  

correspond to membrane, coupling, and bending stiffness coefficient. The extensional stiffness 

matrix A  can be obtained from Equation 15 and the extension bending stiffness matrix B  is a 

null matrix for the case of symmetrical laminate structure. From the equideformability 

hypothesis [27], the following equation can be derived  
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                                    (17) 

In the equation (17), the shear-extension coupling terms (A16 & A26) vanish for the considered 

 / 90m n s
  family of the composites and then above equation can be written as, 
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                                     (18) 

The term 11a  includes the shear effect due to layer stiffness transformation and the term 16a  and 

26a will be zero for the equation (18). Polyzois et al. [26] derived an equation for calculating the 

effective longitudinal modulus (
effE ) as, 

11

( )
1

( ) ( )
effE

a t


 
                                                             (19) 

For structural elements where wall thickness is much smaller than the beam dimension, the 

rigidity of the beam is dependent minimally on the local rigidity of the wall. Estivalezes and 

Barrau [28] described that for the thin walled cross section of a beam structure, the local 

rigidities can be neglected, i.e. the thin walled beam can be analyzed by using only the external 

stiffness matrix.  Ferrero [27] discussed the applicability of external stiffness matrix to analyze 

such structures on the basis of equideformability hypothesis. Therefore, effective modulus (
effE

) can be used for both axial and flexural characteristics to model the appropriate structural 

behavior of the member. In this context, it can be noted that the probable location of matrix 

cracking damage may depend on the intended operation of the structural member during its 

service life. For example, cracks should appear at the top and bottom portion of a beam for the 

applications where only vertical loads (such as gravity induced loads) are applied. However, the 

present paper is intended to show a generalized situation where loads may act from any 

direction (such as the shaft of a wind turbine, transmission poles, tail boom of helicopter or tube 

like structures in missiles, submarine hulls etc.), wherein cracks may appear at any location of 

the beam throughout the cross-section. For this reason, the matrix cracking damage has been 

considered throughout the beam section with randomly varying crack density along length. 

However, as a special case, damage can be modeled only at the top and bottom portions of the 

beam following the proposed SRVE approach (refer to section 4.1) for a specific application. 



 

 

 The composite beam structures are considered as one dimensional Euler-Bernoulii 

cantilever beam with the following governing equation, 

2 2 2

2 2 2

( ) ( )
( ){ ( )}( ) { ( )}( ) 0eff

w w
E I x m x

x x t

 
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   
  
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                              (20) 

where, 
effE  can be obtained from Equation (19) and cross-sectional area ( A ) can be computed 

as 2A Rt  and moment of inertia as 3I R t  (considering 2 1R R R   for thin walled 

section, where 1R  and 2R  are the outer and inner radian of the hollow circular section) for a 

hollow cantilever circular composite beam [26]. For calculating the natural frequency of a non-

uniform beam having spatially random variation of material properties as well as the matrix 

cracking, an approximate finite element method is used [29]. From the stiffness and mass 

matrices of a finite number of elements, the global stiffness matrix gK and the global mass 

matrix gM are obtained and thereby the following eigenvalue problem is solved for natural 

frequencies  

2( ) ( )g gK M                                                              (21) 

From the above numerical equation, the natural frequency   and the Eigen vector ( ) can be 

obtained for a beam having spatially random variation of material properties and matrix 

cracking damage. In this context, the necessity of adopting a finite element based approach 

instead of well-established analytical solutions for circular beam can be noted. The present 

study deals with a stochastic system having spatially varying structural and material attributes. 

It is true that analytical solutions are available for a beam-like structure and they are 

computationally efficient. But the major drawback of such analytical approaches is that they 

cannot account for the effect of spatially varying system properties. For this reason finite 

element analysis coupled with the SRVE approach is implemented in the present study. 

However, finite element analyses are generally time consuming and computationally intensive 

(especially in a stochastic framework where thousands of simulations are needed to be carried 



 

 

out). To mitigate this lacuna a radial basis function based approach is proposed. Thus 

considering the present problem of spatially varying system attributes, the most effective way of 

analysis is surrogate based finite element analysis, as followed in this study. 

3. Radial Basis Function (RBF) 

Recent engineering designs and analyses use approximation of costly objective 

functions (i.e. expensive simulations/experiments) where surrogate models are being used to 

save significant costs by substituting some of the numerical simulations and experimental 

analysis which are necessary to achieve an optimal solution (refer figure 3). Surrogate models 

can reduce the high costs and extensive time demands which are needed for evaluations and 

also reduce the number of evaluations for any design estimation. In the present analysis MCS 

has been adopted for probabilistic characterization of natural frequencies that involves 

thousands of realizations to be performed. Generally for complex composite structures, the 

performance functions/ output quantities of interest (natural frequency in the present study) are 

not available as an explicit mathematical function of the stochastic input variables. Thus, the 

stochastic responses of the composite structure can only be evaluated numerically by following 

a structural analysis procedure (finite element analysis) which is often computationally quite 

intensive. The situation gets even more aggravated in the present problem due to consideration 

of matrix cracking damage in composites that necessitates a multi-step procedure to be carried 

out in order to obtain the final outputs.  The RBF model is employed in this study to construct a 

predictive and representative surrogate of the actual model relating the natural frequencies to a 

number of stochastic input parameters. The RBF model is capable of obtaining results of the 

structural analysis encompassing every possible combination of all input variables.  

A surrogate model distinguishes a relation among a vector of d  real valued input 

variables (features),  1 2 ,  , ...,  dx x x x   and a single real valued output variable y . Using a  



 

 

 
Fig. 3 Description of the system showing stochastic input parameters ( ( )x  ) and output 

response ( ( ( ))y x  ). The original simulation model has been replaced by RBF model to achieve 

computational efficiency in the present study. 

