
Thrust ramps within MTDs initiate within competent horizons in the hangingwall of the underlying 
detachment. 

Within MTDs, the spacing of thrust ramps and thickness of the thrust sequence display a ~ 5:1 ratio. 

Thrust systems within MTDs display greater variations in hangingwall and footwall cut-offs (or 
stretch) than in lithified rocks. 

Thrust systems within MTDs broadly ‘balance’, although heterogeneous lateral compaction increases 
by ~10% towards the surface. 

Critical taper angle in MTDs may be an order of magnitude less than in accretionary complexes and 
lithified rocks. 
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Abstract 8 

Improvements in seismic reflection data from gravity-driven fold and thrust systems developed 9 

in offshore Mass Transport Deposits (MTDs) reveal a number of significant features relating to 10 

displacement along thrusts. However, the data are still limited by the resolution of the seismic 11 

method, and are unable to provide detail of local fold and thrust processes. Investigation of 12 

exceptional gravity-driven contractional structures forming part of MTDs in lacustrine deposits 13 

of the Dead Sea Basin, enables us to present the first detailed outcrop analysis of fold and thrust 14 

systems cutting unlithified ‘soft’ sediments. We employ a range of established geometric 15 

techniques to our case study, including dip isogons, fault-propagation fold charts and 16 

displacement-distance diagrams previously developed for investigation of thrusts and folds in 17 

lithified rocks. Fault-propagation folds in unlithified sediments display tighter interlimb angles 18 

compared to models developed for lithified sequences. Values of stretch, which compares the 19 

relative thickness of equivalent hangingwall and footwall sequences measured along the fault 20 

plane, may be as low as only 0.3, which is significantly less than the minimum 0.5 values 21 

reported from thrusts cutting lithified rocks, and reflects the extreme variation in stratigraphic 22 

thickness around thrust-related folds. We suggest that the simple shear component of 23 

deformation in unlithified sediments may modify the forelimb thickness and interlimb angles to 24 

a greater extent than in lithified rocks. The average spacing of thrust ramps and the thickness of 25 

the thrust sequence display an approximate 5:1 ratio across a range of scales in MTDs. In 26 

general, thicker hangingwall and footwall sequences occur with larger thrust displacements, 27 

although displacement patterns on thrusts cutting unlithified (yet cohesive) sediments are more 28 

variable than those in lithified rocks. Line-length restoration of thrust systems in MTDs reveals 29 

42% shortening, which reduces to 35% in overlying beds. A 23% reduction in shortening by 30 

folding and thrusting along individual thrusts suggests that heterogeneous lateral compaction 31 

may increase by ~10% towards the sediment surface. Thrust systems cutting unlithified 32 

sediments display distinct steps in cumulative displacement-distance plots representing 33 

increased rates of slip along the floor thrust, while displacement-distance plots along individual 34 

thrusts also reveal ‘horizontal steps’ relating to lithological variation. Competent units cut by 35 

thrust ramps may display the greatest displacement, which then progressively reduces both 36 

upward and sometimes downward along the ramp. This relationship demonstrates that ramps 37 

do not necessarily propagate upwards from the underlying flat as in some traditional models, 38 

but rather initiate by offset of competent horizons in the hangingwall of the detachment. 39 

Critical taper angles in MTDs may be an order of magnitude less than in accretionary 40 

complexes or lithified rocks. Overall, thrusts cutting unlithified sediments in MTDs display 41 

more variable displacement, and more pronounced displacement gradients toward fault tips, 42 

compared to thrusts cutting lithified sequences.  43 

 44 
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1. Introduction 47 

The geometry and kinematics of large-scale fold and thrust belts generated by gravity-driven 48 

movement of sediments down continental slopes is becoming increasingly apparent from 49 

improved seismics across such structures (e.g. Corredor et al., 2005; Bull et al., 2009; Butler 50 

and Paton, 2010, de Vera et al. 2010; Morley et al., 2011; Jackson, 2011; Peel, 2014; 51 

Scarselli et al., 2016; Reis et al., 2016). However, whilst seismics may provide a clear 52 

overview of linked upslope (extensional) and downslope (contractional) domains within Mass 53 

Transport Deposits (MTDs) (e.g. Frey Martinez et al., 2005; Armandita et al., 2015), they are 54 

still limited in their ability to image complex and local detail (e.g. Jolly et al., 2016). 55 

Although exhumed examples of now lithified MTDs containing ‘soft-sediment’ fold and 56 

thrust systems provide some detail (see Maltman, 1984, 1994 for definitions), they suffer 57 

from potential changes in geometries due to compaction and lithification, possible later 58 

tectonism, and an increasing disconnect of ancient systems from their palaeo-geographic 59 

setting (e.g. see Korneva et al., 2016; Sobiesiak et al., 2016). In order to provide a detailed 60 

analysis of complex fold and thrust geometries associated with downslope movement of 61 

unlithified sediments within MTDs, we utilise relatively recent, late Pleistocene, decametric- 62 

to km-scale structures, which are fully exposed around the Dead Sea Basin, and for which the 63 

palaeo-geography is still evident today (Fig. 1). 64 

In this study, we employ well-established techniques developed during many decades 65 

of structural analysis of fold and thrust systems in lithified rocks, and apply them to gravity-66 

driven thrusts and associated fault-propagation folds cutting unlithified sediments. A fault-67 

propagation fold is simply defined by Fossen (2016, p.366) as a fold that “forms above the 68 

tip-line of a thrust to accommodate the deformation in the wall rock around the tip” (see also 69 

