

Received 27 January 2016 Accepted 14 February 2016

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China

**Keywords:** crystal structure; indole; N—H···O hydrogen bond; C(6) chain; weak interactions.

CCDC references: 1453285; 1453284; 1453283; 1453282

**Supporting information**: this article has supporting information at journals.iucr.org/e

Crystal structures of four indole derivatives with a phenyl substituent at the 2-position and a carbonyl group at the 3-position: the C(6) N—H···O chain remains the same, but the weak reinforcing interactions are different

Jamie R. Kerr,<sup>a</sup> Laurent Trembleau,<sup>a</sup>\* John M. D. Storey,<sup>a</sup> James L. Wardell<sup>a,b</sup> and William T. A. Harrison<sup>a</sup>

<sup>a</sup>Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, and <sup>b</sup>Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos-Far Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil. \*Correspondence e-mail: w.harrison@abdn.ac.uk

We describe the crystal structures of four indole derivatives with a phenyl ring at the 2-position and different carbonyl-linked substituents at the 3-position, namely 1-(2-phenyl-1*H*-indol-3-yl)ethanone,  $C_{16}H_{13}NO$ , (I), 2-cyclohexyl-1-(2phenyl-1*H*-indol-3-yl)ethanone,  $C_{22}H_{23}NO$ , (II), 3,3-dimethyl-1-(2-phenyl-1*H*indol-3-yl)butan-1-one,  $C_{20}H_{21}NO$ , (III), and 3-benzoyl-2-phenyl-1*H*-indole,  $C_{21}H_{15}NO$ , (IV). In each case, the carbonyl-group O atom lies close to the indole-ring plane and points towards the benzene ring. The dihedral angles between the indole ring system and 2-phenyl ring for these structures are clustered in a narrow range around 65°. The dominant intermolecular interaction in each case is an N-H···O hydrogen bond, which generates a C(6) chain, although each structure possesses a different crystal symmetry. The C(6) chains are consolidated by different (C-H···O, C-H··· $\pi$  and  $\pi$ - $\pi$ stacking) weak interactions, with little consistency between the structures.

#### 1. Chemical context

Indole derivatives are widely studied due to their utility in many areas, including in the dye, plastics, agriculture and perfumery fields and as vitamin supplements and flavour enhancers (Barden, 2011). However, it is in the pharmaceutical field that most interest has been shown. Indoles, both naturally occurring and man-made, have been found to have activity as antihypertensive drugs, antidepressants, antipsychotic agents, anti-emetics, analgesics, anti-asthmatics, antivirals, beta blockers, inhibitors of RNA polymerase-11, agonists for the cannabinoid receptor, non-nucleoside reverse transcriptase inhibitors, opioid agonists, sexual dysfunctional agents, *etc.* (França *et al.*, 2014; Kaushik *et al.*, 2013; Biswal *et al.*, 2012; Sharma *et al.*, 2010).







The molecular structure of (I), showing 50% displacement ellipsoids.

As part of our ongoing synthetic and biological (Kerr, 2013) and structural studies in this area (Kerr *et al.*, 2015) we report herein the crystal structures of four indole derivatives, namely: 1-(2-phenyl-1*H*-indol-3-yl)ethanone,  $C_{16}H_{13}NO$ , (I), 2-cyclohexyl-1-(2-phenyl-1*H*-indol-3-yl)ethanone,  $C_{22}H_{23}NO$ , (II), 3,3-dimethyl-1-(2-phenyl-1*H*-indol-3-yl)butan-1-one,  $C_{20}H_{21}NO$ , (III), and 3-benzoyl-2-phenyl-1*H*-indole,  $C_{21}H_{15}NO$ , (IV).

As we discuss below, each structure features C(6) N— H···O hydrogen-bonded chains but with different crystal symmetries and weak reinforcing effects (C—H···O and C— H··· $\pi$  interactions and aromatic  $\pi$ - $\pi$  stacking).

#### 2. Structural commentary

The molecular structure of (I) is illustrated in Fig. 1. The dihedral angles between the mean plane of the indole ring



Figure 2 The molecular structure of (II), showing 50% displacement ellipsoids.



Figure 3 The molecular structure of (III), showing 50% displacement ellipsoids.

system (r.m.s. deviation = 0.018 Å) and the C9/C10/O1 grouping and the C11-benzene ring are 8.35 (4) and 65.44 (4)°, respectively. The C6–C7–C9 and C8–C7–C9 bond angles are 124.57 (9) and 129.04 (10)°, respectively. O1 is *syn* to H5 [C6-C7-C9-O1 = -8.14 (16)°] and a short intramolecular contact occurs (H5···O1 = 2.54 Å), although we do not regard this as a bond. The C8–C7–C9–C10 torsion angle of -6.53 (16)° shows that C8 and C10 are almost eclipsed.

The molecular structure of (II) is shown in Fig. 2. The cyclohexyl ring adopts a normal chair conformation with the exocyclic C–C bond in an equatorial orientation. The dihedral angles between the indole ring system (r.m.s. deviation = 0.012 Å) and the C9/C10/O1 grouping and the C11-benzene ring are 21.17 (14) and 68.58 (8)°, respectively. The C6–C7–C9 and C8–C7–C9 bond angles are 124.3 (2) and 129.3 (2)°, respectively and the C8–C7–C9–C10 torsion angle is 16.2 (4)°. This is significantly larger than the equivalent value for (I), possibly due to steric interactions between the pendant ring systems: the twist about the C7–C9–O1 = 16.4 (3)°].

Fig. 3 shows the molecular structure of (III). The indole ring system (r.m.s. deviation = 0.007 Å) subtends dihedral angles of 15.60 (8) and 70.07 (3)° with the C9/C10/O1 grouping and the C15 benzene ring, respectively. The C7–C9–C10–C11 torsion angle is 137.54 (9)°. and the C6–C7–C9 and C8–C7–C9 bond angles are 124.3 (2) and 129.3 (2)°, respectively. The C8–C7–C9–C10 torsion angle is -14.06 (15)°. The C6–C7–C9–O1 torsion angle of -13.96 (14)° shows that the C=O bond is slightly twisted away from the indole plane.

Compound (IV) crystallizes with two molecules in the asymmetric unit, as shown in Fig. 4. The molecules have similar but not identical conformations, as indicated by the r.m.s. overlay fit of 0.102 Å for the 23 non-hydrogen atoms. The main differences are a slightly different twist of the benzene ring at the 2-position and the fact that atoms C10 and C31 deviate slightly from the indole ring plane, but in opposite



Figure 4

The molecular structure of (IV), showing 50% displacement ellipsoids. The N-H···O and C-H··· $\pi$  bonds are indicated by double-dashed lines.

directions. This is reflected in the metrical data for the individual molecules: in the N1-species, the indole ring system (r.m.s. deviation = 0.009 Å) subtends dihedral angles of 7.32 (15), 64.66 (7), and 54.57 (7)° with the C9/C10/O1 group, the C10-ring and the C16-ring, respectively. Equivalent data for the N2-molecule (r.m.s. deviation for the indole ring system = 0.009 Å) are 9.76 (13) (C30/C31/O2), 60.92 (7) (C31-ring) and 56.97 (7)° (C37-ring). In the N1-molecule, the C6–C7–C9 and C8–C7–C9 bond angles are 123.5 (2) and 130.5 (2)°, respectively and the C8–C7–C9–C10 torsion angle is 7.1 (4)°. Equivalent data for the N2-molecule are C27–C28–C30 [124.0 (2)°], C29–C28–C30 [130.2 (3)°] and C29–C28–C30–C31 [–9.7 (4)°].

| Table 1          |                                  |  |
|------------------|----------------------------------|--|
| Hydrogen-bond ge | ometry (Å, $^{\circ}$ ) for (I). |  |

| $D - H \cdots A$                                                                 | D-H        | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|----------------------------------------------------------------------------------|------------|-------------------------|--------------|--------------------------------------|
| $\begin{array}{c} N1 - H1 \cdots O1^{i} \\ C12 - H12 \cdots O1^{ii} \end{array}$ | 0.898 (15) | 2.018 (15)              | 2.8630 (12)  | 156.3 (12)                           |
|                                                                                  | 0.95       | 2.53                    | 3.3583 (14)  | 146                                  |

Symmetry codes: (i) x - 1, y, z; (ii) -x + 1, -y + 1, -z + 1.

#### 3. Supramolecular features

In each structure, as might be expected, the dominant supramolecular motif is an  $N-H\cdots O=C$  hydrogen bond, which generates a C(6) chain in every case. However, it is notable that the same chain motif is reinforced by different weak interactions in these structures, as described below and listed in Tables 1–4, for (I)–(IV), respectively.

In the triclinic crystal of (I), the N1-H1···O1<sup>i</sup> [symmetry code: (i) x - 1, y, z] hydrogen bond links the molecules into [100] chains with the aforementioned C(6) chain motif in which adjacent molecules are related by translational symmetry. In addition, a C12-H12···O1<sup>ii</sup> [symmetry code: (ii) 1 - x, 1 - y, 1 - z] interaction is seen. By itself, this generates inversion dimers (Fig. 5) with an  $R_2^2(14)$  motif: the twisting of the C11 ring relative to the indole skeleton appears to optimize the geometry for this interaction. Taken together, the N-H···O and C-H···O bonds in (I) lead to double chains propagating in [100] (Fig. 6). Inversion symmetry means that the sense of the N-H···O bonds are opposed in the two chains. Packing between the chains does not feature any directional interactions beyond typical van der Waals contacts and there is no aromatic  $\pi$ - $\pi$  stacking in (I).

In the orthorhombic crystal of (II), the molecules are linked by N1-H1-O2<sup>i</sup> [symmetry code: (i) x + 1, y, z] hydrogen bonds into [100] chains (Fig. 7) characterized by a C(6) motif: adjacent molecules are again related by simple unit-cell translation. There is no reinforcement of the chain bonding in this case, but a pair of weak C-H··· $\pi$  interactions occur,



Figure 5

An inversion dimer in the crystal of (I) linked by a pair of  $C-H\cdots O$  interactions (double-dashed lines). Symmetry code as in Table 1.



Figure 6

Partial packing diagram for (I), showing the formation of [100] double chains linked by  $N-H\cdots O$  and  $C-H\cdots O$  hydrogen bonds (double-dashed lines). Symmetry codes as in Table 1.

Table 2

Hydrogen-bond geometry (Å,  $^{\circ}$ ) for (II).

Cg1 and Cg2 are the centroids of the N1/C1/C6–C8 ring and the C1–C6 ring, respectively.

| $D - H \cdots A$                                                       | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdots A$ |
|------------------------------------------------------------------------|----------|-------------------------|--------------|------------------|
| $N1-H1\cdots O1^{i}$ $C20-H20\cdots Cg1^{ii}$ $C21-H21\cdots Cg2^{ii}$ | 0.91 (3) | 1.94 (3)                | 2.806 (3)    | 158 (2)          |
|                                                                        | 0.95     | 2.75                    | 3.503 (3)    | 136              |
|                                                                        | 0.95     | 2.61                    | 3.437 (3)    | 146              |

Symmetry codes: (i) x + 1, y, z; (ii)  $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$ .

 Table 3

 Hydrogen-bond geometry (Å, °) for (III).

| $D - H \cdot \cdot \cdot A$ | $D-\mathrm{H}$ | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdots A$ |
|-----------------------------|----------------|-------------------------|--------------|------------------|
| $N1 - H1 \cdots O1^i$       | 0.909 (13)     | 1.953 (13)              | 2.7950 (11)  | 153.3 (12)       |
|                             |                |                         |              |                  |

Symmetry code: (i)  $-x + y + \frac{1}{3}, -x + \frac{2}{3}, z - \frac{1}{3}$ .

which arise from adjacent C-H groupings of the pendant C17-C22 benzene ring to an adjacent indole ring (Fig. 8), and result in [010] chains. Taken together, the N-H···O and C-H··· $\pi$  bonds in (II) lead to (001) sheets.

The extended structure in (III) conforms to rhombohedral (trigonal) crystal symmetry. Once again, adjacent molecules are linked into C(6) chains by N1-H1···O2<sup>i</sup> [symmetry code: (i)  $\frac{1}{3} - x + y$ ,  $\frac{2}{3} - x$ ,  $z - \frac{1}{3}$ ] and symmetry-equivalent hydrogen bonds. The chain propagates in the [001] direction (Fig. 9) and



Figure 8

Partial packing diagram for (II) showing the formation of [010] chains linked by pairs of  $C-H\cdots\pi$  interactions. Symmetry code as in Table 2.

the chain that incorporates the asymmetric molecule describes an anticlockwise helix, when viewed from above, about the 3<sub>1</sub> symmetry element at  $(\frac{1}{3}, \frac{1}{3}, z)$ . The centrosymmetric space group leads, of course, to an equal number of clockwise and anticlockwise helices in the crystal. The chains are reinforced by aromatic  $\pi$ - $\pi$  stacking between the pendant C15–C20 ring and the C1–C6 ring of the indole system with the same symmetry relation as the N–H···O hydrogen bond: the centroid separation is 3.7565 (8) Å and the inter-plane angle is 0.00 (6)°]. There appears to be no directional interactions between the chains beyond van der Waals contacts.



Figure 7

Partial packing diagram for (II), showing the formation of [100] chains linked by  $N-H\cdots O$  hydrogen bonds (double-dashed lines). Symmetry code as in Table 2.



Partial packing diagram for (III), showing the formation of [001] chains linked by N-H···O hydrogen bonds (double-dashed lines) and reinforced by aromatic  $\pi$ - $\pi$  stacking contacts. Symmetry code as in Table 3.



#### Figure 10

Partial packing diagram for (IV), showing the formation of [100] chains of alternating A and B molecules linked by  $N-H\cdots O$  hydrogen bonds (double-dashed lines) and reinforced by aromatic  $\pi-\pi$  stacking contacts. Symmetry code as in Table 4.

Compound (IV) crystallizes in a monoclinic space group. The C(6) chain motif (Fig. 10) is built up from alternating N1and N2-molecules, with simple translation in the [100] direction generating the chain from the starting pair. In this case, the chain is consolidated by  $C-H\cdots\pi$  interactions (involving both the N1 and N2 molecules) with the donor C-H group lying syn (*i.e.*, C2-H2A and C23-H23, compare Fig. 4) to the N-H group in the indole ring system and the acceptor ring being the pendant phenyl group attached to the carbonyl group at the 3-position of the ring system (*i.e.*, the C10 and C31 rings). Adjacent N1- and N2-molecules in the chain are 'flipped' by approximately 180° with respect to each other, so the chain has approximate local 2<sub>1</sub> symmetry. The packing for (IV) also features two  $C-H\cdotsO$  and three inter-chain 

 Table 4

 Hydrogen-bond geometry (Å, °) for (IV).

*Cg*8, *Cg*1, *Cg*7, *Cg*3 and *Cg*6 are the centroids of the C31–C36, N1/C1/C6–C8, C22–C27, C10–C15 and N2/C22/C27–C29 rings, respectively.

| $D - H \cdots A$                       | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|----------------------------------------|------|-------------------------|--------------|--------------------------------------|
| $N1 - H1 \cdots O2$                    | 0.88 | 1.91                    | 2,786 (3)    | 176                                  |
| $N2-H2\cdots O1^{i}$                   | 0.88 | 1.90                    | 2.775 (3)    | 171                                  |
| $C20-H20\cdots O1^{ii}$                | 0.95 | 2.44                    | 3.324 (3)    | 155                                  |
| $C41 - H41 \cdots O2^{iii}$            | 0.95 | 2.37                    | 3.239 (3)    | 152                                  |
| $C2-H2A\cdots Cg8$                     | 0.95 | 2.81                    | 3.715 (3)    | 158                                  |
| $C14 - H14 \cdot \cdot \cdot Cg1^{ii}$ | 0.95 | 2.89                    | 3.616 (3)    | 134                                  |
| $C17 - H17 \cdots Cg7^{iv}$            | 0.95 | 2.62                    | 3.508 (3)    | 156                                  |
| $C23-H23\cdots Cg3^{i}$                | 0.95 | 2.72                    | 3.608 (3)    | 156                                  |
| $C35 - H35 \cdots Cg6^{iii}$           | 0.95 | 2.80                    | 3.527 (3)    | 134                                  |

Symmetry codes: (i) x + 1, y, z; (ii)  $-x, y - \frac{1}{2}, -z + \frac{1}{2}$ ; (iii)  $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$ ; (iv) -x + 1, -y + 1, -z + 1.