 

finite number n  of training observations (data cases or data points)  ( ) ( ),  ,  1,  2,  ...,i ix y i n  the 

objective is to establish a model F  that permits predicting the output value for yet unseen input 

parameter sets as closely as possible. The radial basis function method was first used by Hardy 

[22] for the interpolation of geographical scattered data and later used by Kansa [30] for the 

solution of partial differential equation. Radial basis functions (RBF) were mainly developed 

for scattered multivariate data interpolation which uses a series of basic functions that are 

centrally symmetric at each sampling point [22]. RBF functions are special class of functions 

with main characteristic being that their responses increase or decrease monotonically from the 

central point with distance [31]. Quadratic surrogates have the benefit of being easy to 

implement while still being able to model curvature of the underlying function. Another way to 

model curvature is to consider interpolating surrogates, which are linear combinations of 

nonlinear basis functions and satisfy the interpolation points. RBF is often used to perform the 

interpolation of scattered multivariate data [32-34]. The use of RBF models for two dimensional 

solids was proposed by Liu et. al. [35] and incorporated to isotropic and composites plates by 

Ferreira and Fasshauer [36]. Detailed review on RBF methods can be found in the scientific 

literatures [37-41].  



 

 

The RBF model depends only upon the distance to a centre point jx  and is of the form 

( )jg x x  and RBF may also depend on the shape parameter called c , in which case 

( )jg x x may be replaced by ( , )jg x x c  [39-43, 30]. Considering a set of nodes

1 2, ,..........., n

Nx x x R , the radial basis functions centred at jx  are expressed as   

 

where, 
jx x  is the Euclidian norm. The radial function for RBF model can be expressed as,  
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                  (For Biharmonic) (27) 

where c  is a shape parameter. RBFs are insensitive to spatial dimension, making the 

implementation of the method much easier than the finite element analysis [37-40]. However, 

such an interpolation method has shortcomings in that the appearance of a meta-model varies 

significantly with the type of basis function and its internal parameters. An important 

characteristic of radial basis function is that it does not require any kind of grid and the only 

geometric property needed for RBFs are the pairwise distances between points. Working with 

higher dimensional problems by using RBF models are not difficult as the distances are easy to 

compute in any number of space dimensions.  In the present study, the basis function has been 

chosen by comparing relative performance with respect to original Monte Carlo simulation and 

the RBF has been employed with the fixed parameter 2c = 1. The accuracy of the results may 

(( )  1 ,  ) ,,n

j jg x x Rg x j N             (22) 



 

 

depend on the shape parameter c . It should be noted that an RBF passes through all the 

sampling points exactly. This means that function values from the approximate function are 

equal to the true function values at the sampling points. This can be seen from the way that the 

coefficients are found. The local deviation at an unknown point ( x ) is explicated using 

stochastic processes. In the present study, the performance of the RBF models have been 

verified and validated with respect to original Monte Carlo simulation. In the next section the 

proposed RBF based stochastic analysis algorithm is discussed including the effect of noise.                      

4. Stochastic representative volume element (SRVE) approach coupled with RBF  

4.1. Concept of SRVE 

In this article a novel concept of stochastic representative volume element (SRVE) has 

been proposed to account for the spatially random variation of material properties and crack 

density. In this approach, each representative unit (structural elements) of the structure are 

considered as stochastic, instead of considering homogenized properties of a conventional 

representative volume element (RVE) throughout the entire domain. In traditional approach, 

typically one RVE is considered for the purpose of the analysis. It is assumed that a single RVE 

represents the entire analysis domain [1]. However, this way of analysis may often lead to 

eroneous results, specially for stochastic systems having spatially random variation of material 

and other attributes. For analyzing such systems, it is necessary to take into account the 

stocahstic structural attributes along the spatial location of different zones.  

In the present approach of analysis, the entire structure is considered to be consisted of a 

finite number of such SRVEs. Thus, properties of each SRVE are the functions of its stochastic 

material properties and crack density. Following this approach, it becomes feasible to account 

for the spatial variability in a structural system in a more realistic manner. The global properties 

(such as natural frequencies) of the structure are obtained by propagating the structural 

informations acquired in the elementary level (SRVEs) towards the global level through 



 

 

assembling the SRVEs using principles of mechanics (finite element approach in the present 

study). Similar concept has been put forth recently for analyzing hexagonal lattices with spatial 

irregularity [44-45], wherein representative unit cell elements (RUCE) were considered instead 

of the conventional unit cells. The entire lattice was considered to be consisting of several such 

RUCEs and the global properties of the entire irregular lattice is obtained by assembling the 

RUCEs following equilibrium and compatibility conditions.  In this article, we have generalized 

the idea of RUCE for stochastic analysis of a beam like structure in the form of SRVE. The 

consideration of SRVE in a beam like structure shows in the Figure 4, wherein the beam is 

divided into a finite number of SRVEs having a length of x  each. Thus each of such SRVEs 

have different material properties and crack density. A parameter stochastic characteristic 

length ( r ) is defined as: 
1

d

x
r

L N
   , where dN  is the number of divisions along the length of 

the beam.  