Chapman and Williams, 1984; Ramsay and Huber, 1987, p.558; Suppe and Medwedeff, 70 

1990). In order to undertake a robust and detailed investigation of fold and thrust systems, we 71 

use techniques such as fault-propagation fold charts (e.g. Jamison, 1987), dip-isogon analysis 72 

of fault-propagation folds (e.g. Ramsay, 1967), and restoration and ‘balancing’ of thrust 73 

systems (e.g. see Butler, 1987; Fossen 2016, p.441). A key element of our analysis are 74 

displacement-distance graphs that have been widely used for more than 30 years to analyse 75 

displacement gradients along both extensional and contractional faults cutting lithified rocks 76 

(Williams and Chapman, 1983; Chapman and Williams, 1984, 1985; Alonso and Teixell, 77 

1992; Ferrill et al., 2016). However, similar techniques have rarely been applied to faults 78 

cutting unlithified sediments. A notable exception is the work of Muraoka and Kamata 79 

(1983), who analysed displacement gradients along minor normal faults cutting Quaternary 80 

lacustrine sediments in Kyushu, Japan. Similar detailed displacement-distance analysis has 81 

not been performed on contractional faults in unlithified sediments, and we therefore focus 82 

our attention on analysis of such soft-sediment thrusts.  83 

Our overall aim is to describe and quantify thrust and fault-propagation fold 84 

geometries that form during soft sediment deformation associated with gravity-driven 85 

downslope slumping of sediments in MTDs. Such patterns may help illustrate the role that 86 

different lithologies play during slumping, and potentially highlight general differences 87 

between displacement on faults cutting lithified rocks and unlithified sediments. We raise a 88 

number of research questions related to thrusting of unlithified sediments including: 89 

i) How does the thickness of stratigraphic cut-offs compare across thrusts in MTDs? 90 
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ii) How do fault-propagation folds in sediments compare to those in lithified rocks?  91 

iii) Where do thrust ramps initiate during slumping in MTDs?  92 

iv) What controls the spacing of thrust ramps in MTDs?  93 

v) Do thrust systems in MTDs ‘balance’ and what values of lateral compaction are attained in 94 

sediments? 95 

vi) Do linked thrust systems in MTDs undergo constant rates of slip? 96 

vii) What influences patterns of displacement along individual thrusts in MTDs? 97 

viii) How do critical taper angles in MTDs compare to those in accretionary complexes?  98 

 99 

2. Geological setting  100 

The Dead Sea Basin is a pull-apart basin developed between two left-stepping, parallel fault 101 

strands that define the sinistral Dead Sea Fault (Garfunkel, 1981; Garfunkel and Ben-102 

Avraham, 1996) (Fig. 1a, b). The Dead Sea Fault has been active since the Early to Middle 103 

Miocene (e.g. Bartov et al., 1980; Garfunkel, 1981) including during deposition of the Lisan 104 

Formation in the late Pleistocene (70-15 ka) (Haase-Schramm et al. 2004). During this time 105 

numerous earthquakes triggered co-seismic deformation (e.g. Weinberger et al., 2016) as well 106 

as soft-sediment deformation and slumping in the Lisan Formation (e.g. El-Isa and Mustafa, 107 

1986; Marco et al., 1996; Alsop and Marco 2011; 2012a, 2012b, 2013, 2014, Alsop et al., 108 

2016b). Analysis of drill cores from the depocentre of the Dead Sea reveals that the Lisan 109 

Formation is three times thicker than its onshore equivalent, largely due to the input of 110 

transported sediment and disturbed layers (Marco and Kagan, 2014). The fold and thrust 111 

systems observed onshore may ultimately form part of these larger MTDs that feed into the 112 

deep basin.  113 

  The Lisan Formation comprises a sequence of alternating aragonite-rich and detrital-114 

rich laminae on a sub-mm scale. They are thought to represent annual varve-like cycles with 115 

aragonite-rich laminae precipitating from hypersaline waters in the hot dry summer, while 116 

winter flood events wash clastic material into the lake to form the detrital-rich laminae (Begin 117 

et al., 1974). Varve counting combined with isotopic dating suggests that the average 118 

sedimentation rate of the Lisan Formation is ~1 mm per year (Prasad et al., 2009). Seismic 119 

events along the Dead Sea Fault are considered to trigger surficial slumps and MTDs within 120 

the Lisan Formation, resulting in well-developed soft-sediment fold and thrust systems 121 

(Alsop and Marco, 2011; Alsop et al., 2016b). Breccia layers generated next to syn-122 

depositional faults are also thought to be the product of seismicity (e.g. Marco and Agnon, 123 

1995; Agnon et al. 2006). Detrital (mud-rich) horizons that are <10 cm thick and contain 124 

fragments of aragonite laminae are interpreted to be deposited from suspension following 125 

seismicity (e.g. Alsop and Marco 2012b). Individual slump sheets are typically <1.5 m thick 126 

and are capped by undeformed horizontal beds of the Lisan Formation, indicating that fold 127 

and thrust systems formed at the sediment surface (e.g. Alsop and Marco, 2011). 128 

  The slumps, together with the intervening undeformed beds within the Lisan 129 

Formation, are themselves cut by vertical clastic dykes (Marco et al., 2002) containing 130 

fluidised sediment sourced from underlying units during seismic events (e.g. Levi et al., 131 