 $C-H\cdots\pi$  interactions, which generate a three-dimensional network.

#### 4. Database survey

A search of the Cambridge Structural Database (Groom & Allen, 2014) for indole derivatives with a phenyl substituent at the 2-position and a carbonyl group at the 3-position vielded five hits, namely: 3,5-dimethyl 2-(3,4-dimethoxyphenyl)indole-3,5-dicarboxylate dichloromethane solvate (refcode GUXMUI; Hwu et al., 2009), 2-(3-t-butyldimethylsiloxy-4-methoxyphenyl)-3-(3,4,5-trimethoxybenzoyl)-6-methoxy indole (IFIDEG; Hadimani et al., 2002), 1-(2-(2-methoxyphenyl)-1H-indol-3-yl)ethanone (MEYYOG; Coffman et al., 2013), (5-methyl-2-(4-methylphenyl)-1*H*-indol-3-yl)(phenyl)methanone (MOLDIC; Shi et al., 2014) and 1-(6-methyl-2phenyl-1*H*-indol-3-yl)ethanone (SUHWUP; Huang et al., 2014). All of these structures feature C(6) chains linked by N-H···O hydrogen bonds, as seen in the compounds described here, which we may thus conclude is a consistent supramolecular motif in these phases.

#### 5. Synthesis and crystallization

To prepare (I), 2-phenylindole (2.129 g, 11.0 mmol) was suspended in dry dichloromethane (45 ml) at 273 K and a 1.0 M solution of Et<sub>2</sub>AlCl in hexanes (16.5 ml, 16.5 mmol) was added slowly with stirring. A solution of benzoyl chloride (1.919 ml, 16.5 mmol) in dry dichloromethane (20 ml) was then added dropwise and the mixture was stirred at 273 K for a further 2 h. Water (30 ml) was added to quench the reaction then the solution was poured into 1.0 M HCl(aq) (100 ml) and the organic layer collected after shaking. The organic solution was washed with water (30 ml, twice) and saturated NaCl(aq) (30 ml) then dried over sodium sulfate, filtered and reduced under vacuum. Flash chromatography (1:4 EtOAc, hexanes) afforded 1-(2-phenyl-1H-indol-3-yl)ethanone as a colourless solid (2.257 g, 69%). Colourless slabs of (I) were recrystallized from ethanol solution at room temperature.  $\delta C(101 \text{ MHz};$ DMSO-d<sub>6</sub>) 192.6 (Cq), 144.5 (Cq), 140.3 (Cq), 136.3 (CH),

### research communications

| Table 5      |          |
|--------------|----------|
| Experimental | details. |

|                                                                                | (I)                                                                          | (II)                                                                         | (III)                                                                        | (IV)                                       |
|--------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------|
| Crystal data                                                                   |                                                                              |                                                                              |                                                                              |                                            |
| Chemical formula                                                               | $C_{16}H_{13}NO$                                                             | C <sub>22</sub> H <sub>23</sub> NO                                           | $C_{20}H_{21}NO$                                                             | C <sub>21</sub> H <sub>15</sub> NO         |
| M <sub>r</sub>                                                                 | 235.27                                                                       | 317.41                                                                       | 291.38                                                                       | 297.34                                     |
| Crystal system, space group                                                    | Triclinic, $P\overline{1}$                                                   | Orthorhombic, $P2_12_12_1$                                                   | Trigonal, R3                                                                 | Monoclinic, $P2_1/c$                       |
| Temperature (K)                                                                | 100                                                                          | 100                                                                          | 100                                                                          | 100                                        |
| <i>a</i> , <i>b</i> , <i>c</i> (Å)                                             | 7.4136 (5), 7.5070 (5),<br>10.9519 (8)                                       | 7.3587 (5), 13.225 (1),<br>17.5445 (13)                                      | 23.3305 (16), 23.3305 (16),<br>15.3681 (11)                                  | 14.5065 (10), 11.7911 (9),<br>18.6961 (13) |
| $lpha,eta,\gamma$ (°)                                                          | 101.274 (7), 92.218 (6),<br>97.893 (7)                                       | 90, 90, 90                                                                   | 90, 90, 120                                                                  | 90, 107.782 (2), 90                        |
| $V(Å^3)$                                                                       | 590.74 (7)                                                                   | 1707.4 (2)                                                                   | 7244.3 (9)                                                                   | 3045.1 (4)                                 |
| Ζ                                                                              | 2                                                                            | 4                                                                            | 18                                                                           | 8                                          |
| Radiation type                                                                 | Μο Κα                                                                        | Μο Κα                                                                        | Μο Κα                                                                        | Μο Κα                                      |
| $\mu \text{ (mm}^{-1})$                                                        | 0.08                                                                         | 0.08                                                                         | 0.07                                                                         | 0.08                                       |
| Crystal size (mm)                                                              | $0.40 \times 0.14 \times 0.05$                                               | $0.60 \times 0.16 \times 0.14$                                               | $0.66 \times 0.60 \times 0.24$                                               | $0.22 \times 0.03 \times 0.01$             |
| Data collection                                                                |                                                                              |                                                                              |                                                                              |                                            |
| Diffractometer                                                                 | Rigaku Mercury CCD                                                           | Rigaku Mercury CCD                                                           | Rigaku Mercury CCD                                                           | Rigaku Mercury CCD                         |
| No. of measured, independent<br>and observed $[I > 2\sigma(I)]$<br>reflections | 7753, 2703, 2432                                                             | 8189, 3490, 2802                                                             | 32188, 3690, 3070                                                            | 20680, 6949, 4461                          |
| R <sub>int</sub>                                                               | 0.033                                                                        | 0.045                                                                        | 0.037                                                                        | 0.063                                      |
| $(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$                           | 0.650                                                                        | 0.650                                                                        | 0.649                                                                        | 0.649                                      |
| Refinement                                                                     |                                                                              |                                                                              |                                                                              |                                            |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                            | 0.040, 0.114, 1.07                                                           | 0.051, 0.100, 1.21                                                           | 0.036, 0.092, 1.08                                                           | 0.076, 0.215, 1.05                         |
| No. of reflections                                                             | 2703                                                                         | 3490                                                                         | 3690                                                                         | 6949                                       |
| No. of parameters                                                              | 167                                                                          | 221                                                                          | 205                                                                          | 415                                        |
| H-atom treatment                                                               | H atoms treated by a mixture<br>of independent and<br>constrained refinement | H atoms treated by a mixture<br>of independent and<br>constrained refinement | H atoms treated by a mixture<br>of independent and<br>constrained refinement | H-atom parameters constrained              |
| $\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å <sup>-3</sup> )            | 0.37, -0.19                                                                  | 0.23, -0.22                                                                  | 0.29, -0.18                                                                  | 0.58, -0.23                                |

Computer programs: CrystalClear (Rigaku, 2012), SHELXS97 and SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and publcIF (Westrip, 2010).

132.0 (CH), 131.8 (Cq), 130.0 (CH), 129.5(CH), 128.9 (CH), 128.6 (Cq), 128.5 (Cq), 128.2 (CH), 123.3 (CH), 121.8 (CH), 121.0 (CH), 112.6 (CH) and 112.3 (Cq);  $\delta$ H(400 MHz; DMSO- $d_6$ ) 12.16 (1H, *br s*), 7.76 (1H, *d*, J 7.8), 7.71 (2H, *d*, J 8.4), 7.58–7.56 (3H, m), 7.49 (2H, *t*, J 6.9), 7.38–7.17 (4H, *m*), 7.13 (1H, *t*, J 7.2) and 7.09–7.04 (1H, *m*);  $R_f$  0.20 (1:4 EtOAc, hexanes); m.p. 495–496 K; IR (KBr, cm<sup>-1</sup>) 3393, 3060, 2968, 1707, 1551, 1208, 1116, 891 and 745; HRMS (ESI) for C<sub>21</sub>H<sub>16</sub>NO [M + H]<sup>+</sup> calculated 298.1233, found 298.1230.

To prepare (II), a suspension of 2-phenylindole (567 mg, 2.93 mmol) in dry dichloromethane (20 ml) was cooled to 273 K over ice-water before the dropwise addition of a 1.0 M solution of Et<sub>2</sub>AlCl in hexane (4.4 ml, 4.40 mmol). After stirring for 30 min, a solution of cyclohexylacetyl chloride (675 ml, 4.40 mmol) in dry dichloromethane (20 ml) was added dropwise and stirring was resumed over ice-water for 2 h. Water (50 ml) was added slowly and after warming to room temperature, the mixture was added to a 1.0 M solution of HCl(aq) (50 ml). The organic phase was collected, washed with water (20 ml) and saturated NaCl(aq) (20 ml), dried (sodium sulfate), filtered and evaporated under reduced pressure. Flash chromatography (1:7 EtOAc, hexanes then 1:5 EtOAc, hexanes) gave 2-cyclohexyl-1-(2-phenyl-1H-indol-3yl)ethanone as a yellow solid (92 mg, 10%). Colourless rods of (II) were recrystallized from ethanol solution at room temperature. δC(101 MHz; CDCl3) 198.4 (Cq), 143.5 (Cq), 135.1 (Cq), 132.9 (CH), 129.7 (CH), 129.5 (CH), 128.6 (Cq), 127.4 (Cq), 123.5 (CH), 122.5 (CH), 122.4 (CH), 115.8 (CH), 110.8 (Cq), 49.7 (CH<sub>2</sub>), 35.0 (CH<sub>2</sub>), 33.2 (CH), 26.2 (CH<sub>2</sub>) and 26.1 (CH<sub>2</sub>);  $\delta$ H(400 MHz; CDCl<sub>3</sub>) 8.51 (1H, *br s*), 8.27–8.25 (1H, *m*), 7.48–7.38 (5H, *m*), 7.32–7.28 (1H, *m*), 7.23–7.18 (2H, *m*), 2.30 (2H, *d*, *J* 6.8), 1.53–1.40 (5H, *m*), 1.19–0.93 (4H, *m*) and 0.66 (2H, *q*, *J* 10.7); *R*<sub>f</sub> 0.23 (1:5 EtOAc, hexanes); m.p. 447 K; IR (KBr, cm<sup>-1</sup>) 3197, 3023, 2857, 1715, 1567, 1411, 1215, 1154 and 763; HRMS (ESI) for C<sub>22</sub>H<sub>24</sub>NO [*M* + H]<sup>+</sup> calculated 318.1859, found 318.1855.

To prepare (III), a 1.0 M solution of Et<sub>2</sub>AlCl in hexane (20 ml, 20 mmol) was added dropwise to a suspension of 2-phenylindole (2.536 g, 13.1 mmol) in dry dichloromethane (DCM) (56 ml) at 273 K. After 30 min stirring, a solution of 3,3-dimethylbutanoyl chloride (2.75 ml, 19.8 mmol) in dry DCM (55 ml) was added slowly and stirring was resumed for 2 h. Water (30 ml) was added and the solution was shaken with 1.0 M HCl(aq) (30 ml). The organic phase was collected, washed with water (20 ml) and saturated NaCl(aq) (20 ml), dried (sodium sulfate), filtered and evaporated under vacuum. Flash chromatography (5:1 DCM, hexanes) yielded 3,3dimethyl-1-(2-phenyl-1H-indol-3-yl)butan-1-one as a creamcoloured solid (1.909 g, 50%). Colourless blocks of (III) were recrystallized from ethanol solution at room temperature. δC(101 MHz; CDCl<sub>3</sub>) 199.1(Cq), 142.9 (Cq), 135.2 (Cq), 132.9 (CH), 129.7 (CH), 129.5 (CH), 128.8 (Cq), 127.4 (Cq), 123.6

(CH), 122.4 (CH), 122.3 (CH), 117.3 (CH), 110.7 (Cq), 53.8 (CH<sub>2</sub>), 31.9 (Cq) and 29.9 (CH<sub>3</sub>);  $\delta$ H(400 MHz; CDCl<sub>3</sub>) 8.37 (1H, *br s*), 8.23–8.21 (1H, *m*), 7.48–7.19 (8H, *m*), 2.34 (2H, *s*) and 0.77 (9H, *s*); *R<sub>f</sub>* 0.31 (5:1 DCM, hexanes); m.p. 441–443 K; IR (KBr, cm<sup>-1</sup>) 3186, 2998, 2954, 1710, 1454, 1411, 1202, 1150, 939 and 736; HRMS (ESI) for C<sub>20</sub>H<sub>22</sub>NO [*M* + H]<sup>+</sup> calculated, 292.1702, found, 292.1697.

To prepare (IV), 2-phenylindole (2.129 g, 11.0 mmol) was suspended in dry DCM (45 ml) at 273 K and a 1.0 M solution of Et<sub>2</sub>AlCl in hexanes (16.5 ml, 16.5 mmol) was added slowly with stirring. A solution of benzovl chloride (1.919 ml, 16.5 mmol) in dry DCM (20 ml) was then added dropwise and the mixture was stirred at 273 K for a further 2 h. Water (30 ml) was added to quench the reaction then the solution was poured into 1.0 M HCl(aq) (100 ml) and the organic layer collected after shaking. The DCM solution was washed with water (30 ml, twice) and saturated NaCl(aq) (30 ml) then dried (sodium sulfate), filtered and reduced under vacuum. Flash chromatography (1:4 EtOAc, hexanes) afforded 3benzoyl-2-phenyl-1H-indole as a colourless solid (2.257 g, 69%). Colourless blocks and slabs of (IV) were recrystallized from ethanol solution at room temperature.  $\delta C(101 \text{ MHz};$ DMSO-d<sub>6</sub>) 192.6 (Cq), 144.5 (Cq), 140.3 (Cq), 136.3 (CH), 132.0 (CH), 131.8 (Cq), 130.0 (CH), 129.5 (CH), 128.9 (CH), 128.6 (Cq), 128.5 (Cq), 128.2 (CH), 123.3 (CH), 121.8 (CH), 121.0 (CH), 112.6 (CH) and 112.3 (Cq); δH(400 MHz; DMSOd6) 12.16 (1H, br s), 7.76 (1H, d, J 7.8), 7.71 (2H, d, J 8.4), 7.58-7.56 (3H, m), 7.49 (2H, t, J 6.9), 7.38-7.17 (4H, m), 7.13 (1H, t, J 7.2) and 7.09–7.04 (1H, m); Rf 0.20 (1:4 EtOAc, hexanes); m.p. 495–496 K; IR (KBr, cm<sup>-1</sup>) 3393, 3060, 2968, 1707, 1551, 1208, 1116, 891 and 745; HRMS (ESI) for  $C_{21}H_{16}NO [M + H]^+$ calculated 298.1233, found 298.1230.

#### 6. Refinement

Crystal data, data collection and structure refinement details for (I)–(IV) are summarized in Table 5. The N-bound H atoms were located in difference maps and their positions freely refined [for (IV) they were refined as riding atoms in their asfound relative positions]. The C-bound H atoms were geometrically placed (C–H = 0.93–0.98 Å) and refined as riding atoms. The constraint  $U_{iso}(H) = 1.2U_{eq}(carrier)$  or  $1.5U_{eq}(methyl carrier)$  was applied in all cases. The methyl H atoms (if any) were allowed to rotate, but not to tip, to best fit the electron density. Compound (II) crystallizes in space group  $P2_12_12_1$  but the absolute structure was indeterminate in the present experiment. The crystal of (III) was found to contain highly disordered solvent molecules. Attempts to model the disorder were ineffective and the contribution to the scattering was removed with the SQUEEZE (Spek, 2015) option in *PLATON* (Spek, 2009), which revealed a solvent-accessible volume of 244.3 Å<sup>3</sup> per unit cell and 19 'solvent' electrons per unit cell. The stated formula, molecular mass, density, etc. for (III) in Table 5 do not take the solvent into account.