 
 

Fig. 4 Consideration of SRVE for analyzing the spatially random system (Cantilever beam with 

varying structural attributes along the length) 

4.2. RBF based algorithm for stochastic analysis of thin-walled composite beam 

The stochasticity in material properties of laminated composite circular thin walled 

beams, such as longitudinal elastic modulus, transverse elastic modulus, shear modulus, 

Possoin’s ratio, mass density and geometric properties such as ply-orientation angle are 

considered as input parameters for analysis of natural frequencies. It is presumed that the 

distribution of randomness of input parameters exists within a certain band of tolerance  



 

 

 

Fig. 5 Flowchart for stochastic natural frequency analysis based on RBF model 

following random uniform distribution with the central determinstic mean values. A variation of 

10%  from deterministic value for material properties and fibre orientation angle is assumed 

for the purpose of analyses following industry standards, unless otherwise mentioned. The 

percentage variation is regarded as the degree of stochasticity ( ).  In the present study, two 

separate analyses have been carried out considering the stochasticity in micro-mechanical 

properties and the stochaticity in macro-mechanical properties to understand the cascading 

effect of stochasticity on a comparative basis. Thus the following two cases of stochasticity are 

considered for material properties: 

(i) Combined variation for macro-mechanical properties of elastic moduli, shear moduli, 

Poisson’s ratio and mass density can be written as,  
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(ii) Combined variation for micro-mechanical properties of elastic moduli (fibre and matrix), 

shear moduli (fibre and matrix), Poisson ratios (fibre and matrix), mass densities (fibre and 

matrix) and volume fraction can be written as, 
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where,    1 2 , 1312 , 23 ,( ) ( ) ( ),  ,  ,i i i i ii i
E E G G G    are the longitudinal elastic modulus, transverse elastic 

modulus, shear modulus in three different planes, Possoin’s ratio and mass density of thi layer, 

respectively and l  denotes the number of layers in the laminate. For the stochasticity in micro-

mechanical properties, 1 (i) 2 (i) (i) (i) (i) (i) (i) (i) (i) (i), , , , , , , , ,f f m f m f m f m fE E E G G V     denote elastic 

moduli of fibre in longitudinal and transverse direction, elastic modulus of matrix, shear 

modulus of fibre and matrix, Poisson’s ratio of fibre and matrix, mass density of fibre and 

matrix and volume fraction corresponding to thi layer, respectively.  In addition to the above 

mentioned cases of material property variation, matrix cracking has been considered in a 

stochastic framework to analyse the natural frequencies of the structure.  

To achieve computational efficiency, an RBF based uncertainty quantification algorithm 

has been developed as presented in figure 5. For constructing the RBF surrogate model, both 

Latin hypercube sampling [46] and Sobol sequence [47] have been studied to assess their 

comparative performance. In this surrogate based approach, first the surrogate model (RBF) is 

formed on the basis of few optimally chosen design points. Thus same number (number of 

design points) of finite element simulation/ experiments is needed to be carried out at this stage. 

The RBF model effectively replaces the actual expensive finite element model by an efficient 

mathematical model. Once the surrogate model is formed, thousands of virtual simulations can 



 

 

be carried out for different random combinations of input parameters using the computationally 

efficient RBF model.  

 

Fig. 6 Flowchart for analyzing the effect of noise on uncertainty quantification algorithm based 

on RBF model  

4.3. Effect of noise on RBF based stochastic analysis algorithm 

The effect of noise on the proposed RBF based stochastic analysis algorithm is 

accounted by incorporating different levels of Gaussian noise as shown in figure 6.  A Gaussian 

white noise with a specific factor ( p ) is introduced in the set of output responses, which is 

used subsequently for the RBF model formation, as 



 

 

sijN i ijjf f p     (28) 

Here, f  represents natural frequency and the subscript i  and j  denote frequency number and 

sample number respectively; ij is a function which generates random numbers with normal 

distribution having zero mean and unit standard deviation and  p  (noise level) in the equation 

(28) basically represents the standard deviation corresponding to the noise level.  The subscript 

sN is used here to indicate the noisy frequency.  

Thus the simulated noisy set of data (i.e. the sampling matrix for RBF model formation) 

is constructed by incorporating pseudo random noise in the responses (natural frequencies), 

while the input design points are allowed to remain unaltered. Subsequently for each of the 

datasets, RBF based Monte Carlo simulation is performed to quantify uncertainty in the thin 

walled composite beam. Effect of noise has been analysed following a deterministic approach 

in several other studies [48-50]. Assessment of the effect of noise on RBF based uncertainty 

propagation algorithm is investigated for the first time in this study. Such simulated noise can 

be considered as accounting other sources of uncertainty such as error in computer modelling, 

error in measurement and various other forms epistemic uncertainties inherently involved with 

the structural system. Thus the present approach of considering noise in uncertainty analysis 

will provide a comprehensive idea regarding the robustness of RBF based algorithm under 

noisy data.          

5. Results and discussion 

In this article, results have been presented for two different classes of stochasticity: 

randomly homogeneous system and randomly inhomogeneous system. In randomly 

homogeneous system, no spatial variability along the length of the beam is considered. It is 

assumed that stuctural attributes remain same spatially. However the stochastic parameters vary 

from sample to sample following a probabilistic distribution  (random variable approach). In  



 

 

Table 1: Deterministic micromechanical properties of composite [51]  

Property Value 

Longitudinal modulus for fibre ( 1 fE ) 80 GPa 

Transverse modulus  for fibre ( 2 fE ) 80 GPa 

Poisson's ratio for fibre  ( f ) 0.2 

Shear modulus  for matrix ( fG ) 33.33 GPa 

Mass density for fibre ( f ) 2.55 gm/cc 

Mass density for matrix ( m ) 1.265 gm/cc 

Elastic modulus of matrix ( mE ) 4.2 GPa 

Shear modulus  for matrix ( mG ) 1.567 GPa 

Poisson's ratio for matrix ( m ) 0.34 

Fibre volume fraction ( fV ) 0.61 

 