2006, 2008; Jacoby et al., 2015; Weinberger et al., 2016). Within the sedimentary injections, 132 

optically stimulated luminescence (OSL) for quartz give ages of between 15 and 7 ka (Porat 133 

et al., 2007), indicating brittle failure and intrusion after deposition of the Lisan Formation. 134 
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The slump systems around the Dead Sea Basin are developed on very gentle slopes of <1° 135 

dip and define an overall regional pattern of radial slumping associated with MTDs that are 136 

directed towards the depo-centre of the present Dead Sea Basin (Fig. 1c) (Alsop and Marco 137 

2012b, 2013). 138 

The Peratzim case study area (N 31º0449.6 E 35º2104.2) is located on the Am’iaz 139 

Plain, which is a downfaulted block positioned between the Dead Sea western border fault 140 

zone, which bounds the Cretaceous basin margin ~2 km to the west, and the upstanding10 km 141 

long ridge formed by the Sedom salt wall 3 km further east (e.g. Alsop et al., 2015, 2016a) 142 

(Fig. 1c, d). This area is ideal for investigating thrusts cutting unlithified sediments of MTDs 143 

as: 1) It is well exposed and accessible (using ladders) along incised wadi walls. 2) The 144 

varved lacustrine sequence permits high resolution mm-scale correlation of ‘barcode-style’ 145 

sequences across thrust faults. 3) The two main aragonite-rich and detrital-rich lithologies 146 

help simplify the mechanics in to a binary system of generally incompetent (aragonite-rich) 147 

and relatively competent (detrital-rich) units. This dichotomy allows us to more easily 148 

analyse the control of lithological variation on thrusting (e.g. Alsop et al., 2016b). 4) 149 

Relatively recent (70-15 ka) slumping associated with MTDs permits a greater degree of 150 

certainty regarding thrust transport and palaeoslope directions (Alsop and Marco, 2012b). 5) 151 

The nature of the surficial slumping, where overburden has not exceeded a few metres (e.g. 152 

Alsop et al., 2016b), removes many doubts including complications associated with changes 153 

in geometries and angles arising from subsequent compaction of sediments. The Lisan 154 

Formation is considered to have been water-saturated at the time of deformation, while the 155 

lack of subsequent compaction means that the present water content is still ~ 25% (Arkin and 156 

Michaeli, 1986). 157 

 158 

3. Orientation and geometry of fold and thrust systems 159 

It has long been recognised that slump folds and thrusts display distinct and systematic 160 

relationships with respect to the palaeoslope upon which they developed (e.g. Woodcock, 161 

1976a, b; 1979; Strachan and Alsop, 2006; Debacker et al., 2009; van der Merwe et al., 2011; 162 

Garcia-Tortosa et al., 2011; Sharman et al., 2015; Ortner and Kilian, 2016). Alsop and Marco 163 

(2012b) employed a range of different geometric techniques to establish overall slump 164 

transport directions within MTDs around the Dead Sea Basin. The orientation of the transport 165 

direction, and associated palaeoslope, was inferred to be toward 045° in the Peratzim area. 166 

Folds and thrusts throughout the study area are dominated by layer-parallel shearing, 167 

resulting in the trends of fold hinges and strikes of thrust planes forming normal to transport 168 

(see Alsop and Holdsworth 1993; 2007; Alsop and Marco, 2011; 2012b for details). 169 

Subsequent work (Alsop et al., 2016b) has demonstrated that six individual MTDs are 170 

exposed at Peratzim, and although fold data from individual slump sheets may locally vary, 171 

the overall transport direction is still considered to be northeast toward the basin depocentre. 172 

Our work focuses on slumps 4, 5 and 6 in the Alsop et al. (2016b) sequence. The structures 173 

we show are typical of the slumps in this locality, where perhaps unparalleled examples of 174 

thrusts and associated fault-propagation folds are developed in unlithified sediments. 175 

In the present study, a series of outcrops through fold and thrust sequences were 176 

specifically chosen such that the cross section views along incised wadi cuts are subparallel 177 

to the locally calculated transport directions (Fig. 2a, b, c). This approach involved the use of 178 
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a ladder to reach and measure otherwise inaccessible structures high up wadi walls, 179 

facilitating detailed geometric analysis of thrusts and folds cutting unlithified sediments. 180 

These wadi cuts contain excellent examples of thrusts on a metre scale, together with fault-181 

propagation folds developed in the immediate hangingwalls toward the thrust tips (Fig. 2a, b, 182 

c). 183 

In slump 5 (Fig. 2a), the associated stereonet data (Fig. 2d) shows that the wadi 184 

cutting trends 045° while the normal to the mean fold hinge is 047°, and the normal to the 185 

mean thrust-strike is 040°. The section is thus within 5° of the calculated transport direction 186 

using a range of techniques (Alsop and Marco, 2012b). In slump 4 (Fig 2b, e), the wadi 187 

cutting trends 090° while the normal to the mean fold hinge is 100°, and the normal to the 188 

mean thrust-strike is 095°. The section is thus within 10° of calculated MTD transport. In 189 

another exposure from slump 4 (Fig 2c, f), the wadi cutting trends 090° while the normal to 190 

the mean fold hinge is 094°, and the normal to the mean thrust-strike is 072°. All sections are 191 

thus within 10° of calculated transport, and we do not consider these slight obliquities 192 

between trends of wadi cuttings and mean transport to be sufficient to skew our structural 193 

analysis. The detailed measurements of fold and thrust parameters are therefore true 194 

representatives of the actual geometries, and are not overly influenced by potential oblique 195 