#### Acknowledgements

We thank the EPSRC National Crystallography Service (University of Southampton) for the data collections and the EPSRC National Mass Spectrometry Service (University of Swansea) for the HRMS data.

#### References

- Barden, T. C. (2011). Top. Heterocycl. Chem. 26, 31-46.
- Biswal, S., Sahoo, U., Sethy, S., Kumar, H. K. S. & Banerjee, M. (2012). *Asian J. Pharm. Clin. Res.* **5**, 1–6.
- Coffman, K. C., Palazzo, T. A., Hartley, T. P., Fettinger, J. C., Tantillo, D. J. & Kurth, M. J. (2013). Org. Lett. 15, 2062–2065.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- França, P. H. B., Barbosa, D. P., da Silva, D. L., Ribeiro, E. A. N., Santana, A. E. G., Santos, B. V. O., Barbosa-Filho, J. M., Quintans, J. S. S., Barreto, R. S. S., Quintans-Júnior, L. J. & de Araújo-Júnior, J. X. (2014). *BioMed. Res. Int.* Article ID 375423.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662– 671.
- Hadimani, M. B., Kessler, R. J., Kautz, J. A., Ghatak, A., Shirali, A. R., O'Dell, H., Garner, C. M. & Pinney, K. G. (2002). *Acta Cryst.* C58, 0330–0332.
- Huang, F., Wu, P., Wang, L., Chen, J., Sun, C. & Yu, Z. (2014). J. Org. Chem. 79, 10553–10560.
- Hwu, J. R., Hsu, Y. C., Josephrajan, T. & Tsay, S. C. (2009). J. Mater. Chem. 19, 3084–3090.
- Kaushik, N. K., Kaushik, N., Attri, P., Kumar, N., Kim, C. H., Verma, A. K. & Choi, E. H. (2013). *Molecules*, **18**, 6620–6662.
- Kerr, J. R. (2013). PhD thesis, University of Aberdeen, Scotland.
- Kerr, J. R., Trembleau, L., Storey, J. M. D., Wardell, J. L. & Harrison, W. T. A. (2015). Acta Cryst. E71, 654–659.
- Rigaku (2012). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sharma, V., Kumar, P. & Pathaka, D. J. (2010). J. Heterocycl. Chem. 47, 491–501.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shi, L., Xue, L., Lang, R., Xia, C. & Li, F. (2014). ChemCatChem, 6, 2560–2566.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Spek, A. L. (2015). Acta Cryst. C71, 9-18.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

#### Acta Cryst. (2016). E72, 363-369 [doi:10.1107/S2056989016002620]

Crystal structures of four indole derivatives with a phenyl substituent at the 2position and a carbonyl group at the 3-position: the C(6) N—H···O chain remains the same, but the weak reinforcing interactions are different

# Jamie R. Kerr, Laurent Trembleau, John M. D. Storey, James L. Wardell and William T. A. Harrison

**Computing details** 

For all compounds, data collection: *CrystalClear* (Rigaku, 2012); cell refinement: *CrystalClear* (Rigaku, 2012); data reduction: *CrystalClear* (Rigaku, 2012); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *publCIF* (Westrip, 2010).

#### (I) 1-(2-Phenyl-1*H*-indol-3-yl)ethanone

Crystal data

C<sub>16</sub>H<sub>13</sub>NO  $M_r = 235.27$ Triclinic, *P*1 a = 7.4136 (5) Å b = 7.5070 (5) Å c = 10.9519 (8) Å  $\alpha = 101.274$  (7)°  $\beta = 92.218$  (6)°  $\gamma = 97.893$  (7)° V = 590.74 (7) Å<sup>3</sup>

#### Data collection

Rigaku Mercury CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans 7753 measured reflections 2703 independent reflections

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.040$  $wR(F^2) = 0.114$ S = 1.072703 reflections Z = 2 F(000) = 248  $D_x = 1.323 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71075 \text{ Å}$ Cell parameters from 7537 reflections  $\theta = 2.8-27.5^{\circ}$   $\mu = 0.08 \text{ mm}^{-1}$  T = 100 KSlab, colourless  $0.40 \times 0.14 \times 0.05 \text{ mm}$ 

2432 reflections with  $I > 2\sigma(I)$   $R_{int} = 0.033$   $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 2.8^{\circ}$   $h = -9 \rightarrow 9$   $k = -8 \rightarrow 9$  $l = -14 \rightarrow 13$ 

167 parameters0 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

| Hydrogen site location: inferred from       | $w = 1/[\sigma^2(F_o^2) + (0.0655P)^2 + 0.1376P]$          |
|---------------------------------------------|------------------------------------------------------------|
| neighbouring sites                          | where $P = (F_o^2 + 2F_c^2)/3$                             |
| H atoms treated by a mixture of independent | $(\Delta/\sigma)_{\rm max} = 0.001$                        |
| and constrained refinement                  | $\Delta  ho_{ m max} = 0.37 \  m e \  m \AA^{-3}$          |
|                                             | $\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$ |

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2$ sigma( $F^2$ ) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

|      | x            | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|------|--------------|--------------|--------------|-----------------------------|
| C1   | 0.17290 (14) | 0.14842 (14) | 0.39273 (10) | 0.0172 (2)                  |
| C2   | 0.05849 (15) | 0.06773 (15) | 0.28675 (10) | 0.0202 (2)                  |
| H2   | -0.0705      | 0.0566       | 0.2886       | 0.024*                      |
| C3   | 0.14074 (16) | 0.00441 (15) | 0.17853 (10) | 0.0226 (2)                  |
| H3   | 0.0672       | -0.0521      | 0.1045       | 0.027*                      |
| C4   | 0.33210 (16) | 0.02277 (15) | 0.17698 (10) | 0.0226 (2)                  |
| H4   | 0.3854       | -0.0186      | 0.1011       | 0.027*                      |
| C5   | 0.44441 (15) | 0.09970 (14) | 0.28344 (10) | 0.0195 (2)                  |
| Н5   | 0.5733       | 0.1100       | 0.2811       | 0.023*                      |
| C6   | 0.36453 (14) | 0.16230 (14) | 0.39494 (10) | 0.0166 (2)                  |
| C7   | 0.43386 (13) | 0.25110 (14) | 0.52057 (9)  | 0.0165 (2)                  |
| C8   | 0.28168 (14) | 0.28785 (14) | 0.58734 (10) | 0.0166 (2)                  |
| C9   | 0.62677 (14) | 0.29478 (14) | 0.56241 (10) | 0.0180 (2)                  |
| C10  | 0.68827 (15) | 0.41016 (16) | 0.68934 (11) | 0.0236 (2)                  |
| H10A | 0.8136       | 0.4713       | 0.6881       | 0.035*                      |
| H10B | 0.6838       | 0.3315       | 0.7512       | 0.035*                      |
| H10C | 0.6075       | 0.5028       | 0.7114       | 0.035*                      |
| C11  | 0.26171 (13) | 0.37691 (14) | 0.71834 (10) | 0.0173 (2)                  |
| C12  | 0.18773 (15) | 0.53985 (15) | 0.74297 (10) | 0.0202 (2)                  |
| H12  | 0.1523       | 0.5941       | 0.6761       | 0.024*                      |
| C13  | 0.16559 (16) | 0.62334 (16) | 0.86536 (11) | 0.0250 (3)                  |
| H13  | 0.1162       | 0.7352       | 0.8818       | 0.030*                      |
| C14  | 0.21514 (16) | 0.54433 (17) | 0.96377 (10) | 0.0245 (3)                  |
| H14  | 0.1998       | 0.6020       | 1.0472       | 0.029*                      |
| C15  | 0.28710 (16) | 0.38114 (17) | 0.93984 (11) | 0.0247 (3)                  |
| H15  | 0.3203       | 0.3262       | 1.0069       | 0.030*                      |
| C16  | 0.31064 (15) | 0.29786 (15) | 0.81775 (10) | 0.0221 (2)                  |
| H16  | 0.3605       | 0.1862       | 0.8018       | 0.027*                      |
| N1   | 0.12741 (12) | 0.22642 (12) | 0.51028 (8)  | 0.0180 (2)                  |
| H1   | 0.011 (2)    | 0.2342 (19)  | 0.5287 (13)  | 0.022*                      |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

| 01     | 0.74295           | (10)             | 0.23746 (12)    | 0.49276 (7) | 0.0234 (2)  |                 |
|--------|-------------------|------------------|-----------------|-------------|-------------|-----------------|
| Atomic | displacement para | meters ( $Å^2$ ) |                 |             |             |                 |
|        | $U^{11}$          | $U^{22}$         | U <sup>33</sup> | $U^{12}$    | $U^{13}$    | U <sup>23</sup> |
| C1     | 0.0171 (5)        | 0.0158 (5)       | 0.0194 (5)      | 0.0044 (4)  | 0.0017 (4)  | 0.0038 (4)      |
| C2     | 0.0172 (5)        | 0.0212 (5)       | 0.0220 (5)      | 0.0045 (4)  | -0.0013 (4) | 0.0034 (4)      |
| C3     | 0.0253 (6)        | 0.0220 (5)       | 0.0196 (5)      | 0.0059 (4)  | -0.0027 (4) | 0.0011 (4)      |
| C4     | 0.0263 (6)        | 0.0214 (5)       | 0.0210 (5)      | 0.0080 (4)  | 0.0047 (4)  | 0.0026 (4)      |
| C5     | 0.0187 (5)        | 0.0183 (5)       | 0.0228 (5)      | 0.0058 (4)  | 0.0043 (4)  | 0.0042 (4)      |
| C6     | 0.0153 (5)        | 0.0148 (5)       | 0.0206 (5)      | 0.0036 (4)  | 0.0011 (4)  | 0.0048 (4)      |
| C7     | 0.0152 (5)        | 0.0160 (5)       | 0.0190 (5)      | 0.0036 (4)  | 0.0021 (4)  | 0.0038 (4)      |
| C8     | 0.0142 (5)        | 0.0157 (5)       | 0.0201 (5)      | 0.0026 (4)  | 0.0006 (4)  | 0.0040 (4)      |
| C9     | 0.0152 (5)        | 0.0178 (5)       | 0.0226 (5)      | 0.0028 (4)  | 0.0020 (4)  | 0.0079 (4)      |
| C10    | 0.0171 (5)        | 0.0259 (6)       | 0.0260 (6)      | 0.0003 (4)  | -0.0027 (4) | 0.0038 (4)      |
| C11    | 0.0119 (4)        | 0.0192 (5)       | 0.0196 (5)      | 0.0004 (4)  | 0.0012 (4)  | 0.0025 (4)      |
| C12    | 0.0195 (5)        | 0.0217 (5)       | 0.0201 (5)      | 0.0049 (4)  | 0.0011 (4)  | 0.0048 (4)      |
| C13    | 0.0273 (6)        | 0.0244 (6)       | 0.0234 (6)      | 0.0089 (4)  | 0.0018 (4)  | 0.0018 (4)      |
| C14    | 0.0239 (5)        | 0.0296 (6)       | 0.0180 (5)      | 0.0035 (5)  | 0.0014 (4)  | 0.0003 (4)      |
| C15    | 0.0249 (6)        | 0.0287 (6)       | 0.0208 (5)      | 0.0027 (4)  | -0.0032 (4) | 0.0073 (4)      |
| C16    | 0.0215 (5)        | 0.0205 (5)       | 0.0243 (5)      | 0.0049 (4)  | -0.0017 (4) | 0.0039 (4)      |
| N1     | 0.0132 (4)        | 0.0215 (5)       | 0.0186 (4)      | 0.0035 (3)  | 0.0009 (3)  | 0.0020 (3)      |
| 01     | 0.0144 (4)        | 0.0320 (5)       | 0.0256 (4)      | 0.0064 (3)  | 0.0041 (3)  | 0.0075 (3)      |

Geometric parameters (Å, °)

| C1—N1    | 1.3809 (13) | C9—C10        | 1.5041 (15) |  |
|----------|-------------|---------------|-------------|--|
| C1—C2    | 1.3933 (15) | C10—H10A      | 0.9800      |  |
| C1—C6    | 1.4090 (14) | C10—H10B      | 0.9800      |  |
| C2—C3    | 1.3849 (15) | C10—H10C      | 0.9800      |  |
| С2—Н2    | 0.9500      | C11—C12       | 1.3916 (15) |  |
| C3—C4    | 1.4075 (16) | C11—C16       | 1.3965 (15) |  |
| С3—Н3    | 0.9500      | C12—C13       | 1.3903 (15) |  |
| C4—C5    | 1.3841 (16) | C12—H12       | 0.9500      |  |
| C4—H4    | 0.9500      | C13—C14       | 1.3884 (16) |  |
| С5—С6    | 1.4038 (14) | C13—H13       | 0.9500      |  |
| С5—Н5    | 0.9500      | C14—C15       | 1.3852 (17) |  |
| С6—С7    | 1.4471 (14) | C14—H14       | 0.9500      |  |
| С7—С8    | 1.3979 (13) | C15—C16       | 1.3893 (16) |  |
| С7—С9    | 1.4576 (14) | C15—H15       | 0.9500      |  |
| C8—N1    | 1.3643 (14) | C16—H16       | 0.9500      |  |
| C8—C11   | 1.4819 (14) | N1—H1         | 0.898 (15)  |  |
| С9—О1    | 1.2383 (13) |               |             |  |
| N1—C1—C2 | 128.98 (10) | C9—C10—H10A   | 109.5       |  |
| N1-C1-C6 | 107.83 (9)  | C9—C10—H10B   | 109.5       |  |
| C2C1C6   | 123.20 (10) | H10A—C10—H10B | 109.5       |  |
| C3—C2—C1 | 117.20 (10) | C9—C10—H10C   | 109.5       |  |
|          |             |               |             |  |

| С3—С2—Н2     | 121.4        | H10A—C10—H10C   | 109.5        |
|--------------|--------------|-----------------|--------------|
| C1—C2—H2     | 121.4        | H10B-C10-H10C   | 109.5        |
| C2—C3—C4     | 120.75 (10)  | C12—C11—C16     | 119.15 (10)  |
| С2—С3—Н3     | 119.6        | C12—C11—C8      | 119.48 (9)   |
| С4—С3—Н3     | 119.6        | C16—C11—C8      | 121.35 (10)  |
| C5—C4—C3     | 121.56 (10)  | C13—C12—C11     | 120.08 (10)  |
| C5—C4—H4     | 119.2        | C13—C12—H12     | 120.0        |
| C3—C4—H4     | 119.2        | C11—C12—H12     | 120.0        |
| C4—C5—C6     | 118.86 (10)  | C14—C13—C12     | 120.47 (11)  |
| С4—С5—Н5     | 120.6        | C14—C13—H13     | 119.8        |
| С6—С5—Н5     | 120.6        | C12—C13—H13     | 119.8        |
| C5—C6—C1     | 118.36 (10)  | C15—C14—C13     | 119.76 (10)  |
| C5—C6—C7     | 134.81 (10)  | C15—C14—H14     | 120.1        |
| C1—C6—C7     | 106.77 (9)   | C13—C14—H14     | 120.1        |
| C8—C7—C6     | 106.36 (9)   | C14—C15—C16     | 119.98 (10)  |
| C8—C7—C9     | 129.04 (10)  | C14—C15—H15     | 120.0        |
| C6—C7—C9     | 124.57 (9)   | C16—C15—H15     | 120.0        |
| N1—C8—C7     | 109.13 (9)   | C15—C16—C11     | 120.57 (10)  |
| N1—C8—C11    | 118.22 (9)   | C15—C16—H16     | 119.7        |
| C7—C8—C11    | 132.65 (10)  | C11—C16—H16     | 119.7        |
| O1—C9—C7     | 119.96 (10)  | C8—N1—C1        | 109.91 (9)   |
| O1—C9—C10    | 119.00 (10)  | C8—N1—H1        | 127.8 (9)    |
| C7—C9—C10    | 121.05 (9)   | C1—N1—H1        | 122.3 (9)    |
|              |              |                 |              |
| N1—C1—C2—C3  | 178.05 (10)  | C6—C7—C9—O1     | -8.14 (16)   |
| C6—C1—C2—C3  | -2.09 (16)   | C8—C7—C9—C10    | -6.53 (16)   |
| C1—C2—C3—C4  | -0.36 (16)   | C6C7C10         | 171.46 (10)  |
| C2—C3—C4—C5  | 1.74 (17)    | N1—C8—C11—C12   | -63.28 (13)  |
| C3—C4—C5—C6  | -0.67 (16)   | C7—C8—C11—C12   | 116.36 (13)  |
| C4—C5—C6—C1  | -1.67 (15)   | N1-C8-C11-C16   | 114.80 (11)  |
| C4—C5—C6—C7  | -178.46 (11) | C7—C8—C11—C16   | -65.56 (16)  |
| N1-C1-C6-C5  | -176.98 (9)  | C16—C11—C12—C13 | 0.87 (16)    |
| C2-C1-C6-C5  | 3.14 (16)    | C8—C11—C12—C13  | 178.99 (10)  |
| N1-C1-C6-C7  | 0.65 (11)    | C11—C12—C13—C14 | -0.65 (18)   |
| C2-C1-C6-C7  | -179.23 (9)  | C12—C13—C14—C15 | -0.02 (18)   |
| C5—C6—C7—C8  | 176.50 (11)  | C13—C14—C15—C16 | 0.46 (18)    |
| C1—C6—C7—C8  | -0.55 (11)   | C14—C15—C16—C11 | -0.23 (17)   |
| C5—C6—C7—C9  | -1.87 (18)   | C12—C11—C16—C15 | -0.43 (16)   |
| C1—C6—C7—C9  | -178.92 (9)  | C8—C11—C16—C15  | -178.52 (10) |
| C6—C7—C8—N1  | 0.26 (11)    | C7—C8—N1—C1     | 0.15 (12)    |
| C9—C7—C8—N1  | 178.53 (10)  | C11—C8—N1—C1    | 179.87 (9)   |
| C6—C7—C8—C11 | -179.41 (11) | C2-C1-N1-C8     | 179.36 (10)  |
| C9—C7—C8—C11 | -1.14 (19)   | C6-C1-N1-C8     | -0.51 (12)   |
| C8—C7—C9—O1  | 173.88 (10)  |                 |              |