Table 2: Deterministic macro-mechanical properties for fV = 0.61 

Property Value 

Longitudinal modulus ( 1E ) 48 GPa 

Transverse modulus ( 2E ) 13.3 GPa 

Poisson's ratio ( 12 ) 0.235 

In-plane shear modulus ( 12G ) 5.17  GPa 

Mass density (  ) 1.94 gm/cc 

Shear modulus ( 13G ) 5.17  GPa 

Transverse shear modulus ( 23G ) 4.12 GPa 



 

 

randomly inhomogeneous system, spatial variability of the stochastic structural attributes are 

accounted. Thus, in this form of stochasticty the material and damage parameters vary randomly 

along the length as well as vary from sample to sample. For the purpose of obtaining numerical 

results, a long circular cross section of a composite beam is considered in the present analysis 

having a length of 18 m , outer diameter of the circular cross section as 600 mm  and the beam 

wall cross-section as 11 mm  [26]. The  / 90m n s
 configuration of laminate is considered for 

the analyses similar to Nuismer and Tan [24]. The deterministic micromechanical material 

properties (E-glass 21 43xK Gevetex/ 3501 6 epoxy) of the composite beam are presented in 

Table 1 [51]. Using Halpin- Tsai principle [25] the deterministic macromechanical properties 

are calculated by considering a volume fraction ( fV ) of 0.61 and presented in Table 2. Results 

in this article has been shown for two different cases (stochasticity in micromechanical 

properties: microg  and stochasticity in macromechanical properties: macrog ) as discussed in 

section 4.2. Thus, for stochasticity in micromechanical properties, the material parameters 

presented in Table 1 are considered as stochastic and thereby the macromechanical properties 

are calculated using Halpin- Tsai principle to carry out further analysis including the effect of 

matrix cracking as shown in figure 12 (detailed discussion about this figure is provided later). 

For stochasticity in macro-mechanical properties, the analysis starts one step ahead in the 

hierarchy i.e. uncertainty is considered in the macro-mechanical material properties as shown in 

Table 2. Subsequently, the results have been compared to analyse the cascading effect in 

stochasticity.  

5.1. Validation and convergence study 

The deterministic finite element model of the thin-walled composite beam is validated with 

available literature before carrying out further analyses (refer to Table 3). The fundamental 

natural frequencies are compared with the results obtained by Polyzois et al. [26] for different 

laminate configurations of  m s
 and m  = 25 family of composites. The number of elements in 



 

 

the finite element model is based on a mesh convergence study showing that the results 

converge at eight number of elements for the undamaged structure. Another convergence study 

is performed for selection of sample size for Radial based function based surrogate that is 

compared to the baseline original MCS (10,000 samples) results considering macro and micro 

mechanical properties. Two different sampling techniques (Latin hypercube sampling and Sobol 

sequence) have been considered and their comparative performances are presented in Table 4 

and Table 5 based on statistical analyses (with  30 , 16, 18m n      in  / 90m n s
 family of 

composites). The adequate sample sizes for macro-mechanical and micro-mechanical analyses 

are found to be 128 and 256 respectively. It is also noticed that performance of Sobol sequence 

is better compared to LHS. Similar conclusion can be made from figure 7 that shows the 

absolute percentage error in different statistical parameters with respect to original MCS. Figure 

8 presents typical results of probability density function plots for original MCS along with 

different sample sizes of Sobol sampling considering stochasticity in micro-mechanical 

properties. Another study has been carried out to assess the performance of different basis 

functions for the construction of RBF model as presented in figure 9. The figure reveals that 

performance of thin plate splines is slightly better than other basis functions. Thus the results 

presented in this article hereafter will consider Sobol sampling and thin plate splines.  

Table 3: Validation of fundamental frequencies for the undamaged composite structure for 

typical fibre orientation angles ( ):  

  
Fundamental natural frequencies (rad/ sec) 

Present  study Polyzois et al. [26] 

0° 11.45 11.35 

15° 10.72 10.63 

30° 8.61 8.55 

45° 6.57 6.53 



 

 

Table 4: Maximum value, minimum value, mean value and standard deviation of first three natural frequencies for macro-mechanical properties ( macrog ) 

obtained using original MCS and RBF surrogate modelling considering different sample sizes for LHS and Sobol sampling 

 

Natural Frequency 
 

MCS 

Sample size=32 Sample size=64 Sample size=128 Sample size=256 Sample size=512 

LHS Sobol 

 

LHS 

 

Sobol 

 

LHS 

 

Sobol LHS Sobol LHS Sobol 

Maximum 

First 8.2083 8.1272 8.1694 8.1563 8.1314 8.1669 8.1555 8.1730 8.2925 8.1812 8.1874 

Second 51.4412 50.9329 51.1972 51.1151 50.9590 51.18164 8.1555 51.2199 51.9684 51.27092 51.3100 

Third 144.0389 142.6156 143.3558 143.1259 142.6887 143.3121 143.1117 143.4193 145.5152 143.5621 143.6717 

Minimum 

First 6.80513 6.8503 6.8326 6.8405 6.8236 6.7960 6.8207 6.8246 6.6574 6.7984 6.8064 

Second 42.6471 42.9307 42.8195 42.8688 42.7632 42.5904 42.7448 42.7693 41.7219 42.6054 42.6555 

Third 119.4148 120.2090 119.8976 120.0357 119.7401 119.2560 119.6886 119.7570 116.8242 119.2982 119.4385 

Standard 

deviation 

First 0.2714 0.2626 0.2692 0.2695 0.2669 0.2732 0.27238 0.2711 0.2698 0.2731 0.2761 

Second 1.7012 1.6462 1.6874 1.6893 1.6730 1.7123 1.7070 1.6995 1.6912 1.7118 1.7306 