‘cut effects’. 196 

In general, Alsop and Marco (2011) recognised that the linked thrusts and fault-197 

propagation folds at Peratzim broadly follow a ‘piggyback’ sequence, whereby new thrusts 198 

develop in the footwall of existing thrusts, resulting in a back-steepening and rotation of the 199 

older thrust and an overall forward or downslope propagating system of thrusts (e.g. Fig. 2b, 200 

g, h). Some evidence also exists for out-of-sequence thrusting, where thrusts initiated upslope 201 

cut through earlier piggyback thrusts preserved in their footwall (Fig. 2g, h).  202 

 203 

4. Relationship of stratigraphic thickness to thrust displacement and spacing 204 

4.1. Thickness of stratigraphic sequences in the footwall and hangingwall of a thrust  205 

The stratigraphic thickness of a sequence is measured orthogonal to bedding in an area 206 

removed from thrusts and folds (Fig. 3). Analysis of thrusts in the study area reveals that an 207 

overall general correlation exists between the thickness of the thrusted stratigraphic sequence, 208 

and the maximum displacement along the thrust (Fig. 4a). The hangingwall and footwall 209 

thickness of a stratigraphic package is measured parallel to transport along the thrust ramp, 210 

and is defined by the stratigraphic cut-offs above and below the thrust plane, respectively 211 

(Fig. 3). In the study area, the hangingwall thickness of a stratigraphic interval is consistently 212 

less than the equivalent sequence in the footwall of a thrust, due to folding and shearing of 213 

the hangingwall stratigraphy into anticlines (Fig 4b). This relationship applies across a range 214 

of scales from cm to metres. The mean hangingwall and footwall thicknesses from different 215 

imbricate sequences at different localities may also be calculated, and compared with the 216 

mean displacement across the thrusts (Fig. 4c). Hangingwall thicknesses are consistently less 217 

than equivalent footwall sequences, with greater thicknesses generally marked by increasing 218 

displacement (Fig. 4c). 219 

 220 

4.2. Relative stretch 221 
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The relative stretch (ɛr) can be calculated by measuring the ratio of the measured 222 

lengths of the hangingwall (lh) and footwall (lf) cut-offs parallel to the thrust, (where ɛr = lh 223 

over lf) (e.g. Noble and Dixon, 2011, p.72) (Fig. 3). Models run by Noble and Dixon (2011) 224 

showed that folding of sediments in the hangingwall increases relative dips and thereby 225 

reduces the length of the hangingwall along the thrust ramp, such that smaller relative stretch 226 

indicates a greater amount of fold shortening accrued during structural development.  227 

In Peratzim, hangingwall lengths (lh) are consistently shorter than those in the 228 

footwall (lf), with relative stretch values as low as 0.4 attained in the analysed fault-229 

propagation folds (Fig. 4d). Elsewhere in the study area, even smaller values of 0.3 are 230 

locally achieved. Values of stretch within fault-propagation folds generally reduce as 231 

hangingwall thickness reduces (Fig. 4d) and displacement increases (Fig. 4e). In some cases, 232 

pronounced displacement gradients towards thrust tips result in 400 mm of displacement 233 

reducing to zero along a distance of 200 mm of fault, with overlying beds folded, but not 234 

thrust. Rapidly diminishing displacement indicates greater slip/propagation ratios and large 235 

relative stretch i.e. fault-propagation folding (Noble and Dixon, 2011, p.73).  236 

 237 

4.3. Spacing of thrust ramps 238 

Liu and Dixon (1995) measured the spacing between thrust ramps in lithified rocks, with 239 

spacing defined as the bed length between adjacent thrust ramps, when measured parallel to 240 

transport (Fig. 3). Using this approach, we find a broad correlation between spacing of thrust 241 

ramps and the thickness of the unlithified stratigraphic sequence cut by the thrusts (Fig. 4f). 242 

In general, the ramp spacing increases by approximately 1 m for each additional 200 mm of 243 

sequence thickness, suggesting a general 5:1 spacing/thickness ratio (Fig. 4f). This 244 

correlation is in general agreement with thrust systems cutting lithified rocks across a variety 245 

of scales (Liu and Dixon, 1995). 246 

 247 

5. Analysis of thrusts and folds  248 

5.1. Dip-isogon analysis of thrust-related folds 249 

The dip-isogon method is a well-established technique of fold classification in lithified rocks 250 

(e.g. Ramsay, 1967, p.363). We use this method to analyse fault-propagation folds developed 251 

in the hangingwall of thrusts, and compare fold geometries formed in aragonite-rich and 252 

detrital-rich units (Fig. 5a). Our analysis includes data from both the upper and lower limbs 253 

of the hangingwall anticline, and shows that folds within aragonite-rich units display gently 254 

convergent to parallel isogons that typically define Class 1C to Class 2 similar folds 255 

(Ramsay, 1967; Fossen, 2016, p.263) (Fig. 5a, b). However, folds within a 10 cm thick 256 

detrital-rich marker display strongly convergent isogons that resemble Class 1B or parallel 257 

folds, although they also stray into the upper part of Class 1C (Fig. 5a, b). These results show 258 

that fold styles are consistent with the detrital-rich marker forming a more competent horizon, 259 

compared to the surrounding aragonite-rich units. The greater relative competence of the 10 260 

cm thick detrital unit at the time of deformation is thus demonstrated by a more parallel 261 