#### *Hydrogen-bond geometry (Å, °)*

| D—H···A                  | D—H        | H···A      | D····A      | <i>D</i> —H··· <i>A</i> |
|--------------------------|------------|------------|-------------|-------------------------|
| N1—H1···O1 <sup>i</sup>  | 0.898 (15) | 2.018 (15) | 2.8630 (12) | 156.3 (12)              |
| C12—H12…O1 <sup>ii</sup> | 0.95       | 2.53       | 3.3583 (14) | 146                     |

 $D_{\rm x} = 1.235 {\rm Mg} {\rm m}^{-3}$ 

 $\theta = 1.9 - 27.5^{\circ}$ 

 $\mu = 0.08 \text{ mm}^{-1}$ T = 100 K

Rod, colourless  $0.60 \times 0.16 \times 0.14 \text{ mm}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71075$  Å

Cell parameters from 4889 reflections

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*+1, -*y*+1, -*z*+1.

(II) 2-Cyclohexyl-1-(2-phenyl-1*H*-indol-3-yl)ethanone

#### Crystal data

C<sub>22</sub>H<sub>23</sub>NO  $M_r = 317.41$ Orthorhombic,  $P2_12_12_1$  a = 7.3587 (5) Å b = 13.225 (1) Å c = 17.5445 (13) Å V = 1707.4 (2) Å<sup>3</sup> Z = 4F(000) = 680

#### Data collection

| Rigaku Mercury CCD                       | 2802 reflections with $I > 2\sigma(I)$                              |
|------------------------------------------|---------------------------------------------------------------------|
| diffractometer                           | $R_{\rm int} = 0.045$                                               |
| Radiation source: fine-focus sealed tube | $\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.8^{\circ}$ |
| Graphite monochromator                   | $h = -9 \longrightarrow 9$                                          |
| ωscans                                   | $k = -17 \rightarrow 17$                                            |
| 8189 measured reflections                | $l = -22 \rightarrow 18$                                            |
| 3490 independent reflections             |                                                                     |

#### Refinement

Refinement on  $F^2$ Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites  $R[F^2 > 2\sigma(F^2)] = 0.051$ H atoms treated by a mixture of independent  $wR(F^2) = 0.100$ and constrained refinement S = 1.21 $w = 1/[\sigma^2(F_0^2) + (0.0111P)^2 + 0.987P]$ 3490 reflections where  $P = (F_0^2 + 2F_c^2)/3$ 221 parameters  $(\Delta/\sigma)_{\rm max} < 0.001$  $\Delta \rho_{\rm max} = 0.23 \text{ e} \text{ Å}^{-3}$ 0 restraints  $\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$ Primary atom site location: structure-invariant Extinction correction: SHELXL, direct methods  $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Secondary atom site location: difference Fourier map Extinction coefficient: 0.0029 (5)

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2$ sigma( $F^2$ ) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

|      | x           | У            | Ζ            | $U_{ m iso}*/U_{ m eq}$ |  |
|------|-------------|--------------|--------------|-------------------------|--|
| C1   | 0.5113 (3)  | 0.83148 (17) | 0.07278 (14) | 0.0154 (5)              |  |
| C2   | 0.6084 (3)  | 0.91323 (18) | 0.04474 (14) | 0.0176 (5)              |  |
| H2   | 0.7374      | 0.9150       | 0.0468       | 0.021*                  |  |
| C3   | 0.5096 (3)  | 0.99203 (18) | 0.01371 (13) | 0.0214 (6)              |  |
| H3   | 0.5715      | 1.0495       | -0.0059      | 0.026*                  |  |
| C4   | 0.3199 (4)  | 0.98840 (19) | 0.01069 (15) | 0.0223 (6)              |  |
| H4   | 0.2557      | 1.0431       | -0.0118      | 0.027*                  |  |
| C5   | 0.2234 (3)  | 0.90765 (19) | 0.03949 (14) | 0.0185 (5)              |  |
| Н5   | 0.0944      | 0.9067       | 0.0377       | 0.022*                  |  |
| C6   | 0.3208 (3)  | 0.82674 (17) | 0.07151 (14) | 0.0143 (5)              |  |
| C7   | 0.2707 (3)  | 0.73248 (17) | 0.10822 (13) | 0.0154 (5)              |  |
| C8   | 0.4327 (4)  | 0.68492 (16) | 0.12730 (13) | 0.0162 (5)              |  |
| С9   | 0.0841 (4)  | 0.70348 (16) | 0.12692 (13) | 0.0161 (5)              |  |
| C10  | 0.0489 (3)  | 0.62762 (16) | 0.18942 (13) | 0.0184 (5)              |  |
| H10A | 0.1269      | 0.5675       | 0.1815       | 0.022*                  |  |
| H10B | -0.0795     | 0.6054       | 0.1872       | 0.022*                  |  |
| C11  | 0.0883 (4)  | 0.67346 (16) | 0.26852 (13) | 0.0179 (5)              |  |
| H11  | 0.2197      | 0.6927       | 0.2698       | 0.021*                  |  |
| C12  | 0.0567 (4)  | 0.59550 (18) | 0.33148 (14) | 0.0232 (5)              |  |
| H12A | -0.0704     | 0.5712       | 0.3290       | 0.028*                  |  |
| H12B | 0.1378      | 0.5368       | 0.3232       | 0.028*                  |  |
| C13  | 0.0930 (4)  | 0.64022 (19) | 0.41026 (15) | 0.0283 (6)              |  |
| H13A | 0.0655      | 0.5890       | 0.4497       | 0.034*                  |  |
| H13B | 0.2231      | 0.6583       | 0.4146       | 0.034*                  |  |
| C14  | -0.0226 (4) | 0.7338 (2)   | 0.42403 (15) | 0.0314 (7)              |  |
| H14A | 0.0074      | 0.7630       | 0.4745       | 0.038*                  |  |
| H14B | -0.1527     | 0.7148       | 0.4243       | 0.038*                  |  |
| C15  | 0.0112 (4)  | 0.81255 (19) | 0.36219 (14) | 0.0261 (6)              |  |
| H15A | -0.0699     | 0.8712       | 0.3706       | 0.031*                  |  |
| H15B | 0.1384      | 0.8366       | 0.3656       | 0.031*                  |  |
| C16  | -0.0229 (4) | 0.76918 (18) | 0.28315 (13) | 0.0217 (6)              |  |
| H16A | 0.0086      | 0.8206       | 0.2444       | 0.026*                  |  |
| H16B | -0.1537     | 0.7533       | 0.2777       | 0.026*                  |  |
| C17  | 0.4700 (3)  | 0.58519 (17) | 0.16354 (13) | 0.0154 (5)              |  |
| C18  | 0.4340 (3)  | 0.49591 (17) | 0.12458 (13) | 0.0195 (5)              |  |
| H18  | 0.3862      | 0.4983       | 0.0743       | 0.023*                  |  |
| C19  | 0.4678 (4)  | 0.40310 (18) | 0.15890 (15) | 0.0246 (6)              |  |
| H19  | 0.4434      | 0.3422       | 0.1321       | 0.030*                  |  |
| C20  | 0.5369 (4)  | 0.39947 (18) | 0.23207 (15) | 0.0249 (6)              |  |
| H20  | 0.5589      | 0.3360       | 0.2557       | 0.030*                  |  |
| C21  | 0.5741 (4)  | 0.48777 (18) | 0.27102 (15) | 0.0241 (6)              |  |
| H21  | 0.6214      | 0.4850       | 0.3214       | 0.029*                  |  |
| C22  | 0.5425 (3)  | 0.58032 (17) | 0.23671 (14) | 0.0192 (5)              |  |
| H22  | 0.5704      | 0.6409       | 0.2633       | 0.023*                  |  |
| N1   | 0.5754 (3)  | 0.74414 (14) | 0.10656 (11) | 0.0155 (4)              |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

| H1 | 0.696 (4)   | 0.7293 (18)  | 0.1088 (15) | 0.019*     |
|----|-------------|--------------|-------------|------------|
| 01 | -0.0440 (2) | 0.74797 (12) | 0.09706 (9) | 0.0198 (4) |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C1  | 0.0158 (13) | 0.0173 (11) | 0.0132 (12) | 0.0024 (9)   | -0.0004 (10) | -0.0001 (9)  |
| C2  | 0.0132 (13) | 0.0211 (12) | 0.0185 (12) | -0.0014 (11) | 0.0018 (10)  | -0.0006 (10) |
| C3  | 0.0264 (15) | 0.0184 (12) | 0.0194 (13) | -0.0044 (11) | 0.0002 (11)  | 0.0019 (11)  |
| C4  | 0.0265 (14) | 0.0192 (13) | 0.0212 (15) | 0.0042 (11)  | -0.0032 (12) | 0.0041 (12)  |
| C5  | 0.0168 (13) | 0.0200 (12) | 0.0186 (12) | 0.0017 (11)  | -0.0021 (11) | 0.0000 (11)  |
| C6  | 0.0160 (13) | 0.0160 (12) | 0.0108 (12) | -0.0011 (9)  | -0.0002 (10) | -0.0037 (10) |
| C7  | 0.0150 (12) | 0.0182 (11) | 0.0131 (12) | -0.0009 (10) | 0.0002 (11)  | -0.0016 (10) |
| C8  | 0.0159 (13) | 0.0192 (11) | 0.0135 (11) | -0.0010 (10) | 0.0021 (11)  | -0.0024 (9)  |
| C9  | 0.0155 (12) | 0.0151 (11) | 0.0176 (12) | 0.0026 (10)  | -0.0025 (12) | -0.0056 (9)  |
| C10 | 0.0134 (13) | 0.0176 (11) | 0.0240 (13) | -0.0012 (10) | 0.0015 (11)  | -0.0007 (10) |
| C11 | 0.0141 (12) | 0.0201 (11) | 0.0195 (12) | -0.0003 (10) | -0.0008 (12) | 0.0003 (9)   |
| C12 | 0.0236 (14) | 0.0231 (12) | 0.0229 (12) | 0.0020 (12)  | 0.0015 (12)  | 0.0032 (11)  |
| C13 | 0.0321 (16) | 0.0327 (14) | 0.0200 (13) | 0.0050 (13)  | 0.0012 (14)  | 0.0049 (11)  |
| C14 | 0.0389 (17) | 0.0345 (15) | 0.0210 (13) | 0.0051 (13)  | 0.0030 (13)  | -0.0030 (12) |
| C15 | 0.0314 (16) | 0.0236 (12) | 0.0234 (14) | 0.0047 (11)  | 0.0029 (12)  | -0.0040 (10) |
| C16 | 0.0247 (14) | 0.0219 (12) | 0.0186 (12) | 0.0021 (11)  | 0.0019 (11)  | -0.0004 (10) |
| C17 | 0.0087 (11) | 0.0181 (11) | 0.0194 (11) | 0.0010 (10)  | 0.0025 (10)  | 0.0036 (10)  |
| C18 | 0.0179 (13) | 0.0211 (11) | 0.0195 (12) | 0.0005 (11)  | 0.0010 (11)  | -0.0005 (10) |
| C19 | 0.0262 (14) | 0.0178 (11) | 0.0298 (14) | -0.0004 (11) | 0.0046 (12)  | -0.0015 (11) |
| C20 | 0.0238 (14) | 0.0200 (12) | 0.0309 (14) | 0.0039 (11)  | 0.0020 (13)  | 0.0097 (11)  |
| C21 | 0.0192 (13) | 0.0294 (13) | 0.0237 (12) | -0.0003 (12) | -0.0047 (12) | 0.0089 (11)  |
| C22 | 0.0172 (13) | 0.0193 (11) | 0.0212 (12) | -0.0031 (10) | -0.0013 (11) | 0.0024 (10)  |
| N1  | 0.0095 (10) | 0.0176 (9)  | 0.0195 (10) | -0.0007 (9)  | 0.0004 (9)   | 0.0004 (8)   |
| O1  | 0.0134 (9)  | 0.0241 (8)  | 0.0220 (9)  | 0.0012 (8)   | -0.0004 (7)  | -0.0007 (7)  |
|     |             |             |             |              |              |              |