Third 4.76358 4.6095 4.7250 4.7304 4.6847 4.7946 4.7797 4.7588 4.7356 4.7931 4.8459 

Mean 

First 77.4724 7.4689 7.4633 7.4674 7.4680 7.4671 7.4639 7.46961 7.4666 7.4661 7.4680 

Second 46.8288 46.8073 46.7723 46.7979 46.8017 46.7961 46.7758 46.8113 46.7929 46.7895 46.8013 

Third 131.1241 131.06378 130.9656 131.0375 131.0480 131.0324 130.97569 131.0751 131.0235 131.0142 131.0469 



 

 

Table 5: Maximum value, minimum value, mean value and standard deviation of first three natural frequencies for micro-mechanical properties ( microg ) obtained 

using original MCS and RBF surrogate modelling considering different sample sizes for LHS and Sobol sampling 

Natural Frequency 
 

MCS 

Sample size=32 Sample size=64 Sample size=128 Sample size=256 Sample size=512 

LHS Sobol 

 

LHS 

 

Sobol 

 

LHS 

 

Sobol LHS Sobol LHS Sobol 

Maximum 

First  8.3027 8.2553 8.2385 8.3381 8.2987 8.2580 8.2556 8.2902 8.2925 8.2986 8.3602 

Second 52.0328 51.7352 51.6303 52.2546 52.0076 51.7521 51.7374 51.9543 51.9684 52.0071 52.3926 

Third 145.6955 144.8623 144.5685 146.3165 145.6250 144.9097 144.8683 145.4758 145.5152 145.6235 146.7030 

Minimum 

First 6.67840 6.7663 6.7316 6.7509 6.74726 6.70267 6.7272 6.6804 6.6574 6.6748 6.6660 

Second 41.8529 42.4038 42.1869 42.3074 42.2843 42.0050 42.1589 41.8654 41.7219 41.8304 41.7757 

Third 117.1910 118.7336 118.1262 118.4637 118.3992 117.6170 118.0478 117.2261 116.8242 117.1280 116.9750 

Standard 

deviation 

First 0.27660 0.2579 0.256 0.2655 0.26487 0.2704 0.26838 0.2725 0.2698 0.2706 0.2714 

Second 1.7334 1.6162 1.6093 1.6643 1.6600 1.6948 1.6819 1.7083 1.6912 1.6962 1.7011 

Third 4.8538 4.5255 4.5062 4.6603 4.6482 4.7457 4.7095 4.7834 4.7356 4.7496 4.7634 

Average 

First 7.4651 7.4637 7.4687 7.4702 7.4669 7.4665 7.4639 7.4704 7.4666 7.4680 7.4635 

Second 46.7835 46.7746 46.8056 46.8152 46.7945 46.7918 46.7759 46.8164 46.7929 46.8014 46.7736 

Third 130.9971 130.9722 131.0590 131.0858 131.0279 131.0204 130.9759 131.0892 131.0235 131.0471 130.9695 



 

 

 Macro-mechanical properties Micro-mechanical properties 
M

ax
im

u
m

 

  

(a) (b) 

M
in

im
u
m

 

  

(c) (d) 

M
ea

n
 

  

(e) (f) 

S
ta

n
d
ar

d
 d

ev
ia

ti
o
n

 

  

(g) (h) 

Fig. 7 Absolute percentage error in maximum, minimum, mean and standard deviation of 

fundamental natural frequencies with respect to original MCS for micro and macro mechanical 

properties obtained for different sample sizes considering LHS and Sobol sampling.
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Fig. 8 Probability density function plots for different sample sizes of Sobol sampling considering stochasticity in micro-mechanical properties 

along with original MCS 
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Fig. 9 Performance of different basis functions for constructing RBF model corresponding to first three natural frequencies 



 

 

Fig. 10 (a-c) Scatter plot of macro-mechanical properties obtained by original MCS and RBF 

model with respect to first three natural frequencies for circular thin walled composite beam, 

considering sample size=10000, with   30 ,  16,  18m n     ; (d-f) Scatter plot of micro-

mechanical properties obtained by original MCS and RBF model with respect to first three 

natural frequencies for circular thin walled composite beam, considering sample size =10000, 

with   30 ,  16,  18m n      
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Fig. 11 (a-c) Probability density function of macro-mechanical properties obtained by original 

MCS and RBF model with respect to first three natural frequencies for circular thin walled 

composite beam, considering sample size=10000, with   30 ,  16,  18m n     ; (d-f) 

Probability density function of micro-mechanical properties obtained by original MCS and 

RBF model with respect to first three natural frequencies for circular thin walled composite 

beam, considering sample size = 10000, with   30 ,  16,  18m n      



 

 

Figure 10 and figure 11 show the scatter plots and probability density function plots for 

the converged sample sizes with respect to original MCS. The low scatterness of the points 

around the diagonal line in figure 10 and the low deviation between the probability density 

function estimations of original MCS and RBF model in figure 11 corroborate the fact that RBF 

surrogate models are accurately formed. It is worthy to mention here that by adopting the 

surrogate based approach, significant computational efficiency is achieved. Although same 

sampling size as in direct MCS (with sample size of 10,000) is considered in the present RBF 

based approach, the number of actual FE analysis is much less compared to original MCS and is 

equal to the number of representative samples required to construct the RBF meta-model. 

Hence, the computational time and effort expressed in terms of FE simulations is reduced 

significantly compared to full-scale direct MCS.  