(Class 1B) style of folding. 262 

We have further investigated variations in bedding thickness around fault-propagation 263 

folds in Slump 5 (Fig. 2a) by measuring the % of thickening or thinning of fold forelimbs 264 

when compared to the thickness of the adjacent backlimb (see Fig. 3, Jamison, 1987 and 265 
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Fossen, 2016, p.363 for definitions) (Fig. 5c). Analysis reveals that relative thinning of the 266 

forelimb is developed in folds with interlimb angles of <60°, whereas folds displaying 267 

pronounced (>60%) thickening of the forelimb have interlimb angles of >90° (Fig. 5c). These 268 

relationships suggest that for thrusts cutting unlithified sediments, interlimb angles of fault-269 

propagation folds are controlled by forelimb thickening or thinning. 270 

 271 

5.2. Fault-propagation fold charts  272 

As noted previously, fault-propagation folding is a commonly used term to describe folds 273 

formed above upwardly propagating thrust faults (e.g. Suppe and Medwedeff, 1990; Ferrill et 274 

al., 2016). Where a fault tip ceased to propagate, then “continued fault displacement is 275 

accommodated by folding within incompetent or mechanically layered strata beyond the fault 276 

tip” (Ferrill et al., 2016, p.10). Jamison (1987) recognised that the interlimb angle of such 277 

fault-propagation folds was a function of ramp angle as measured from the flat of the thrust, 278 

(see Fig. 3) and the amount of forelimb thickening or thinning. For his analysis, Jamison 279 

(1987) assumed that bedding maintained a constant thickness, apart from in the forelimb 280 

where either thickening or thinning could occur. 281 

Fault-propagation folds at Peratzim broadly follow the patterns for predicted 282 

thickening and thinning of limbs in the fold model of Jamison (1987) (Fig. 6a, b, c). 283 

However, in each case, the observed amount of forelimb thinning is significantly less than 284 

predicted, while the amount of forelimb thickening is more variable, although tending to be 285 

greater than predicted (Fig. 6a, b, c). These relationships suggest that compared to the model, 286 

interlimb angles at Peratzim are too small, and/or ramp angles are too great. Due to the steep 287 

nature of the curves, variations in interlimb angles are most sensitive to changes. Folds which 288 

have undergone forelimb thickening have their interlimb angles significantly overestimated. 289 

 290 

5.3. Balancing of thrust sections and lateral compaction  291 

Restoration of displacement across thrust systems such that they ‘balance’ is an established 292 

and widely employed technique in both orogenic belts (e.g. see Butler, 1987; Fossen, 2016, 293 

p.441 and references therein) and also increasingly via seismic interpretation of gravity-294 

driven offshore fold and thrust belts forming MTDs (e.g. Butler and Paton, 2010). In this 295 

study, a simple line-length balancing exercise across a well-developed fold and thrust system 296 

was undertaken (Fig. 7). Area balancing is not possible because the thickness of the original 297 

stratigraphic template is unknown due to continuous variations in detrital input from wadi 298 

flood events i.e. non layer-cake stratigraphy (Alsop et al., 2016b). As noted previously, 299 

folding of aragonite-rich layers results in similar (Class 2) folds that are interpreted as passive 300 

folds generated by simple shear (Fossen, 2016, p.268), while the adjacent detrital-rich marker 301 

defines a more parallel (Class 1B) folding consistent with flexural shear (Fig. 5a, b). Both 302 

fold styles largely preserve bed length (Fossen, 2016, p.445), and are therefore suitable for 303 

line-length balancing. Although some movement of sediment out of the plane of thrust 304 

transport cannot be entirely ruled-out (see Alsop and Marco, 2011), the analysed section was 305 

chosen because it lies within 5° of the calculated thrust transport direction (Fig. 2a, d). In 306 

addition, the general sequence of piggyback thrusting is well understood (e.g. Alsop and 307 

Marco, 2011), while the influence of subsequent compaction on thrust geometries can be 308 

largely ignored, as overburden above the thrust sequence did not exceed 3 m (Alsop et al., 309 
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2016b). Thus, while recognising the likely limitations, we mitigated against as many of these 310 

potential issues as possible when completing section restoration. 311 

Our line-length balancing (Fig. 7a, b, c) shows that the percentage of thrust shortening 312 

increases down through the sequence, reaching ~40.6% in the lower blue marker, while the 313 

percentage of fold shortening increases upward through the sequence, reaching 9.3% in the 314 

top green marker (Table 1). The mismatch in restored line lengths indicates that there is 9.7% 315 

(3.8 m) of missing shortening from the restored lower blue up to the top green marker 316 

horizons (Fig. 7a, b, c, Table 1). This reduction is significant as it equates to a greater 317 

proportion of shortening which is missing (~23%), as compared to that which is actually 318 

observed in the form of folds in the top green marker (Fig. 7, Table 1). Given that the 319 

structures deform both the lower blue and top green markers without a sedimentary cap in 320 

between, this reduction in shortening up through the sequence is not the result of post-321 

thrusting deposition. In summary, while fold and thrust sequences broadly ‘balance’, notable 322 

differences in amounts of thrust and fold shortening occur through the continuous 323 

stratigraphic package. 324 

 325 

5.4. Cumulative displacement-distance graphs  326 

Cumulative displacement-distance (CD-D) graphs were established by Chapman and 327 

Williams (1984) to measure thrust displacement, where shortening is accommodated in a 328 

linked-fault system that forms above a single floor thrust. A reference point is fixed where the 329 

leading imbricate thrust branches from the floor thrust (Chapman and Williams, 1984, p.124, 330 

their Fig. 4). In the case study, this imbricate thrust formed furthest downslope and is 331 

therefore the most northeasterly thrust ramp (T1) of each set of imbricates. The distance from 332 

this fixed reference point is then measured along the underlying floor thrust, to where each 333 

successive imbricate thrust branches from the floor thrust (T1 to T8 in Fig. 2). These 334 

distances are combined to form the cumulative distance on the horizontal axis of CD-D 335 

graphs. Displacement of a marker bed across each individual thrust imbricate is measured 336 

starting with the first thrust ramp (T1), and is then progressively combined with subsequent 337 

ramps (T1+T2 etc.) to create the cumulative displacement on the vertical axis of CD-D 338 

graphs. 339 

We analysed 4 thrust systems cutting the unlithified sequence in the case study (Fig. 340 