Geometric parameters (Å, °)

| C1—N1 | 1.381 (3) | C12—H12A | 0.9900    |
|-------|-----------|----------|-----------|
| C1—C2 | 1.386 (3) | C12—H12B | 0.9900    |
| C1—C6 | 1.403 (3) | C13—C14  | 1.521 (4) |
| С2—С3 | 1.383 (3) | C13—H13A | 0.9900    |
| С2—Н2 | 0.9500    | C13—H13B | 0.9900    |
| C3—C4 | 1.398 (3) | C14—C15  | 1.524 (4) |
| С3—Н3 | 0.9500    | C14—H14A | 0.9900    |
| C4—C5 | 1.378 (3) | C14—H14B | 0.9900    |
| C4—H4 | 0.9500    | C15—C16  | 1.522 (3) |
| С5—С6 | 1.405 (3) | C15—H15A | 0.9900    |
| С5—Н5 | 0.9500    | C15—H15B | 0.9900    |
| С6—С7 | 1.451 (3) | C16—H16A | 0.9900    |
| С7—С8 | 1.389 (3) | C16—H16B | 0.9900    |
| С7—С9 | 1.463 (3) | C17—C18  | 1.390 (3) |
| C8—N1 | 1.360 (3) | C17—C22  | 1.392 (3) |
|       |           |          |           |

| C8—C17        | 1.490 (3)   | C18—C19       | 1.389 (3) |
|---------------|-------------|---------------|-----------|
| C9—O1         | 1.229 (3)   | C18—H18       | 0.9500    |
| C9—C10        | 1.509 (3)   | C19—C20       | 1.382 (4) |
| C10—C11       | 1.542 (3)   | С19—Н19       | 0.9500    |
| C10—H10A      | 0.9900      | C20—C21       | 1.380(3)  |
| C10—H10B      | 0.9900      | С20—Н20       | 0.9500    |
| C11—C12       | 1.529 (3)   | C21—C22       | 1.384 (3) |
| C11—C16       | 1.529 (3)   | C21—H21       | 0.9500    |
| C11—H11       | 1.0000      | С22—Н22       | 0.9500    |
| C12—C13       | 1.527 (3)   | N1—H1         | 0.91 (3)  |
|               |             |               |           |
| N1—C1—C2      | 129.0 (2)   | C14—C13—C12   | 111.2 (2) |
| N1—C1—C6      | 108.1 (2)   | C14—C13—H13A  | 109.4     |
| C2—C1—C6      | 123.0 (2)   | C12—C13—H13A  | 109.4     |
| C3—C2—C1      | 117.2 (2)   | C14—C13—H13B  | 109.4     |
| С3—С2—Н2      | 121.4       | C12—C13—H13B  | 109.4     |
| C1—C2—H2      | 121.4       | H13A—C13—H13B | 108.0     |
| C2—C3—C4      | 121.0 (2)   | C13—C14—C15   | 110.6 (2) |
| С2—С3—Н3      | 119.5       | C13—C14—H14A  | 109.5     |
| С4—С3—Н3      | 119.5       | C15—C14—H14A  | 109.5     |
| C5—C4—C3      | 121.8 (2)   | C13—C14—H14B  | 109.5     |
| C5—C4—H4      | 119.1       | C15—C14—H14B  | 109.5     |
| C3—C4—H4      | 119.1       | H14A—C14—H14B | 108.1     |
| C4—C5—C6      | 118.3 (2)   | C16—C15—C14   | 111.4 (2) |
| C4—C5—H5      | 120.9       | C16—C15—H15A  | 109.4     |
| С6—С5—Н5      | 120.9       | C14—C15—H15A  | 109.4     |
| C1—C6—C5      | 118.8 (2)   | C16—C15—H15B  | 109.4     |
| C1—C6—C7      | 106.6 (2)   | C14—C15—H15B  | 109.4     |
| C5—C6—C7      | 134.6 (2)   | H15A—C15—H15B | 108.0     |
| C8—C7—C6      | 106.1 (2)   | C15—C16—C11   | 112.1 (2) |
| C8—C7—C9      | 129.3 (2)   | C15—C16—H16A  | 109.2     |
| C6—C7—C9      | 124.3 (2)   | C11—C16—H16A  | 109.2     |
| N1—C8—C7      | 109.72 (19) | C15—C16—H16B  | 109.2     |
| N1-C8-C17     | 118.8 (2)   | C11—C16—H16B  | 109.2     |
| C7—C8—C17     | 131.5 (2)   | H16A—C16—H16B | 107.9     |
| O1—C9—C7      | 119.9 (2)   | C18—C17—C22   | 119.2 (2) |
| O1—C9—C10     | 119.8 (2)   | C18—C17—C8    | 120.5 (2) |
| C7—C9—C10     | 119.9 (2)   | C22—C17—C8    | 120.4 (2) |
| C9—C10—C11    | 111.12 (18) | C19—C18—C17   | 120.2 (2) |
| C9—C10—H10A   | 109.4       | C19—C18—H18   | 119.9     |
| C11—C10—H10A  | 109.4       | C17—C18—H18   | 119.9     |
| C9—C10—H10B   | 109.4       | C20—C19—C18   | 119.9 (2) |
| C11—C10—H10B  | 109.4       | C20—C19—H19   | 120.0     |
| H10A—C10—H10B | 108.0       | C18—C19—H19   | 120.0     |
| C12—C11—C16   | 110.8 (2)   | C21—C20—C19   | 120.2 (2) |
| C12—C11—C10   | 110.88 (18) | C21—C20—H20   | 119.9     |
| C16—C11—C10   | 112.1 (2)   | С19—С20—Н20   | 119.9     |
| C12—C11—H11   | 107.6       | C20—C21—C22   | 120.0 (2) |

| C16—C11—H11    | 107.6      | C20—C21—H21     | 120.0       |
|----------------|------------|-----------------|-------------|
| C10-C11-H11    | 107.6      | C22—C21—H21     | 120.0       |
| C13—C12—C11    | 111.5 (2)  | C21—C22—C17     | 120.4 (2)   |
| C13—C12—H12A   | 109.3      | C21—C22—H22     | 119.8       |
| C11—C12—H12A   | 109.3      | C17—C22—H22     | 119.8       |
| C13—C12—H12B   | 109.3      | C8—N1—C1        | 109.46 (19) |
| C11—C12—H12B   | 109.3      | C8—N1—H1        | 128.1 (16)  |
| H12A—C12—H12B  | 108.0      | C1—N1—H1        | 122.2 (16)  |
|                |            |                 |             |
| NI-CI-C2-C3    | -1/9.7 (2) | C9—C10—C11—C16  | 56.9 (3)    |
| C6—C1—C2—C3    | -0.7 (4)   | C16—C11—C12—C13 | -54.2 (3)   |
| C1—C2—C3—C4    | -0.3 (4)   | C10—C11—C12—C13 | -179.3(2)   |
| C2—C3—C4—C5    | 1.2 (4)    | C11—C12—C13—C14 | 56.3 (3)    |
| C3—C4—C5—C6    | -1.0 (4)   | C12—C13—C14—C15 | -56.8 (3)   |
| N1—C1—C6—C5    | -179.9 (2) | C13—C14—C15—C16 | 56.0 (3)    |
| C2-C1-C6-C5    | 0.9 (4)    | C14—C15—C16—C11 | -54.9 (3)   |
| N1—C1—C6—C7    | 1.4 (3)    | C12-C11-C16-C15 | 53.6 (3)    |
| C2-C1-C6-C7    | -177.8 (2) | C10-C11-C16-C15 | 178.1 (2)   |
| C4—C5—C6—C1    | 0.0 (4)    | N1—C8—C17—C18   | -110.2 (3)  |
| C4—C5—C6—C7    | 178.2 (3)  | C7—C8—C17—C18   | 68.9 (3)    |
| C1—C6—C7—C8    | -1.7 (3)   | N1—C8—C17—C22   | 69.4 (3)    |
| C5—C6—C7—C8    | 179.9 (3)  | C7—C8—C17—C22   | -111.5 (3)  |
| C1—C6—C7—C9    | 172.4 (2)  | C22-C17-C18-C19 | 0.9 (4)     |
| C5—C6—C7—C9    | -5.9 (4)   | C8—C17—C18—C19  | -179.5 (2)  |
| C6C7C8N1       | 1.4 (2)    | C17—C18—C19—C20 | 0.2 (4)     |
| C9—C7—C8—N1    | -172.4 (2) | C18—C19—C20—C21 | -0.6 (4)    |
| C6C7C8C17      | -177.7 (2) | C19—C20—C21—C22 | -0.1 (4)    |
| C9—C7—C8—C17   | 8.5 (4)    | C20—C21—C22—C17 | 1.2 (4)     |
| C8—C7—C9—O1    | -170.9 (2) | C18—C17—C22—C21 | -1.6 (3)    |
| C6C7C9O1       | 16.4 (3)   | C8—C17—C22—C21  | 178.8 (2)   |
| C8—C7—C9—C10   | 16.2 (4)   | C7—C8—N1—C1     | -0.5(2)     |
| C6-C7-C9-C10   | -156.5(2)  | C17—C8—N1—C1    | 178.7 (2)   |
| O1—C9—C10—C11  | -101.5(2)  | C2-C1-N1-C8     | 178.5 (2)   |
| C7—C9—C10—C11  | 71.4 (3)   | C6-C1-N1-C8     | -0.6 (3)    |
| C9—C10—C11—C12 | -178.7 (2) |                 |             |

#### Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1/C1/C6–C8 ring and the C1–C6 ring, respectively.

| D—H···A                              | D—H      | H···A    | D····A    | D—H···A |  |
|--------------------------------------|----------|----------|-----------|---------|--|
| N1—H1···O1 <sup>i</sup>              | 0.91 (3) | 1.94 (3) | 2.806 (3) | 158 (2) |  |
| C20—H20··· <i>Cg</i> 1 <sup>ii</sup> | 0.95     | 2.75     | 3.503 (3) | 136     |  |
| C21—H21····Cg2 <sup>ii</sup>         | 0.95     | 2.61     | 3.437 (3) | 146     |  |

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) -*x*+1, *y*-1/2, -*z*+1/2.

(III) 3,3-Dimethyl-1-(2-phenyl-1H-indol-3-yl)butan-1-one

#### Crystal data

 $C_{20}H_{21}NO$   $M_r = 291.38$ Trigonal, R3 a = 23.3305 (16) Å c = 15.3681 (11) Å V = 7244.3 (9) Å<sup>3</sup> Z = 18F(000) = 2808

#### Data collection

| Rigaku Mercury CCD                                         | 3070 reflections with $I > 2\sigma(I)$                      |
|------------------------------------------------------------|-------------------------------------------------------------|
| diffractometer                                             | $R_{int} = 0.037$                                           |
| Radiation source: fine-focus sealed tube                   | $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 1.7^{\circ}$ |
| Graphite monochromator                                     | $h = -30 \rightarrow 30$                                    |
| ω scans                                                    | $k = -30 \rightarrow 30$                                    |
| 32188 measured reflections                                 | $l = -19 \rightarrow 19$                                    |
| 32188 measured reflections<br>3690 independent reflections | $l = -19 \rightarrow 19$                                    |

#### Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier           |
|-------------------------------------------------|------------------------------------------------------------|
| Least-squares matrix: full                      | map                                                        |
| $R[F^2 > 2\sigma(F^2)] = 0.036$                 | Hydrogen site location: inferred from                      |
| $wR(F^2) = 0.092$                               | neighbouring sites                                         |
| S = 1.08                                        | H atoms treated by a mixture of independent                |
| 3690 reflections                                | and constrained refinement                                 |
| 205 parameters                                  | $w = 1/[\sigma^2(F_o^2) + (0.0448P)^2 + 4.7609P]$          |
| 0 restraints                                    | where $P = (F_o^2 + 2F_c^2)/3$                             |
| Primary atom site location: structure-invariant | $(\Delta/\sigma)_{\rm max} < 0.001$                        |
| direct methods                                  | $\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$    |
|                                                 | $\Delta \rho_{\rm min} = -0.18 \text{ e}  \text{\AA}^{-3}$ |

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $D_{\rm x} = 1.202 {\rm Mg} {\rm m}^{-3}$ 

 $\theta = 1.7 - 27.5^{\circ}$ 

 $\mu = 0.07 \text{ mm}^{-1}$ 

Chunk, colourless

 $0.66 \times 0.60 \times 0.24$  mm

T = 100 K

Mo *Ka* radiation,  $\lambda = 0.71073$  Å

Cell parameters from 21024 reflections

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2$ sigma( $F^2$ ) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|    | x           | У           | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|----|-------------|-------------|-------------|-----------------------------|--|
| C1 | 0.31613 (5) | 0.41861 (5) | 0.13603 (6) | 0.0197 (2)                  |  |
| C2 | 0.34735 (6) | 0.48614 (5) | 0.15385 (7) | 0.0250 (2)                  |  |
| H2 | 0.3771      | 0.5181      | 0.1136      | 0.030*                      |  |
| C3 | 0.33301 (6) | 0.50441 (5) | 0.23285 (7) | 0.0265 (2)                  |  |
| H3 | 0.3538      | 0.5500      | 0.2479      | 0.032*                      |  |
| C4 | 0.28843 (6) | 0.45692 (6) | 0.29109 (7) | 0.0245 (2)                  |  |
|    |             |             |             |                             |  |

| H4   | 0.2790      | 0.4710      | 0.3445       | 0.029*       |
|------|-------------|-------------|--------------|--------------|
| C5   | 0.25777 (5) | 0.38987 (5) | 0.27288 (7)  | 0.0210 (2)   |
| H5   | 0.2275      | 0.3582      | 0.3130       | 0.025*       |
| C6   | 0.27233 (5) | 0.36965 (5) | 0.19382 (6)  | 0.0178 (2)   |
| C7   | 0.25090 (5) | 0.30630 (5) | 0.15169 (6)  | 0.0172 (2)   |
| C8   | 0.28358 (5) | 0.32044 (5) | 0.07156 (6)  | 0.0179 (2)   |
| C9   | 0.20194 (5) | 0.24318 (5) | 0.18833 (6)  | 0.0178 (2)   |
| C10  | 0.16701 (5) | 0.18172 (5) | 0.13248 (7)  | 0.0208 (2)   |
| H10A | 0.1919      | 0.1902      | 0.0773       | 0.025*       |
| H10B | 0.1226      | 0.1745      | 0.1178       | 0.025*       |
| C11  | 0.15854 (5) | 0.11708 (5) | 0.17269 (7)  | 0.0232 (2)   |
| C12  | 0.10683 (6) | 0.09101 (6) | 0.24526 (8)  | 0.0325 (3)   |
| H12A | 0.1219      | 0.1231      | 0.2931       | 0.049*       |
| H12B | 0.1007      | 0.0487      | 0.2666       | 0.049*       |
| H12C | 0.0647      | 0.0845      | 0.2226       | 0.049*       |
| C13  | 0.13580 (7) | 0.06571 (6) | 0.09973 (8)  | 0.0365 (3)   |
| H13A | 0.0935      | 0.0581      | 0.0764       | 0.055*       |
| H13B | 0.1303      | 0.0241      | 0.1228       | 0.055*       |
| H13C | 0.1690      | 0.0820      | 0.0533       | 0.055*       |
| C14  | 0.22444 (6) | 0.12844 (6) | 0.20931 (9)  | 0.0337 (3)   |
| H14A | 0.2392      | 0.1614      | 0.2561       | 0.051*       |
| H14B | 0.2577      | 0.1445      | 0.1629       | 0.051*       |
| H14C | 0.2186      | 0.0867      | 0.2324       | 0.051*       |
| C15  | 0.28615 (5) | 0.27820 (5) | 0.00135 (6)  | 0.0181 (2)   |
| C16  | 0.25997 (5) | 0.27699 (5) | -0.08041 (7) | 0.0214 (2)   |
| H16  | 0.2385      | 0.3019      | -0.0907      | 0.026*       |
| C17  | 0.26503 (5) | 0.23952 (5) | -0.14706 (7) | 0.0234 (2)   |
| H17  | 0.2464      | 0.2383      | -0.2025      | 0.028*       |
| C18  | 0.29714 (5) | 0.20399 (5) | -0.13300 (7) | 0.0233 (2)   |
| H18  | 0.3011      | 0.1789      | -0.1789      | 0.028*       |
| C19  | 0.32356 (5) | 0.20505 (5) | -0.05188 (7) | 0.0252 (2)   |
| H19  | 0.3456      | 0.1807      | -0.0421      | 0.030*       |
| C20  | 0.31782 (5) | 0.24169 (5) | 0.01498 (7)  | 0.0227 (2)   |
| H20  | 0.3356      | 0.2420      | 0.0707       | 0.027*       |
| N1   | 0.32172 (4) | 0.38711 (4) | 0.06303 (6)  | 0.02026 (19) |
| H1   | 0.3485 (6)  | 0.4089 (6)  | 0.0173 (9)   | 0.024*       |
| O1   | 0.18597 (4) | 0.24055 (4) | 0.26571 (5)  | 0.02217 (17) |
|      |             |             |              |              |