5.2. Results of stochastic analyses and discussion 

The stochastic multi-scale analysis that has been carried out in this study is depicted in 

figure 12 along with some representative results to elucidate the context of the present 

numerical investigation. Two different analyses for stochastic micro and macro mechanical 

properties ( microg  and macrog ) are shown using appropriate colours to compare the probabilistic 

distributions in the global responses due to same degree of stochasticity in micro and macro-

mechanical properties. The typical input distribution (uniform random) depicts in figure 12(a-c) 

for 1mE , 1 fE  and fV  respectively (other micromechanical properties also follow the same 

distribution). In figure 12(d), two distributions are shown for 1E . The distribution depicted in 

blue colour corresponds to the macro-mechanical properties obtained from the stochastic micro 

mechanical properties (i.e. typical figure 12(a-c) and similar distributions of other stochastic 

micro-mechanical properties) by using the Halpin-Tsai principle [25]. The distribution depicted 

by red colour in figure 12(d) represents the typical input distribution (random uniform) of 



 

 

 

Fig. 12 Proposed stochastic multiscale analysis scheme of laminate composite beam with matrix cracking (In figures, d-f the histograms in blue 

and red colour indicate micro-mechanical and macro-mechanical properties respectively)



 

 

macro-mechanical analysis (other macro-mechanical properties follow similar distributions). It 

is noteworthy that, even though all the input distributions of micro-mechanical analysis (figure 

12(d)) are uniform, the distributions of macro-mechanical properties obtained from the 

stochastic micro-mechanical properties appeared Gaussian. This observation can be explained 

by central limit theorem [52]. The typical distributions for effE  (after incorporation of the effect 

of matrix cracking) and fundamental natural frequency showed in figures 12(e-f). In both the 

cases it can be noticed that response bound is more for micro-mechanical analysis compared to 

macro-mechanical analysis while same degree of stochasticity ( 10%  variation from 

deterministic value following uniform distribution) is considered in both the cases. This 

observation can be explained by the cascading effect showing that consideration of stochasticity 

in more elementary level of the multi-scale hierarchy increases the response bound of output 

parameters at the global level. 

In this section, the probabilistic descriptions for first three natural frequencies are 

analysed for various structural configurations and matrix crack densities in the considered 

 / 90m n s
 family of composites. Results presented in figure 13-18 have been obtained 

considering a randomly homogeneous system. In the figure 13, the probability density function 

plots for first three natural frequencies due to combined variation of stochastic input parameters 

are presented for  0 ,  15 ,  30 ,  45 ,  60 ,  75 ,  90         considering m = 16, n = 18. A general 

tendency is observed that the mean and standard deviation of natural frequencies decrease with 

the increase of  . The reduction in the first three natural frequencies is due to reduction in 

longitudinal stiffness with increasing value of  . The probability density function plots are 

presented in figure 14 and figure 15 with respect to first three natural frequencies for different 

number of layers considering a fibre orientation angle  30   . It is interesting to notice that 

with the increase in number of plies having 90  fiber orientation angle ( n ), mean and standard 

deviation decrease (figure 14), while a reverse trend is found for number of plies having ply 



 

 

 
 

(a) (b) 

 
(c) 

Fig. 13 (a-c) Probability density function plots for first three natural frequencies for different 

fiber orientation angle ( ) 

orientation angle  30   (figure 15). As the total thickness remains unaltered, this observation 

can be easily explained by change in longitudinal stiffness in a similar way to figure 13. In 

figure 16, the relative co-efficient of variation (RCOV) (normalized ratio of the standard 

deviation and mean) for combined stochasticity in micro-mechanical properties are furnished  

with respect to m , n  and   for the first three natural frequencies, wherein clear trends can be 

observed. It is noticed that the maximum value of RCOV is obtained when the value of m  is 24 

while in case of n  the RCOV becomes minimum when n  is 26. For ply orienatation angle ( ), 

the minimum RCOV is observed for  45   . It is interesting to notice that the RCOV value 

increases for both increasing and decresing   with respect to  45   , following similar 

pattern and reaches the maximum at  0   and  90   . As RCOV of a system increases, the 

response bound also increases and subsequently the uncertainty associated with the system 
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Fig. 14 (a-c) Probability density function plots for first three natural frequencies corresponding 

to various numbers of ply numbers having ply orientation angle of 90° ( n ) 

responses increases as well. Thus the analyses presented in the form of RCOV for different 

laminate configurations has an important role in robust design and control of the structure. 

Figure 17 (a-c) shows the probability density fiunction plots for first three natural frequencies 

with respect to different degree of irregularity. The response bounds are found to be incresing 

with increasing degree of stochasticity with marginal change in the mean values, while the 

response bounds are observed to be higher for stochasticity in micro-mechanical properties 

compared to macro-mechanical properties, similar to figure 12.  Figure 17(d) shows the 

probability density function for effective longitudinal modulus ( effE ), based on which the 

natural frequencies are obtained. Similar trends as the natural frequencies are noticed in the 

probabilistic charcteristics of effE , as expected. Figure 18 (a-c) show the effect of crack density 

on natural frequencies due to combined variation in micro-mechanical properties. In this article,  
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Fig. 15 (a-c) Probability density function plots for first three natural frequencies corresponding 

to various numbers of ply numbers having ply orientation angle of   m  

crack density has been defined as number of cracks (N) in 100 mm length. As the crack density 

increases, the mean natural frequencies are found to decrease due to a reduction in effective 

stiffness. The probability density function of effE showed in the figure 18(d) which shows 

similar trend as the natural frequencies.  