8). In the simplest situation involving relatively small displacements across thrusts cutting 341 

aragonite-rich units with minor detrital laminae, the cumulative displacement-distance (CC-342 

D) graphs display linear profiles with a constant gradient (Fig. 8a, b). This indicates that 343 

displacement and distance are proportional, and represent a constant rate of slip along the 344 

floor thrust (Chapman and Williams, 1984). 345 

However, where displacement increases, and / or stratigraphy becomes more varied 346 

with distinct detrital-rich units, then CD-D graphs along these thrust systems typically display 347 

more variable profiles marked by a distinct step (Fig. 8c, d). In both cases, analysis towards 348 

the downslope part of the system shows that cumulative displacement forms a steeper 349 

gradient when compared to greater distance along the thrust system (Fig. 8c, d). A slight step 350 

in the profile, where displacement increases proportionally more than distance along the 351 

thrust system, is developed in the restored central part (about 10 m from the start of the 352 

section in the NE) of exposed thrusts systems, before returning to more gentle gradients (Fig. 353 
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8c, d). In summary, the overall gradients of the two thrusts systems in the first 10 m of 354 

restored section are similar to one another, before the occurrence of a pronounced step 355 

representing an increase in relative displacement. 356 

 357 

5.5. Displacement-distance graphs  358 

Displacement-distance (D-D) graphs are widely employed in the analysis of faults cutting 359 

lithified rocks (e.g. Williams and Chapman, 1983; Ferrill et al., 2016). In this analysis, we 360 

measure the distance along the hangingwall of a thrust from a fixed reference point (‘R’ near 361 

the fault tip) to a marker horizon, and compare this distance with the displacement of that 362 

marker by measuring the amount of offset to the same horizon in the footwall (Muraoka and 363 

Kamata, 1983; Williams and Chapman, 1983) (Fig. 3). The process is then repeated for 364 

different markers along the fault length to create a displacement-distance (D-D) graph for that 365 

fault. In general, gentle gradients on D-D plots represent more rapid propagation of the thrust 366 

tip relative to slip, whereas steeper gradients represent slower propagation relative to slip 367 

(e.g. Williams and Chapman, 1983; Ferrill et al., 2016). In addition, displacement on faults is 368 

typically assumed to be time-dependent, resulting in older portions of faults accumulating the 369 

greatest displacement (e.g. Ellis and Dunlap, 1988; Hedlund, 1997; Kim and Sanderson, 370 

2005). The point of maximum displacement on a D-D plot is therefore typically interpreted to 371 

represent the site of fault nucleation (e.g. Ellis and Dunlap, 1988; Peacock and Sanderson, 372 

1996; Hedlund, 1997; Ferrill et al., 2016). 373 

In the study area, we have measured displacement and distance along an incipient 374 

thrust that is cutting the ~ 10 cm thick detrital-rich ‘orange’ marker horizon in slump 5 (Fig. 375 

9a, b). The displacement across the thrust is greatest (~ 60 mm) where it cuts the detrital 376 

horizon, and then reduces both up and down the thrust plane where it enters the relatively 377 

incompetent aragonite-rich units (Fig. 9a, b). A similar pattern is also observed where more 378 

fully-developed thrusts cut this same marker horizon (Fig. 9c, d), while thinner detrital 379 

horizons (highlighted in blue) also produce displacement maxima (Fig. 9e, f), or horizontal-380 

steps in D-D graphs (Fig. 9c, d). As noted above, displacement maxima are considered to 381 

mark sites where faults initiate, and such sites are widely recognised where thrusts cut 382 

competent horizons in lithified rocks (e.g. Ellis and Dunlap, 1988; Ferrill et al., 2016). These 383 

D-D profiles support the competency contrasts between detrital-rich (relatively competent) 384 

and aragonite-rich (incompetent) units established by analysis of fold geometries of the same 385 

horizon (Fig. 5a, b). 386 

As noted above, the greatest displacement may occur where thrusts cut the thicker 387 

(>10 cm) detrital-rich unit (Fig. 5, 9). However, in other cases, a simple deflection or 388 

horizontal step in the displacement-distance curve occurs where thrusts cut this detrital-rich 389 

unit (Fig. 9g-j). These steps in D-D graphs tend to develop where overall displacement along 390 

the thrust is larger (>2000 mm). This deflection in the D-D profile marks the point where 391 

more displacement occurs along the thrust than would be anticipated if displacement had 392 

continued to decrease systematically towards the fault tip (Fig 9g-j). The horizontal step 393 

marking more gentle gradients in the D-D plot suggests that the thick detrital-rich layer marks 394 

a distinct mechanical boundary. 395 

In general, aragonite-rich units with thin detrital seams (< 1cm) display more linear 396 

profiles on D-D graphs, especially where displacement is relatively limited (<700 mm) (e.g. 397 
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Fig. 10a, b, c), although curves may get noticeably steeper toward the sediment surface and 398 

the fault tip (Fig. 10a, d, e). In some cases, D-D profiles may become highly irregular with 399 

several displacement peaks where thrusts with relatively modest displacement (< 800 mm) 400 

cut a series of detrital-rich units (Fig. 10a, f, g). In summary, where numerous thin detrital-401 

rich horizons exist then displacement profiles tend to be more uniform and linear, although 402 

increases in displacement gradient are still observed towards the fault tip (Fig. 10a-g). 403 