Atomic displacement parameters  $(Å^2)$ 

|    | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$   | $U^{13}$    | $U^{23}$    |
|----|------------|------------|------------|------------|-------------|-------------|
| C1 | 0.0212 (5) | 0.0223 (5) | 0.0178 (5) | 0.0125 (4) | -0.0013 (4) | -0.0009 (4) |
| C2 | 0.0272 (5) | 0.0206 (5) | 0.0253 (5) | 0.0105 (4) | 0.0009 (4)  | 0.0013 (4)  |
| C3 | 0.0311 (6) | 0.0216 (5) | 0.0282 (6) | 0.0140 (5) | -0.0047 (5) | -0.0055 (4) |
| C4 | 0.0299 (6) | 0.0291 (5) | 0.0200 (5) | 0.0190 (5) | -0.0036 (4) | -0.0052 (4) |
| C5 | 0.0224 (5) | 0.0258 (5) | 0.0180 (5) | 0.0144 (4) | -0.0007 (4) | -0.0004 (4) |
| C6 | 0.0176 (4) | 0.0205 (5) | 0.0172 (5) | 0.0111 (4) | -0.0026 (4) | -0.0002(4)  |
| C7 | 0.0179 (4) | 0.0203 (5) | 0.0157 (4) | 0.0112 (4) | -0.0015 (4) | -0.0005 (4) |
|    |            |            |            |            |             |             |

| C8  | 0.0180 (4) | 0.0199 (5) | 0.0171 (5) | 0.0105 (4) | -0.0023 (4) | 0.0004 (4)  |
|-----|------------|------------|------------|------------|-------------|-------------|
| C9  | 0.0174 (4) | 0.0213 (5) | 0.0171 (5) | 0.0115 (4) | -0.0016 (4) | 0.0013 (4)  |
| C10 | 0.0206 (5) | 0.0209 (5) | 0.0184 (5) | 0.0086 (4) | -0.0014 (4) | 0.0002 (4)  |
| C11 | 0.0230 (5) | 0.0193 (5) | 0.0260 (5) | 0.0095 (4) | -0.0021 (4) | -0.0005 (4) |
| C12 | 0.0329 (6) | 0.0249 (6) | 0.0340 (6) | 0.0102 (5) | 0.0048 (5)  | 0.0063 (5)  |
| C13 | 0.0441 (7) | 0.0243 (6) | 0.0364 (7) | 0.0135 (5) | -0.0037 (6) | -0.0070 (5) |
| C14 | 0.0314 (6) | 0.0284 (6) | 0.0465 (7) | 0.0189 (5) | -0.0068 (5) | -0.0007 (5) |
| C15 | 0.0169 (4) | 0.0177 (4) | 0.0169 (5) | 0.0067 (4) | 0.0020 (4)  | 0.0007 (4)  |
| C16 | 0.0234 (5) | 0.0229 (5) | 0.0198 (5) | 0.0130 (4) | -0.0008 (4) | 0.0003 (4)  |
| C17 | 0.0272 (5) | 0.0243 (5) | 0.0170 (5) | 0.0116 (4) | -0.0020 (4) | -0.0010 (4) |
| C18 | 0.0260 (5) | 0.0202 (5) | 0.0215 (5) | 0.0099 (4) | 0.0038 (4)  | -0.0029 (4) |
| C19 | 0.0283 (5) | 0.0252 (5) | 0.0274 (6) | 0.0174 (5) | -0.0003 (4) | -0.0013 (4) |
| C20 | 0.0250 (5) | 0.0250 (5) | 0.0199 (5) | 0.0140 (4) | -0.0030 (4) | -0.0010 (4) |
| N1  | 0.0230 (4) | 0.0193 (4) | 0.0173 (4) | 0.0098 (4) | 0.0025 (3)  | 0.0012 (3)  |
| O1  | 0.0246 (4) | 0.0240 (4) | 0.0166 (3) | 0.0112 (3) | 0.0012 (3)  | 0.0021 (3)  |
|     |            |            |            |            |             |             |

Geometric parameters (Å, °)

| C1—N1    | 1.3825 (13) | C11—C14       | 1.5308 (15) |
|----------|-------------|---------------|-------------|
| C1—C2    | 1.3928 (15) | C12—H12A      | 0.9800      |
| C1—C6    | 1.4038 (14) | C12—H12B      | 0.9800      |
| C2—C3    | 1.3820 (16) | C12—H12C      | 0.9800      |
| С2—Н2    | 0.9500      | C13—H13A      | 0.9800      |
| C3—C4    | 1.3994 (16) | C13—H13B      | 0.9800      |
| С3—Н3    | 0.9500      | C13—H13C      | 0.9800      |
| C4—C5    | 1.3849 (15) | C14—H14A      | 0.9800      |
| C4—H4    | 0.9500      | C14—H14B      | 0.9800      |
| C5—C6    | 1.4052 (14) | C14—H14C      | 0.9800      |
| С5—Н5    | 0.9500      | C15—C16       | 1.3912 (14) |
| С6—С7    | 1.4541 (13) | C15—C20       | 1.3945 (14) |
| С7—С8    | 1.3983 (14) | C16—C17       | 1.3894 (15) |
| С7—С9    | 1.4520 (14) | C16—H16       | 0.9500      |
| C8—N1    | 1.3580 (13) | C17—C18       | 1.3841 (15) |
| C8—C15   | 1.4827 (14) | C17—H17       | 0.9500      |
| C9—O1    | 1.2385 (12) | C18—C19       | 1.3855 (15) |
| C9—C10   | 1.5128 (14) | C18—H18       | 0.9500      |
| C10-C11  | 1.5485 (14) | C19—C20       | 1.3852 (15) |
| C10—H10A | 0.9900      | C19—H19       | 0.9500      |
| C10—H10B | 0.9900      | C20—H20       | 0.9500      |
| C11—C12  | 1.5282 (16) | N1—H1         | 0.909 (13)  |
| C11—C13  | 1.5294 (15) |               |             |
| N1—C1—C2 | 128.74 (10) | C11—C12—H12A  | 109.5       |
| N1-C1-C6 | 107.73 (9)  | C11—C12—H12B  | 109.5       |
| C2—C1—C6 | 123.52 (9)  | H12A—C12—H12B | 109.5       |
| C3—C2—C1 | 116.83 (10) | C11—C12—H12C  | 109.5       |
| С3—С2—Н2 | 121.6       | H12A—C12—H12C | 109.5       |
| C1—C2—H2 | 121.6       | H12B-C12-H12C | 109.5       |

| ~ ~ ~ ~ /                                            |                         |                                                      |             |
|------------------------------------------------------|-------------------------|------------------------------------------------------|-------------|
| C2—C3—C4                                             | 121.09 (10)             | C11—C13—H13A                                         | 109.5       |
| С2—С3—Н3                                             | 119.5                   | C11—C13—H13B                                         | 109.5       |
| С4—С3—Н3                                             | 119.5                   | H13A—C13—H13B                                        | 109.5       |
| C5—C4—C3                                             | 121.65 (10)             | C11—C13—H13C                                         | 109.5       |
| C5—C4—H4                                             | 119.2                   | H13A—C13—H13C                                        | 109.5       |
| C3—C4—H4                                             | 119.2                   | H13B—C13—H13C                                        | 109.5       |
| C4—C5—C6                                             | 118.61 (10)             | C11—C14—H14A                                         | 109.5       |
| C4—C5—H5                                             | 120.7                   | C11—C14—H14B                                         | 109 5       |
| С6—С5—Н5                                             | 120.7                   | H14A - C14 - H14B                                    | 109.5       |
| $C_1  C_5  C_5$                                      | 120.7<br>118.27(0)      | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 109.5       |
| C1 = C0 = C3                                         | 110.27(9)               |                                                      | 109.5       |
| CI = CO = C/                                         | 100.01(8)               | H14A - C14 - H14C                                    | 109.5       |
|                                                      | 135.09 (9)              | H14B - C14 - H14C                                    | 109.5       |
| C8—C7—C9                                             | 129.83 (9)              | C16—C15—C20                                          | 118.99 (9)  |
| C8—C7—C6                                             | 106.41 (8)              | C16—C15—C8                                           | 120.49 (9)  |
| C9—C7—C6                                             | 123.68 (9)              | C20—C15—C8                                           | 120.44 (9)  |
| N1—C8—C7                                             | 108.84 (9)              | C17—C16—C15                                          | 120.27 (10) |
| N1—C8—C15                                            | 118.04 (9)              | C17—C16—H16                                          | 119.9       |
| C7—C8—C15                                            | 133.04 (9)              | C15—C16—H16                                          | 119.9       |
| O1—C9—C7                                             | 119.16 (9)              | C18—C17—C16                                          | 120.22 (10) |
| O1—C9—C10                                            | 119.45 (9)              | C18—C17—H17                                          | 119.9       |
| C7—C9—C10                                            | 121.27 (9)              | C16—C17—H17                                          | 119.9       |
| C9—C10—C11                                           | 116.27 (8)              | C17—C18—C19                                          | 119.93 (9)  |
| C9—C10—H10A                                          | 108.2                   | C17—C18—H18                                          | 120.0       |
| C11—C10—H10A                                         | 108.2                   | C19—C18—H18                                          | 120.0       |
| C9-C10-H10B                                          | 108.2                   | $C_{20}$ $C_{19}$ $C_{18}$                           | 119.94(10)  |
| $C_{11}$ $C_{10}$ $H_{10B}$                          | 108.2                   | $C_{20} = C_{19} = H_{19}$                           | 120.0       |
| HIOA CIO HIOB                                        | 107.4                   | $C_{20} = C_{10} = H_{10}$                           | 120.0       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 107.4<br>100.13 (0)     | $C_{10} = C_{10} = C_{10}$                           | 120.0       |
| $C_{12} = C_{11} = C_{13}$                           | 109.13(9)<br>109.08(10) | C19 - C20 - C13                                      | 120.04 (10) |
| C12— $C11$ — $C14$                                   | 108.98 (10)             | C19 - C20 - H20                                      | 119.7       |
|                                                      | 109.28 (10)             | C15 - C20 - H20                                      | 119.7       |
|                                                      | 111.70 (9)              |                                                      | 110.40 (8)  |
| C13—C11—C10                                          | 107.22 (9)              | C8—NI—HI                                             | 126.0 (8)   |
| C14—C11—C10                                          | 110.49 (9)              | C1—N1—H1                                             | 123.6 (8)   |
|                                                      | 170 (0 (10)             | C( C7 C0 C10                                         | 1(2.05.(0)  |
| NI - CI - C2 - C3                                    | -1/9.69 (10)            | $C_{0} - C_{1} - C_{0} - C_{10}$                     | 162.05 (9)  |
| $C_{0} - C_{1} - C_{2} - C_{3}$                      | -0.5/(16)               |                                                      | -46.46 (13) |
| C1—C2—C3—C4                                          | -0.89 (16)              | C/C9C10C11                                           | 137.54 (9)  |
| C2—C3—C4—C5                                          | 1.11 (17)               | C9—C10—C11—C12                                       | 72.06 (12)  |
| C3—C4—C5—C6                                          | 0.15 (15)               | C9—C10—C11—C13                                       | -168.44 (9) |
| N1—C1—C6—C5                                          | -178.93 (9)             | C9—C10—C11—C14                                       | -49.44 (12) |
| C2—C1—C6—C5                                          | 1.80 (15)               | N1—C8—C15—C16                                        | -68.98 (13) |
| N1—C1—C6—C7                                          | -0.50 (11)              | C7—C8—C15—C16                                        | 114.61 (12) |
| C2-C1-C6-C7                                          | -179.78 (9)             | N1-C8-C15-C20                                        | 107.75 (11) |
| C4—C5—C6—C1                                          | -1.53 (14)              | C7—C8—C15—C20                                        | -68.66 (15) |
| C4—C5—C6—C7                                          | -179.39 (10)            | C20-C15-C16-C17                                      | 0.45 (15)   |
| C1—C6—C7—C8                                          | 0.81 (10)               | C8—C15—C16—C17                                       | 177.23 (9)  |
| C5—C6—C7—C8                                          | 178.84 (11)             | C15—C16—C17—C18                                      | -1.08 (16)  |
| C1—C6—C7—C9                                          | -176.08 (9)             | C16—C17—C18—C19                                      | 0.87 (16)   |
|                                                      |                         |                                                      |             |

| C5—C6—C7—C9  | 1.95 (17)   | C17—C18—C19—C20 | -0.04 (16)   |
|--------------|-------------|-----------------|--------------|
| C9—C7—C8—N1  | 175.80 (9)  | C18—C19—C20—C15 | -0.59 (16)   |
| C6—C7—C8—N1  | -0.82 (11)  | C16-C15-C20-C19 | 0.38 (15)    |
| C9—C7—C8—C15 | -7.55 (18)  | C8—C15—C20—C19  | -176.40 (10) |
| C6—C7—C8—C15 | 175.82 (10) | C7—C8—N1—C1     | 0.53 (11)    |
| C8—C7—C9—O1  | 169.93 (10) | C15—C8—N1—C1    | -176.69 (8)  |
| C6—C7—C9—O1  | -13.96 (14) | C2-C1-N1-C8     | 179.23 (10)  |
| C8—C7—C9—C10 | -14.06 (15) | C6-C1-N1-C8     | 0.00 (11)    |
|              |             |                 |              |

Hydrogen-bond geometry (Å, °)

| D—H···A               | D—H        | H···A      | D···A       | D—H···A    |
|-----------------------|------------|------------|-------------|------------|
| N1—H1…O1 <sup>i</sup> | 0.909 (13) | 1.953 (13) | 2.7950 (11) | 153.3 (12) |

Symmetry code: (i) -x+y+1/3, -x+2/3, z-1/3.

#### (IV) 3-Benzoyl-2-phenyl-1H-indole

Crystal data

| C <sub>21</sub> H <sub>15</sub> NO | F(000) = 1248                                         |
|------------------------------------|-------------------------------------------------------|
| $M_r = 297.34$                     | $D_{\rm x} = 1.297 { m Mg m^{-3}}$                    |
| Monoclinic, $P2_1/c$               | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| a = 14.5065 (10)  Å                | Cell parameters from 13275 reflections                |
| b = 11.7911 (9)  Å                 | $\theta = 2.7 - 27.5^{\circ}$                         |
| c = 18.6961 (13)  Å                | $\mu=0.08~\mathrm{mm^{-1}}$                           |
| $\beta = 107.782 \ (2)^{\circ}$    | T = 100  K                                            |
| $V = 3045.1 (4) Å^3$               | Lath, colourless                                      |
| Z = 8                              | $0.22 \times 0.03 \times 0.01 \text{ mm}$             |
|                                    |                                                       |

#### Data collection

| Rigaku Mercury CCD                       | 4461 reflections with $I > 2\sigma(I)$                              |
|------------------------------------------|---------------------------------------------------------------------|
| diffractometer                           | $R_{\rm int} = 0.063$                                               |
| Radiation source: fine-focus sealed tube | $\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.7^{\circ}$ |
| Graphite monochromator                   | $h = -18 \rightarrow 18$                                            |
| $\omega$ scans                           | $k = -15 \rightarrow 13$                                            |
| 20680 measured reflections               | $l = -23 \rightarrow 24$                                            |
| 6949 independent reflections             |                                                                     |

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.076$  $wR(F^2) = 0.215$ S = 1.056949 reflections 415 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.1011P)^2 + 1.7166P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} < 0.001$  $\Delta\rho_{max} = 0.58 \text{ e } \text{Å}^{-3}$  $\Delta\rho_{min} = -0.23 \text{ e } \text{Å}^{-3}$ 

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2$ sigma( $F^2$ ) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

 $U_{\rm iso} * / U_{\rm eq}$ х Zv C1 0.0269 (6) 0.19446 (19) 0.8013(2)0.39664 (13) 0.2396 (2) 0.0322 (6) C2 0.40907 (14) 0.9067(3)H2A 0.039\* 0.3052 0.9158 0.4104 C3 0.1852 (2) 0.9976 (3) 0.0354(7) 0.41944 (15) 0.042\* H3 0.2133 1.0711 0.4277 C4 0.0883(2)0.9826(3)0.41792 (16) 0.0357(7)H4 0.0525 0.043\* 1.0465 0.4255 C5 0.8786(3)0.40575 (14) 0.0336(6) 0.0442(2)0.040\* H5 -0.02120.8702 0.4051 C6 0.09729 (19) 0.7850(2)0.39430(13) 0.0281 (6) C7 0.07731 (18) 0.6637(2)0.37913 (13) 0.0264 (6) C8 0.16308 (17) 0.6165(2)0.37209 (13) 0.0263(6)C9 -0.01375(19)0.6113(2)0.37465 (14) 0.0283(6)C10 -0.02686(18)0.4863(2)0.36931 (14) 0.0272 (6) C11 0.02580 (19) 0.4146(2)0.42699 (14) 0.0288 (6) 0.035\* H11 0.0744 0.4450 0.4690 0.0070(2)0.2997 (2) C12 0.42273 (15) 0.0330(6) 0.040\* H12 0.0407 0.2513 0.4628 C13 -0.0617(2)0.2544(3)0.35948 (15) 0.0348 (6) 0.042\* H13 -0.07300.1749 0.3559 C14 -0.1135(2)0.3254(3)0.30192 (15) 0.0339(6) 0.2945 0.041\* H14 -0.16010.2590 C15 -0.09743(19)0.4396 (3) 0.30696 (14) 0.0324 (6) H15 0.039\* -0.13420.4880 0.2680 C16 0.18695 (18) 0.4990(2)0.35550 (14) 0.0276 (6) C17 0.26730(19) 0.4451(2)0.40466 (15) 0.0302(6)0.4848 0.036\* H17 0.3073 0.4470 C18 0.2887(2)0.3346(3)0.39201 (16) 0.0353(7)H18 0.3431 0.2983 0.4259 0.042\* 0.0350(6) C19 0.2305(2)0.2747(3)0.32906 (16) H19 0.2447 0.1980 0.3210 0.042\* C20 0.1522(2)0.3291(2)0.27911 (15) 0.0317 (6) H20 0.1134 0.2903 0.038\* 0.2359 C21 0.13070 (19) 0.4405(2)0.29238 (14) 0.0292 (6) 0.035\* H21 0.0770 0.4773 0.2580