Figure 19 and figure 20 present the RCOV for individual variation of different 

stochastic input parameters corresponding to stochasticity in macro and micro mechanical 

properties, respectively. These figures provide a clear idea about the relative sensitivity of 

different stochastic input parameters to the natural frequencies and effE . In case of stochasticity 

in macro-mechanical properties, it is found that mass density, longitudinal elastic modulus, 

shear modulus 12G and transverse elastic modulus (in decreasing order of sensitivity) are most  



 

 

        

                       

 

Fig. 16 (a) Relative co-efficient of variation (RCOV) considering 

 30 ,  8,  16,  24,  32,  40,  18m n      and variation      10%   ; (b) Relative co-efficient 

of variation (RCOV) with respect to n for first three natural frequencies considering fibre 

orientation angle  30 ,  16,  10,18,26,34,42m n      and variation      10%   ; (c) 

Relative co-efficient of variation (RCOV) with respect to fibre angle (θ) for first three natural 

frequencies considering fibre angle orientation  0 ,  15 ,  30 ,  45 ,60 ,  75 ,90         ,  16m  , 

 18n   and variation     10%   . 

sensitive to the first three natural frequencies and effE . For stochasticity in micro-mechanical 

properties, it is observed that the most sensitive parameters according to decreasing order of 

sensitivity are longitudinal elastic modulus of fiber, mass density of fiber, volume fraction, 

mass density of matrix, shear modulus of matrix and elastic modulus of matrix respectively. 

The results are in good agreement for the natural frequencies and effective longitudinal 

modulus ( effE ). Outcomes of the sensitivity analyses can serve as a valuable guideline for 

efficient uncertainty quantification and subsequent design and control of such stuctures.  
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Fig. 17 (a-c) Probability density function plots for first three natural frequencies considering 

different degree of stochasticity (  ); (d) Probability density function plot for the effective 

longitudinal modulus considering different degree of stochasticity ( ) 

Figures 21-23 present the probabilistic description of first three natural frequencies for 

spatially random variation of only micro-material properties, only crack densities and combined 

variation of micro-material properties and crack densities, respectively (randomly 

inhomogeneous system). Results have been presented for different values of stochastic 

characteristic lengths ( r ) considering mean crack density of 35 with degree of stochasticty 

  10%   ,  30 ,  16m     and  18n  . It is interesting to notice that as the value of r 

decreases, standard deviation and response bound of the natural frequencies also decrease. In 

this context, it is to be noted that for the stochasticity category of randomly homogeneous 

system,  1r  . The figures also reveal that variation of micro-mechanical properties lead to 

more deviation in the response bounds compared to carck densities. However, the combined  
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Fig. 18 (a-c) Probability density function plot for first three natural frequencies, considering 

different crack densities (N), with fibre orientation angle  30 ,  16,  18m n     , degree of 

stochasticity ( ) = 10% in micro-mechanical properties (d) Probability density function plot 

for effective longitudinal modulus ( effE ) considering different crack densities, with fibre 

orientation angle  30 ,  16,  18m n      and degree of stochasticity ( ) = 10%  in micro-

mechanical properties  

 

effect of spatially random variation of both micro-mechanical properties and carck densities 

leads to maximum deviation in the response bound of natural frequencies.  

A spatial sensitivity analysis for crack density has been carried out to ascertain the 

effect of matrix cracking to the first three natural frequencies following variance based 

sensitivity analysis [53]. The result presented in figure 24 reveals an interesting trend of the 

sensitivity along length of the beam that the spatial sensitivity of a particular mode of frequency 

varries following its respective mode shape. Such analysis provides a clear understanding 

regarding the requirement of adopting necessary measures to identify damages in a particular 

zone along the length of the beam, according to the vibration mode of interest.  
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Fig. 19 Relative co-efficient of variation (RCOV) for the first three natural frequencies and 

effE considering macro-mechanical properties 

 

 

Fig. 20 Relative co-efficient of variation (RCOV) for the first three natural frequencies and 

effE considering micro-mechanical properties 

The probability distributions for higher modes of natural frequencies (first eight) 

corresponding to the bending modes presented in figure 25. In the inset, normalized natural 

frequencies with respect to their respective mean values are shown. Even though the response 

bounds of the normalized values do not vary significantly from each other, there is a clear 

increasing trend of response bounds and standard deviations with respect to actual values for 

higher modes of vibration. It is evident from the figure that the line connecting the vertices of 

the probability density function plots for different modes of frequencies follow an exponential   
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Fig. 21 Probability density function plots for first three natural frequencies considering spatially random variation of micro-material properties 
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Fig. 22 Probability density function plots for first three natural frequencies considering spatially random variation of carck densities 
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Fig. 23 Probability density function plots for first three natural frequencies considering combined spatially random variation of micro-material 

properties and crack densities 



 

 

 

Fig. 24 Spatial sensitivity of crack density to first three natural frequencies 

 

Fig. 25 Probability density function plots for the first eight natural frequencies corresponding 

to bending modes. In the inset, normalized natural frequencies with respect to their respective 

mean values are shown.  

decay. Such behaviour for a regular shaped stucture is quite in good agreement with the 

random matrix theory [54].  

Figure 26-27 show the effect of noise on RBF based uncertainty quantification 

algorithm for the thin-walled laminated composite beam. The scatter plots in figure 26 show 

that the prediction capability of RBF gets increasingly affected by increasing level of noise        



 

 

  

(a) (b) 

 

(c) 

Fig. 26 Scatter plots depicting the effect of noise on RBF based uncertainty quantification for first three natural frequencies  
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Fig. 27 Probability density function plots depicting the effect of noise on RBF based uncertainty quantification for first three natural frequencies 



 

 

( p ), while figure 27 presents the effect of noise on probabilistic description of first three 

natural frequencies. The fundamental natural frequency is identified to be the most noise 

sensitive among the first three modes of vibration. 