An opportunity to further investigate the influence exerted by detrital-rich units on 404 

variations in displacement profiles is provided by lateral sedimentary facies changes 405 

associated with input from wadi flood events (Alsop et al., 2016b). Thus, just 30 m further 406 

upslope towards the SW from Figure 10, the same slump system (slump 5 of Alsop et al., 407 

2016b) cuts a sequence with thicker detrital-rich horizons, resulting in a very different set of 408 

D-D profiles (Fig. 11). The presence of thicker (~10 cm) detrital-rich units results in more 409 

pronounced steps and ‘jumps’ in displacement on D-D graphs (Fig. 11). The heterogeneity of 410 

the stratigraphic template thus influences displacement patterns along thrusts. However, 411 

differences in D-D profiles from adjacent thrusts that cut the same stratigraphy may also be 412 

pronounced (e.g. compare Figs 10c, e and g, or Figs 11c, e and g). As both thrust systems 413 

(Figs 10, 11) are associated with piggyback thrust sequences in the same slump horizon, then 414 

differences on D-D graphs may represent changes in displacement of these actual detrital-rich 415 

horizons. Alternatively, differences in D-D graphs may reflect other more nebulous variables 416 

linked to individual strain rates and fluid pressure / content. However, when analysing thrust 417 

interaction with stratigraphy (Fig. 11), it is apparent that the more irregular D-D profiles 418 

develop where the thrust has a larger displacement measured directly across thicker detrital-419 

rich horizons (Fig. 11d, e). Variation in thrust displacement on D-D profiles may therefore 420 

not only reflect the point of initiation of the thrust, but also its continued development and 421 

that of associated fault-propagation folding during ongoing movement.  422 

 423 

6. Discussion 424 

 425 

6.1. How does the thickness of stratigraphic cut-offs compare across thrusts in MTDs? 426 

As noted previously, relative stretch can be calculated by measuring the ratio of the 427 

measured lengths of the hangingwall and footwall cut-offs parallel to the thrust (Noble and 428 

Dixon, 2011, p.72), and reflects folding adjacent to the thrust (Fig. 3). Williams and 429 

Chapman (1983) recorded relative stretch values of between 0.5 and 0.89 from thrusts cutting 430 

lithified rocks, while general values of between 0.5 and 1 are quoted by Chapman and 431 

Williams (1984). Models of fold and thrust systems generated by Noble and Dixon (2011) 432 

record stretches of ~0.8, which are broadly equivalent to natural examples in lithified rocks. 433 

Williams and Chapman (1983, p.569) note that folds in the hangingwall form “at the leading 434 

edge of a propagating thrust due to a relatively fast slip rate on a relatively slowly 435 

propagating thrust”. Within the study area, relative stretch values as low as 0.3 to 0.4 are 436 

recorded, with only a few thrusts that generated stretches greater than 0.7 (Fig. 4d, e). These 437 

values suggest a greater folding component within unlithified sediments compared to rocks, 438 

and is consistent with relatively fast slip on a relatively slowly propagating thrust in weak 439 

sediments. The observation that curves on D-D graphs are steeper toward the sediment 440 
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surface (e.g. Figs. 9, 10, 11) is also consistent with lower stretch values marked by more 441 

pronounced hangingwall folding in the upper parts of thrusts. 442 

Our study also shows that stratigraphic thickness generally correlates with 443 

displacement across thrust ramps (Fig. 4a, c). We suggest that thrusts with thinner overburden 444 

will simply ramp to the sediment surface before significant displacement has accumulated on 445 

individual thrusts. Thrusts that affect and cut a thicker stratigraphic sequence obviously 446 

remain more deeply buried, with consequent opportunity for greater displacement before 447 

surface breaching occurs. We therefore propose that it is proximity to the sediment surface 448 

that hinders large displacements accumulating on surficial thrusts. 449 

 450 

6.2. How do fault-propagation folds in sediments compare to those in lithified rocks?  451 

Interlimb angles of soft-sediment folds are less than anticipated in the model developed by 452 

Jamison (1987), and are significantly overestimated when using these charts that were 453 

developed for lithified rocks (Fig. 6a, b, c). Where incompetent aragonite-rich layers have 454 

been rotated and ‘smeared’ along the thrust plane, we infer that there has been additional 455 

components of thrust-parallel heterogeneous simple shear and pure shear (Alonso and 456 

Teixell, 1992). As noted by these authors, this thrust-parallel simple shear was not uniformly 457 

distributed along the thrust, but was concentrated in regions where thrusting was inhibited, 458 

such as thrust ramps or tip zones. It should also be noted that internal strain in the 459 

hangingwall of thrusts may be accommodated by layer-parallel shortening as well as folding, 460 

(e.g. Cooper et al., 1982; Chapman and Williams, 1985). Given the lack of evidence for 461 

thickening of sedimentary growth strata in the forelimb of folds, deformation is inferred to 462 

have occurred rapidly directly beneath the sediment surface. 463 

Analysis of percentage thickening or thinning of forelimbs for fault-propagation folds 464 

at Peratzim reveals a strong correlation with interlimb angles (Fig. 5c). These relationships 465 

suggest that for thrusts cutting unlithified sediments, interlimb angles are a better indicator 466 

for forelimb thickening or thinning than ramp angles. We suggest that the simple shear 467 

component of deformation in unlithified sediments modifies the forelimb thickness and 468 

interlimb angles to a greater extent than in lithified rocks. The exact mechanical nature of 469 

aragonite- or detrital-rich horizons may also locally influence the resulting patterns of 470 

modification to limb thickness (e.g. Fig. 5a).  471 

 472 

6.3. Where do thrust ramps initiate during slumping in MTDs?  473 

Classical models of thrust displacement along ramp and flat systems assumed or implied that 474 

ramps propagate upwards from underlying floor thrusts that form flats (e.g. Rich, 1934; 475 