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| N1  | 0.23136 (15)  | 0.69798 (19) | 0.38248 (11) | 0.0284 (5) |
|-----|---------------|--------------|--------------|------------|
| H1  | 0.2906        | 0.6871       | 0.3806       | 0.034*     |
| 01  | -0.08448 (13) | 0.67091 (16) | 0.37534 (11) | 0.0335 (5) |
| C22 | 0.69538 (18)  | 0.5190 (2)   | 0.40301 (13) | 0.0260 (6) |
| C23 | 0.74041 (19)  | 0.4145 (2)   | 0.41931 (14) | 0.0305 (6) |
| H23 | 0.8060        | 0.4039       | 0.4210       | 0.037*     |
| C24 | 0.6850(2)     | 0.3256 (2)   | 0.43313 (15) | 0.0338 (6) |
| H24 | 0.7126        | 0.2521       | 0.4438       | 0.041*     |
| C25 | 0.5884 (2)    | 0.3439 (3)   | 0.43146 (15) | 0.0348 (7) |
| H25 | 0.5524        | 0.2825       | 0.4422       | 0.042*     |
| C26 | 0.54494 (19)  | 0.4484 (2)   | 0.41476 (14) | 0.0314 (6) |
| H26 | 0.4797        | 0.4591       | 0.4139       | 0.038*     |
| C27 | 0.59814 (18)  | 0.5380 (2)   | 0.39919 (13) | 0.0265 (6) |
| C28 | 0.57881 (18)  | 0.6581 (2)   | 0.38018 (13) | 0.0270 (6) |
| C29 | 0.66528 (18)  | 0.7025 (2)   | 0.37257 (13) | 0.0265 (6) |
| C30 | 0.48733 (19)  | 0.7126 (2)   | 0.37205 (14) | 0.0292 (6) |
| C31 | 0.47679 (19)  | 0.8381 (2)   | 0.36448 (14) | 0.0280 (6) |
| C32 | 0.53489 (19)  | 0.9104 (2)   | 0.41874 (14) | 0.0300 (6) |
| H32 | 0.5833        | 0.8801       | 0.4608       | 0.036*     |
| C33 | 0.5216 (2)    | 1.0267 (3)   | 0.41100 (15) | 0.0345 (6) |
| H33 | 0.5605        | 1.0763       | 0.4482       | 0.041*     |
| C34 | 0.4517 (2)    | 1.0708 (3)   | 0.34902 (16) | 0.0362 (7) |
| H34 | 0.4439        | 1.1507       | 0.3435       | 0.043*     |
| C35 | 0.3934 (2)    | 1.0000 (3)   | 0.29536 (15) | 0.0369 (7) |
| H35 | 0.3454        | 1.0311       | 0.2533       | 0.044*     |
| C36 | 0.40478 (19)  | 0.8845 (3)   | 0.30272 (14) | 0.0320 (6) |
| H36 | 0.3640        | 0.8357       | 0.2661       | 0.038*     |
| C37 | 0.68882 (19)  | 0.8182 (2)   | 0.35194 (14) | 0.0272 (6) |
| C38 | 0.76544 (19)  | 0.8797 (2)   | 0.40043 (15) | 0.0305 (6) |
| H38 | 0.8052        | 0.8450       | 0.4451       | 0.037*     |
| C39 | 0.7836 (2)    | 0.9894 (3)   | 0.38400 (16) | 0.0355 (7) |
| H39 | 0.8355        | 1.0304       | 0.4174       | 0.043*     |
| C40 | 0.7257 (2)    | 1.0408 (3)   | 0.31815 (16) | 0.0338 (6) |
| H40 | 0.7375        | 1.1171       | 0.3072       | 0.041*     |
| C41 | 0.65150 (19)  | 0.9803 (2)   | 0.26904 (14) | 0.0302 (6) |
| H41 | 0.6129        | 1.0146       | 0.2238       | 0.036*     |
| C42 | 0.63344 (19)  | 0.8698 (2)   | 0.28572 (14) | 0.0285 (6) |
| H42 | 0.5826        | 0.8285       | 0.2515       | 0.034*     |
| N2  | 0.73368 (16)  | 0.62092 (19) | 0.38683 (11) | 0.0287 (5) |
| H2  | 0.7935        | 0.6305       | 0.3860       | 0.034*     |
| O2  | 0.41519 (13)  | 0.65488 (17) | 0.37109 (11) | 0.0336 (5) |

Atomic displacement parameters  $(Å^2)$ 

|    | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$    |
|----|-------------|-------------|-------------|--------------|-------------|-------------|
| C1 | 0.0263 (13) | 0.0337 (15) | 0.0227 (11) | 0.0053 (11)  | 0.0106 (10) | 0.0020 (10) |
| C2 | 0.0239 (13) | 0.0450 (18) | 0.0305 (13) | -0.0039 (12) | 0.0124 (11) | 0.0017 (12) |
| С3 | 0.0397 (16) | 0.0324 (16) | 0.0347 (14) | -0.0063 (13) | 0.0123 (12) | 0.0000 (12) |

| C4  | 0.0336 (15) | 0.0356 (17) | 0.0384 (15) | 0.0078 (13)  | 0.0120 (12) | -0.0016 (12) |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| C5  | 0.0233 (13) | 0.0487 (18) | 0.0316 (13) | 0.0019 (13)  | 0.0128 (11) | -0.0007 (12) |
| C6  | 0.0260 (13) | 0.0363 (16) | 0.0236 (11) | -0.0027 (11) | 0.0101 (10) | 0.0014 (11)  |
| C7  | 0.0181 (12) | 0.0379 (16) | 0.0252 (11) | 0.0038 (11)  | 0.0096 (9)  | 0.0005 (11)  |
| C8  | 0.0192 (12) | 0.0378 (16) | 0.0245 (11) | 0.0006 (11)  | 0.0105 (9)  | 0.0036 (11)  |
| C9  | 0.0235 (13) | 0.0380 (16) | 0.0265 (12) | 0.0033 (11)  | 0.0123 (10) | 0.0019 (11)  |
| C10 | 0.0238 (12) | 0.0339 (15) | 0.0284 (12) | 0.0008 (11)  | 0.0148 (10) | 0.0000 (11)  |
| C11 | 0.0244 (13) | 0.0380 (17) | 0.0260 (12) | 0.0010 (12)  | 0.0104 (10) | 0.0009 (11)  |
| C12 | 0.0257 (14) | 0.0383 (17) | 0.0352 (14) | 0.0039 (12)  | 0.0096 (11) | 0.0055 (12)  |
| C13 | 0.0295 (14) | 0.0391 (17) | 0.0400 (15) | -0.0048 (13) | 0.0169 (12) | -0.0035 (12) |
| C14 | 0.0263 (14) | 0.0468 (19) | 0.0306 (13) | -0.0038 (13) | 0.0116 (11) | -0.0048 (12) |
| C15 | 0.0241 (13) | 0.0497 (19) | 0.0252 (12) | 0.0022 (12)  | 0.0101 (10) | 0.0047 (12)  |
| C16 | 0.0250 (13) | 0.0365 (16) | 0.0275 (12) | -0.0026 (11) | 0.0170 (10) | 0.0010(11)   |
| C17 | 0.0248 (13) | 0.0389 (17) | 0.0317 (13) | -0.0036 (12) | 0.0156 (11) | -0.0023 (11) |
| C18 | 0.0268 (14) | 0.0488 (19) | 0.0353 (14) | 0.0055 (13)  | 0.0170 (11) | 0.0076 (13)  |
| C19 | 0.0348 (15) | 0.0346 (16) | 0.0443 (15) | 0.0022 (13)  | 0.0251 (13) | -0.0004 (12) |
| C20 | 0.0293 (14) | 0.0382 (16) | 0.0329 (13) | -0.0057 (12) | 0.0175 (11) | -0.0067 (12) |
| C21 | 0.0247 (13) | 0.0399 (17) | 0.0265 (12) | -0.0019 (12) | 0.0129 (10) | -0.0017 (11) |
| N1  | 0.0192 (10) | 0.0386 (14) | 0.0305 (11) | -0.0009 (10) | 0.0121 (9)  | -0.0011 (9)  |
| 01  | 0.0230 (10) | 0.0385 (12) | 0.0432 (11) | 0.0058 (8)   | 0.0162 (8)  | 0.0060 (9)   |
| C22 | 0.0252 (13) | 0.0331 (15) | 0.0215 (11) | -0.0023 (11) | 0.0096 (10) | -0.0008 (10) |
| C23 | 0.0219 (12) | 0.0462 (18) | 0.0264 (12) | 0.0042 (12)  | 0.0118 (10) | -0.0026 (11) |
| C24 | 0.0398 (16) | 0.0326 (16) | 0.0295 (13) | 0.0087 (13)  | 0.0115 (12) | 0.0023 (11)  |
| C25 | 0.0361 (16) | 0.0402 (18) | 0.0312 (13) | -0.0105 (13) | 0.0147 (12) | -0.0013 (12) |
| C26 | 0.0234 (13) | 0.0436 (17) | 0.0289 (13) | -0.0018 (12) | 0.0108 (11) | -0.0012 (12) |
| C27 | 0.0239 (13) | 0.0342 (15) | 0.0228 (11) | 0.0009 (11)  | 0.0091 (10) | -0.0029 (10) |
| C28 | 0.0202 (12) | 0.0373 (16) | 0.0259 (12) | -0.0029 (11) | 0.0107 (10) | -0.0005 (11) |
| C29 | 0.0188 (12) | 0.0387 (16) | 0.0240 (11) | 0.0022 (11)  | 0.0093 (9)  | -0.0042 (11) |
| C30 | 0.0225 (13) | 0.0417 (17) | 0.0269 (12) | -0.0016 (12) | 0.0126 (10) | -0.0051 (11) |
| C31 | 0.0239 (13) | 0.0360 (16) | 0.0282 (12) | 0.0006 (11)  | 0.0139 (10) | -0.0010 (11) |
| C32 | 0.0277 (13) | 0.0394 (17) | 0.0259 (12) | -0.0013 (12) | 0.0126 (10) | -0.0014 (11) |
| C33 | 0.0341 (15) | 0.0402 (17) | 0.0322 (14) | 0.0004 (13)  | 0.0147 (12) | -0.0032 (12) |
| C34 | 0.0384 (16) | 0.0377 (17) | 0.0390 (15) | 0.0076 (13)  | 0.0215 (13) | 0.0036 (13)  |
| C35 | 0.0303 (15) | 0.052 (2)   | 0.0316 (14) | 0.0102 (14)  | 0.0140 (12) | 0.0078 (13)  |
| C36 | 0.0227 (13) | 0.0485 (18) | 0.0268 (12) | -0.0007 (12) | 0.0107 (10) | -0.0022 (12) |
| C37 | 0.0253 (13) | 0.0325 (15) | 0.0288 (12) | 0.0013 (11)  | 0.0159 (10) | -0.0015 (11) |
| C38 | 0.0218 (13) | 0.0395 (17) | 0.0330 (13) | 0.0042 (12)  | 0.0123 (10) | 0.0019 (12)  |
| C39 | 0.0246 (13) | 0.0461 (19) | 0.0391 (15) | -0.0081 (13) | 0.0144 (12) | -0.0036 (13) |
| C40 | 0.0326 (15) | 0.0347 (16) | 0.0402 (15) | -0.0040 (12) | 0.0200 (12) | 0.0028 (12)  |
| C41 | 0.0265 (13) | 0.0398 (16) | 0.0290 (12) | 0.0042 (12)  | 0.0156 (11) | 0.0065 (11)  |
| C42 | 0.0251 (13) | 0.0377 (16) | 0.0271 (12) | 0.0008 (11)  | 0.0145 (10) | -0.0023 (11) |
| N2  | 0.0208 (11) | 0.0379 (14) | 0.0304 (11) | 0.0027 (10)  | 0.0122 (9)  | 0.0013 (10)  |
| O2  | 0.0197 (9)  | 0.0404 (12) | 0.0443 (11) | -0.0034 (8)  | 0.0151 (8)  | -0.0045 (9)  |

#### Geometric parameters (Å, °)

| C1—N1 | 1.389 (3) | C22—C23 | 1.385 (4) |
|-------|-----------|---------|-----------|
| C1—C2 | 1.391 (4) | C22—N2  | 1.395 (3) |

| C1—C6     | 1.410 (4) | C22—C27     | 1.408 (3) |
|-----------|-----------|-------------|-----------|
| C2—C3     | 1.379 (4) | C23—C24     | 1.392 (4) |
| C2—H2A    | 0.9500    | С23—Н23     | 0.9500    |
| C3—C4     | 1.408 (4) | C24—C25     | 1.409 (4) |
| С3—Н3     | 0.9500    | C24—H24     | 0.9500    |
| C4—C5     | 1.370 (4) | C25—C26     | 1.375 (4) |
| C4—H4     | 0.9500    | C25—H25     | 0.9500    |
| C5—C6     | 1.399 (4) | C26—C27     | 1.391 (4) |
| С5—Н5     | 0.9500    | C26—H26     | 0.9500    |
| C6—C7     | 1.470 (4) | C27—C28     | 1.466 (4) |
| С7—С8     | 1.405 (3) | C28—C29     | 1.406 (3) |
| С7—С9     | 1.437 (4) | C28—C30     | 1.440 (4) |
| C8—N1     | 1.351 (3) | C29—N2      | 1.348 (3) |
| C8—C16    | 1.484 (4) | C29—C37     | 1.487 (4) |
| C9—O1     | 1.247 (3) | C30—O2      | 1.244 (3) |
| C9—C10    | 1.486 (4) | C30—C31     | 1.491 (4) |
| C10—C11   | 1.399 (4) | C31—C32     | 1.394 (4) |
| C10—C15   | 1.408 (4) | C31—C36     | 1.410 (4) |
| C11—C12   | 1.379 (4) | C32—C33     | 1.386 (4) |
| C11—H11   | 0.9500    | С32—Н32     | 0.9500    |
| C12—C13   | 1.399 (4) | C33—C34     | 1.387 (4) |
| C12—H12   | 0.9500    | С33—Н33     | 0.9500    |
| C13—C14   | 1.389 (4) | C34—C35     | 1.379 (4) |
| C13—H13   | 0.9500    | C34—H34     | 0.9500    |
| C14—C15   | 1.364 (4) | C35—C36     | 1.374 (4) |
| C14—H14   | 0.9500    | С35—Н35     | 0.9500    |
| C15—H15   | 0.9500    | С36—Н36     | 0.9500    |
| C16—C21   | 1.395 (4) | C37—C42     | 1.393 (4) |
| C16—C17   | 1.398 (4) | C37—C38     | 1.402 (4) |
| C17—C18   | 1.377 (4) | C38—C39     | 1.374 (4) |
| C17—H17   | 0.9500    | C38—H38     | 0.9500    |
| C18—C19   | 1.411 (4) | C39—C40     | 1.398 (4) |
| C18—H18   | 0.9500    | С39—Н39     | 0.9500    |
| C19—C20   | 1.387 (4) | C40—C41     | 1.381 (4) |
| С19—Н19   | 0.9500    | C40—H40     | 0.9500    |
| C20—C21   | 1.389 (4) | C41—C42     | 1.384 (4) |
| C20—H20   | 0.9500    | C41—H41     | 0.9500    |
| C21—H21   | 0.9500    | C42—H42     | 0.9500    |
| N1—H1     | 0.8800    | N2—H2       | 0.8800    |
|           |           |             |           |
| N1—C1—C2  | 128.8 (2) | C23—C22—N2  | 128.5 (2) |
| N1—C1—C6  | 108.3 (2) | C23—C22—C27 | 123.4 (2) |
| C2-C1-C6  | 122.9 (2) | N2—C22—C27  | 108.1(2)  |
| C3—C2—C1  | 117.2 (2) | C22—C23—C24 | 116.8 (2) |
| C3—C2—H2A | 121.4     | C22—C23—H23 | 121.6     |
| C1—C2—H2A | 121.4     | C24—C23—H23 | 121.6     |
| C2—C3—C4  | 120.7 (3) | C23—C24—C25 | 120.5 (3) |
| С2—С3—Н3  | 119.7     | C23—C24—H24 | 119.8     |
|           |           |             |           |