6. Summary and perspective 

This article presents a stochastic multi-scale bottom-up approach for analyzing 

damaged thin-walled composite beams (randomly inhomogeneous systems). A novel concept 

of SRVE is proposed in this context to analyze spatially varying structural systems in 

conjunction with finite element analysis (the conventional methods of RVE based analyses and 

analytical solutions for circular beams can not account for the effect of  spatially random 

material and geometric properties). A surrogate based approach (radial basis function) is 

adopted to achieve computational efficiency in the multi-step analysis. Two separate analyses 

have been carried out considering stochasticity in micro-mechanical properties and macro-

mechanical properties to present comparative results by higlighting the cascading effect of 

stochasticity. The results are furnished for two different classes of stochasticity: randomly 

homogeneous system and randomly inhomogeneous system, followed by insightful 

comparative discussions. 

In the micro-mechanical analysis, stochasticity is considered in the micro-mechanical 

material properties of composites. Effect of spatially random matrix cracking damage 

(typically a meso-scale attribute) is incorporated in a stochastic framework. Based on the 

proposed SRVE based approach the equivalent material properties at macro-scale are 

calculated by accounting the stochasticity in micro-mechanical properties and spatially random 

matrix cracking damage. Thereby, the equivalent material properties (macro-scale) are fed into 

the finite element code to obtain the natural frequencies of the structure. In the proposed 

analysis, stochasticity is accounted at the micro-level first, and then the effect is propagated to 

the macro-level to characterize the global responses of the structure as shown in figure 12. 



 

 

Therefore, the present analysis deals with properties and responses at different length scales 

(micro, meso and macro). It is common in the scientific literature [55] to refer such analysis of 

composites considering representative volume element as multi-scale analysis. As stochatic 

system parameters have been accounted in the present study, the analysis is referred as 

stochastic multi-scale analysis in this paper. 

Results are presented from a generalized viewpoint considering spatially random matrix 

cracking damage to characterize the probabilistic descriptions of natural frequencies. Thus the 

results in this paper capture the effect of both manufacturing uncertainty (random material 

properties) and the uncertainty caused during the service life of the structure (spatially varying 

matrix cracking). While in-depth analyses are presented for the first three natural frequencies, 

the probabilistic descriptions of higher frequencies are also furnished considering their 

relevancy of different aerospace and mechanical structures. The standard deviations of the 

natural frequencies due to stochasticity in micro-mechanical properties are found to be higher 

than that due to stochasticity in macro-mechanical properties, while the mean remains 

unaltered. A general tendency of increasing standard deviation and response bound for the first 

three natural frequencies is noticed with higher degree of stochasticity in the input parameters. 

The mean of natural frequencies is observed to decrease with the increase in crack density. 

Sensitivity analyses have been presented from two different perspectives. Sensitivity analysis 

of different material properties reveal that longitudinal elastic modulus and mass density are 

the most sensitive parameters for first three natural frequencies in macro-mechanical analysis, 

while longitudinal elastic modulus of fibre, mass density of fibre and volume fraction are the 

most important factors for micro-mechanical analysis. The second form of sensitivity analysis 

considering spatially varying matrix cracking damage reveals an interesting observation that 

the sensitivity of matrix cracking damage to the natural frequencies along the length of the 

beam follows the respective mode shapes for first three natural frequencies. From the 



 

 

developed algorithm for analyzing the effect of noise in RBF based uncertainty quatification, 

the fundamental natural frequency is found to be the most noise sensitive compared to others. 

The sensitivity analyses results will allow the designers, manufacturers and maintenace 

personnel to ensure effective quality control of the structure. 

7. Conclusions 

A bottom-up stochastic analysis is presented for quantifying uncertainty in natural 

frequencies of damaged thin-walled laminated composite circular beams considering 

stochasticity in micro-mechanical material properties. The effect of spatially varying matrix 

cracking damage is analysed along with stochastic material properties following a multi-scale 

framework. A novel concept of stochastic representative volume element (SRVE) is proposed 

to consider the spatially varying structural attributes effectively. In this study, the probability 

distributions of first three natural frequencies due to stochasticity in micro-mechanical 

properties have been compared with that due to same degree of stochasticity in macro-

mechanical properties to ascertain the cascading effect of uncertainty propagation. Sensitivity 

of different micro and macro mechanical properties has been analyzed for the first three natural 

frequencies. Another form of sensitivity analysis is presented showing the spatial sensitivity of 

matrix crack location along the length of the beam for the first three natural frequencies. To 

achieve computational efficiency, a radial basis function based uncertainty quantification 

algorithm has been developed in this study, wherein it is observed that the required number of 

original finite element simulations can be significantly reduced. Effect of noise on the proposed 

uncertainty quantification algorithm has been presented considering different levels of noise, 

wherein it is noticed that the fundamental natural frequency is most affected by such simulated 

noise.  

The results presented in this paper provide a thorough insight on the effects of 

stochasticity in micro and macro mechanical properties of damaged laminated composite 



 

 

beams considering two different classes of stochasticity: randomly homogeneous system and 

randomly inhomogeneous system. Thus both the forms of uncertainties caused during 

manufacturing (stochastic material properties) and service life (matrix cracking) of the 

structure have been quantified. Such stochasticity/ system irregularities have considerable 

effect on the dynamic responses of the structure. Thus it is imperative to take into account the 

effect of these uncertainties in subsequent analyses and design for ensuring robust and 

sustainable system performance. Novelty of this article includes the consideration of spatially 

random variation of material properties and crack density following the SRVE based approach. 

The concept of SRVE is quite general in nature, thus it can be extended to other structures and 

stochastic systems with spatial variability in two and three dimensions. Moreover, the proposed 

computationally efficient RBF based framework for uncertainty quantification in thin-walled 

composite beams can be extended to other structures for characterizing various global 

stochastic responses in future.  
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