| C4 C2 H2                            | 110 7                | C25 C24 H24                    | 110.9             |
|-------------------------------------|----------------------|--------------------------------|-------------------|
| $C_4 - C_5 - H_5$                   | 119.7                | $C_{23} = C_{24} = H_{24}$     | 119.0             |
| $C_{5} = C_{4} = C_{5}$             | 110.1                | $C_{20} = C_{23} = C_{24}$     | 121.8 (5)         |
| $C_3 = C_4 = H_4$                   | 119.1                | $C_{20} = C_{23} = H_{23}$     | 119.1             |
| $C_{3}$ $C_{4}$ $C_{5}$ $C_{6}$     | 119.1<br>118.7(2)    | $C_{24} = C_{23} = H_{23}$     | 119.1<br>118.8(2) |
| C4 = C5 = U5                        | 110.7 (2)            | $C_{25} = C_{20} = C_{27}$     | 110.0 (2)         |
| C4 - C5 - H5                        | 120.0                | $C_{23} = C_{20} = H_{20}$     | 120.0             |
|                                     | 120.0                | $C_2/-C_20-H_20$               | 120.0             |
| $C_{5}$                             | 118.0(3)<br>125.4(2) | $C_{20} = C_{27} = C_{22}$     | 118.7(2)          |
| $C_{3} = C_{0} = C_{7}$             | 135.4 (2)            | $C_{20} = C_{27} = C_{28}$     | 135.0 (2)         |
| C1 - C6 - C7                        | 106.0 (2)            | $C_{22} = C_{2} / = C_{28}$    | 106.3 (2)         |
| C8-C7-C9                            | 130.5 (3)            | C29—C28—C30                    | 130.2 (3)         |
| C8—C7—C6                            | 106.0 (2)            | C29—C28—C27                    | 105.9 (2)         |
| C9—C7—C6                            | 123.5 (2)            | C30—C28—C27                    | 124.0 (2)         |
| N1—C8—C7                            | 109.7 (2)            | N2—C29—C28                     | 109.9 (2)         |
| N1—C8—C16                           | 119.1 (2)            | N2—C29—C37                     | 119.5 (2)         |
| C7—C8—C16                           | 131.2 (2)            | C28—C29—C37                    | 130.6 (2)         |
| O1—C9—C7                            | 120.1 (3)            | O2—C30—C28                     | 120.1 (3)         |
| O1—C9—C10                           | 118.1 (2)            | O2—C30—C31                     | 118.7 (2)         |
| C7—C9—C10                           | 121.8 (2)            | C28—C30—C31                    | 121.2 (2)         |
| C11—C10—C15                         | 119.3 (3)            | C32—C31—C36                    | 119.4 (3)         |
| C11—C10—C9                          | 121.3 (2)            | C32—C31—C30                    | 121.1 (2)         |
| C15—C10—C9                          | 119.3 (2)            | C36—C31—C30                    | 119.5 (2)         |
| C12—C11—C10                         | 119.8 (3)            | C33—C32—C31                    | 119.7 (3)         |
| C12—C11—H11                         | 120.1                | С33—С32—Н32                    | 120.2             |
| C10—C11—H11                         | 120.1                | С31—С32—Н32                    | 120.2             |
| C11—C12—C13                         | 120.1 (3)            | C32—C33—C34                    | 120.1 (3)         |
| C11—C12—H12                         | 119.9                | С32—С33—Н33                    | 120.0             |
| C13—C12—H12                         | 120.0                | С34—С33—Н33                    | 120.0             |
| C14-C13-C12                         | 120.1 (3)            | $C_{35}$ — $C_{34}$ — $C_{33}$ | 120.7(3)          |
| C14—C13—H13                         | 120.0                | C35—C34—H34                    | 1197              |
| C12—C13—H13                         | 120.0                | C33—C34—H34                    | 119.7             |
| $C_{12} = C_{13} = C_{13}$          | 120.0                | $C_{36} - C_{35} - C_{34}$     | 120.0(3)          |
| $C_{15} - C_{14} - H_{14}$          | 120.1 (5)            | $C_{36} = C_{35} = H_{35}$     | 120.0 (3)         |
| C13 - C14 - H14                     | 120.0                | $C_{34}$ $C_{35}$ $H_{35}$     | 120.0             |
| $C_{13}$ $C_{14}$ $C_{15}$ $C_{10}$ | 120.6 (3)            | $C_{35} = C_{35} = C_{31}$     | 120.0<br>120.2(3) |
| $C_{14} = C_{15} = C_{10}$          | 110.7                | $C_{35} = C_{36} = C_{31}$     | 120.2 (5)         |
| $C_{14} = C_{15} = H_{15}$          | 119.7                | $C_{31}$ $C_{36}$ $H_{36}$     | 119.9             |
| $C_{10} = C_{13} = 1115$            | 119.7                | $C_{31} = C_{30} = 1150$       | 119.9<br>119.5(2) |
| $C_{21} = C_{10} = C_{17}$          | 119.1(3)<br>121.7(2) | C42 - C37 - C38                | 110.3(3)          |
| $C_{21} = C_{10} = C_{8}$           | 121.7(2)             | C42 - C37 - C29                | 121.0(2)          |
| C17 - C10 - C8                      | 119.2 (2)            | $C_{38} = C_{37} = C_{29}$     | 120.4(2)          |
| C18 - C17 - C16                     | 120.3 (3)            | $C_{39} = C_{38} = C_{37}$     | 120.7 (3)         |
|                                     | 119.9                | C39—C38—H38                    | 119./             |
| C16—C17—H17                         | 119.9                | C37—C38—H38                    | 119.7             |
| C1/C18C19                           | 120.5 (3)            | C38—C39—C40                    | 120.0 (3)         |
| C17—C18—H18                         | 119.7                | C38—C39—H39                    | 120.0             |
| C19—C18—H18                         | 119.7                | С40—С39—Н39                    | 120.0             |
| C20—C19—C18                         | 119.2 (3)            | C41—C40—C39                    | 119.9 (3)         |
| С20—С19—Н19                         | 120.4                | C41—C40—H40                    | 120.1             |

| С18—С19—Н19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.4      | С39—С40—Н40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.1             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| C21—C20—C19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.0 (3)  | C42—C41—C40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.9 (3)         |
| С21—С20—Н20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.0      | C42—C41—H41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.0             |
| C19—C20—H20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.0      | C40—C41—H41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.0             |
| $C_{20}$ $C_{21}$ $C_{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.9(3)   | C41-C42-C37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.9(3)          |
| $C_{20}$ $C_{21}$ $H_{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.6      | $C_{41} - C_{42} - H_{42}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.5             |
| $C_{16} C_{21} H_{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 119.6      | $C_{11} C_{12} H_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 119.5             |
| $C_{10} = C_{21} = H_{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110.0      | $C_{20} = N_2 = C_{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119.3<br>100.8(2) |
| $C_{0}$ N1 H1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 110.1 (2)  | $C_{29} = N_2 = C_{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 109.0(2)          |
| Co-NI-HI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 125.0      | $C_{29}$ $N_{2}$ $H_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 125.1             |
| CI—NI—HI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 125.0      | C22—N2—H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 125.1             |
| N1 - C1 - C2 - C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 177 9 (2)  | N2-C22-C23-C24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1797(2)          |
| C6-C1-C2-C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1(4)     | $C_{27}$ $C_{22}$ $C_{23}$ $C_{24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.7(4)           |
| $C_1 - C_2 - C_3 - C_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1(4)     | $C_{22}$ $C_{23}$ $C_{24}$ $C_{25}$ $C_{24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -10(4)            |
| $C_1 = C_2 = C_3 = C_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.4(4)    | $C_{22} = C_{23} = C_{24} = C_{25} = C_{24} = C_{25} = C_{24} = C_{25} = C_{26} = C$ | 1.0(+)            |
| $C_2 = C_3 = C_4 = C_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.2(4)    | $C_{23} = C_{24} = C_{23} = C_{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.4(4)            |
| $C_{3} - C_{4} - C_{5} - C_{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.2(4)    | $C_{24} = C_{23} = C_{20} = C_{27}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0(4)            |
| C4—C5—C6—C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.7 (4)    | $C_{25} = C_{26} = C_{27} = C_{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.6 (4)          |
| C4—C5—C6—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1/9.2(3)  | C25—C26—C27—C28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -179.4(3)         |
| NI-CI-C6-C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1/8.9 (2) | C23—C22—C27—C26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.0 (4)           |
| C2-C1-C6-C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.7 (4)   | N2—C22—C27—C26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -178.8(2)         |
| N1—C1—C6—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.1 (3)    | C23—C22—C27—C28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -179.6(2)         |
| C2—C1—C6—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 179.3 (2)  | N2—C22—C27—C28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.4 (3)          |
| C5—C6—C7—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 178.9 (3)  | C26—C27—C28—C29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 179.0 (3)         |
| C1—C6—C7—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1.1 (3)   | C22—C27—C28—C29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0 (3)           |
| С5—С6—С7—С9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.0 (4)   | C26—C27—C28—C30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.0 (4)          |
| C1—C6—C7—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 178.1 (2)  | C22—C27—C28—C30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -179.0 (2)        |
| C9—C7—C8—N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -178.4(2)  | C30-C28-C29-N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 178.7 (2)         |
| C6—C7—C8—N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.7 (3)    | C27—C28—C29—N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.3 (3)          |
| C9—C7—C8—C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.2 (5)    | C30—C28—C29—C37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.8(4)           |
| C6-C7-C8-C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -178.8(2)  | C27—C28—C29—C37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 178.2 (2)         |
| C8-C7-C9-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -173.0(2)  | $C_{29} - C_{28} - C_{30} - O_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 170.2(2)          |
| C6-C7-C9-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 81(4)      | $C_{27}$ $C_{28}$ $C_{30}$ $C_{27}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -9.8(4)           |
| $C_{8} - C_{7} - C_{9} - C_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 71(4)      | $C_{29}$ $C_{28}$ $C_{30}$ $C_{31}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -9.7(4)           |
| C6 $C7$ $C9$ $C10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1717(2)   | $C_{27} C_{28} C_{30} C_{31}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 170.4(2)          |
| $C_0 - C_1 $ | -117.2(2)  | $C_2 = C_2 = C_3 $ | 170.4(2)          |
| C7 = C0 = C10 = C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 117.3(3)   | 02 - 030 - 031 - 032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 123.0(3)          |
| C/=C9=C10=C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 02.0(3)    | $C_{28} = C_{30} = C_{31} = C_{32}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -50.5(3)          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 59.2 (3)   | 02 - 030 - 031 - 036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -54.3(3)          |
| C/C9C10C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -121.0 (3) | C28—C30—C31—C36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 125.6 (3)         |
| C15—C10—C11—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.0 (4)   | C36—C31—C32—C33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.5(4)           |
| C9—C10—C11—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 175.4 (2)  | C30—C31—C32—C33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -178.4 (2)        |
| C10-C11-C12-C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.7 (4)    | C31—C32—C33—C34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.9 (4)          |
| C11—C12—C13—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -2.1 (4)   | C32—C33—C34—C35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.4 (4)           |
| C12—C13—C14—C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0 (4)    | C33—C34—C35—C36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.5 (4)          |
| C13—C14—C15—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.6 (4)    | C34—C35—C36—C31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.8 (4)          |
| C11—C10—C15—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.1 (4)   | C32—C31—C36—C35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.3 (4)           |
| C9—C10—C15—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -177.6 (2) | C30—C31—C36—C35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 179.3 (2)         |
| N1-C8-C16-C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -125.5 (3) | N2-C29-C37-C42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 124.5 (3)         |
| C7—C8—C16—C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53.9 (4)   | C28—C29—C37—C42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -55.0 (4)         |

| N1-C8-C16-C17   | 55.1 (3)   | N2-C29-C37-C38  | -57.9 (3)  |
|-----------------|------------|-----------------|------------|
| C7—C8—C16—C17   | -125.5 (3) | C28—C29—C37—C38 | 122.6 (3)  |
| C21—C16—C17—C18 | -1.9 (4)   | C42—C37—C38—C39 | 1.9 (4)    |
| C8—C16—C17—C18  | 177.5 (2)  | C29—C37—C38—C39 | -175.7 (2) |
| C16—C17—C18—C19 | 0.5 (4)    | C37—C38—C39—C40 | -0.4 (4)   |
| C17—C18—C19—C20 | 1.2 (4)    | C38—C39—C40—C41 | -1.2 (4)   |
| C18—C19—C20—C21 | -1.5 (4)   | C39—C40—C41—C42 | 1.1 (4)    |
| C19—C20—C21—C16 | 0.1 (4)    | C40—C41—C42—C37 | 0.4 (4)    |
| C17—C16—C21—C20 | 1.6 (4)    | C38—C37—C42—C41 | -1.9 (4)   |
| C8—C16—C21—C20  | -177.8 (2) | C29—C37—C42—C41 | 175.7 (2)  |
| C7—C8—N1—C1     | 0.0 (3)    | C28—C29—N2—C22  | 1.1 (3)    |
| C16—C8—N1—C1    | 179.5 (2)  | C37—C29—N2—C22  | -178.5 (2) |
| C2-C1-N1-C8     | -178.8 (2) | C23—C22—N2—C29  | 178.7 (2)  |
| C6—C1—N1—C8     | -0.7 (3)   | C27—C22—N2—C29  | -0.4 (3)   |
|                 |            |                 |            |

#### Hydrogen-bond geometry (Å, °)

Cg8, Cg1, Cg7, Cg3 and Cg6 are the centroids of the C31-C36, N1/C1/C6-C8, C22-C27, C10-C15 and N2/C22/C27-C29 rings, respectively.

| D—H···A                               | D—H  | H···A | D····A    | D—H···A |
|---------------------------------------|------|-------|-----------|---------|
| N1—H1…O2                              | 0.88 | 1.91  | 2.786 (3) | 176     |
| N2—H2···O1 <sup>i</sup>               | 0.88 | 1.90  | 2.775 (3) | 171     |
| С20—Н20…О1 <sup>іі</sup>              | 0.95 | 2.44  | 3.324 (3) | 155     |
| C41—H41···O2 <sup>iii</sup>           | 0.95 | 2.37  | 3.239 (3) | 152     |
| C2—H2 <i>A</i> … <i>Cg</i> 8          | 0.95 | 2.81  | 3.715 (3) | 158     |
| C14—H14···· $Cg1^{ii}$                | 0.95 | 2.89  | 3.616 (3) | 134     |
| C17—H17···· <i>Cg</i> 7 <sup>iv</sup> | 0.95 | 2.62  | 3.508 (3) | 156     |
| C23—H23··· <i>Cg</i> 3 <sup>i</sup>   | 0.95 | 2.72  | 3.608 (3) | 156     |
| С35—Н35…Сдб <sup>ііі</sup>            | 0.95 | 2.80  | 3.527 (3) | 134     |

Symmetry codes: (i) x+1, y, z; (ii) -x, y-1/2, -z+1/2; (iii) -x+1, y+1/2, -z+1/2; (iv) -x+1, -y+1, -z+1.