Boyer and Elliot, 1982; McClay, 2011; Fossen 2016, p.360). However, it has also been 476 

suggested that thrust ramps may nucleate above the main detachment, and propagate both 477 

upward and downward toward the underlying thrust flat (Eisenstadt and DePaor 1987, Ellis 478 

and Dunlap, 1988; Apotria and Wilkerson, 2002; Uzkeda et al., 2010; Ferrill et al., 2016; 479 

Dotare et al., 2016). This scenario is supported by analogue modelling, where Noble and 480 

Dixon (2011) noted that thrusts initiate in the lowermost competent unit of their models. 481 

Numerical modelling by Liu and Dixon (1995) also showed that stress concentrations are 482 

greatest at the base of the lowermost competent stratigraphic unit. They noted that “faults 483 
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which ramp through these units are likely to merge with floor and roof thrusts” (Liu and 484 

Dixon, 1995 p.885).  485 

It is generally considered that the greatest displacement will be preserved where the 486 

fault initiated (e.g. Ellis and Dunlap, 1988; Ferrill et al. 2016). At Peratzim, more offset is 487 

frequently developed across competent layers, consistent with the interpretation that ramps 488 

nucleate at these sites (Fig. 9c, d). In addition, where the sequence is relatively weakly 489 

deformed, only the competent layer is contractionally faulted, with displacement reducing up 490 

and down away from this horizon (Fig. 9a, b). Likewise, footwall synclines are typically best 491 

developed below the ‘orange’ marker horizon where ramps are interpreted to have initiated 492 

(e.g. Fig. 9a, e, g). Ferrill et al. (2016) suggested that footwall synclines develop due to the 493 

downward propagation of thrusts that initiate in overlying competent layers. The 494 

development of footwall synclines in our examples also suggests that thrust ramps initiated in 495 

competent horizons, and then mostly propagated up and down. 496 

While points of maximum displacement on D-D graphs are considered to represent 497 

sites of fault initiation (Ellis and Dunlap, 1988; Ferrill et al., 2016), internal displacement 498 

minima along fault planes represent barriers to single fault propagation, or sites of fault 499 

linkage between originally separate minor faults. Such displacement minima may coincide 500 

with slight bends in the fault, separating two planar segments. Ellis and Dunlap (1988, p.189) 501 

noted that the apparent absence of multiple nucleation points on larger thrusts may indicate 502 

that any original displacement irregularities, reflecting initiation of original smaller faults, 503 

were overwhelmed and masked by subsequent large displacement on thrusts. More variable 504 

displacement profiles are indeed observed from thrusts with smaller overall offset in Peratzim 505 

(e.g. Fig. 9a, 9b, 10g). Overall, the D-D plots at Peratzim suggest that thrust ramps may have 506 

initiated in the competent horizon, and propagated up and down to intersect the floor thrust 507 

marking the basal detachment to the slump (see Eisenstadt and De Paor, 1987) (Fig. 12). 508 

 509 

6.4. What controls the spacing of thrust ramps in MTDs?  510 

Liu and Dixon (1995, p.875) noted that “thrust ramps exhibit a regular spacing linearly 511 

related to the thickness of strata involved in the duplex”. They suggested that this spacing 512 

links to buckling instability, where the wavelength of dominant buckling controlled the ramp 513 

spacing. In the present study, our data are restricted to ramp spacing of <6 m and sediment 514 

thicknesses of <1 m, providing a general 5:1 ratio (Fig. 12). This value is similar to analysis 515 

of thrust sections presented by Gibert et al. (2005), where we calculated a sedimentary 516 

thickness to ramp spacing of 5.33 (where hangingwall thickness is ~ 1 m). 517 

Analysis of seismic sections across gravity-driven fold and thrust belts though 518 

unlithified sediments in offshore Brazil (Zalan, 2005) provide a ratio of 4.73 where sediment 519 

thicknesses are ~700 m. Similar structures in the ‘outer thrust system’ of offshore Namibia 520 

(Butler and Paton, 2010) provide ratios of 4.7 when overburden reaches ~ 1 km. Slight 521 

variations in ratios may relate to thickening / thinning of layers that affects both thickness and 522 

length measurements of the layers. It appears therefore that the correlation between ramp 523 

spacing and thickness of strata originally recognised by Liu and Dixon (1995) in thrust 524 

systems cutting lithified rocks, can be applied to thrusts cutting unlithified sediments across a 525 

variety of scales in outcrop and seismic studies of MTDs. 526 

 527 
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6.5. Do thrust systems in MTDs ‘balance’ and what values of lateral compaction are attained 528 

in sediments? 529 

Fold and thrust belts are typically considered to deform by thrusting, folding and layer-530 

parallel shortening that equates to layer-parallel compaction in sediments (see Koyi et al. 531 

2004 for a summary). Restoration of deformed sequences accounts for the thrusting and 532 

folding components, but calculations of layer-parallel compaction are typically hampered as 533 

this deformation develops pervasively on a grain scale. Layer-parallel compaction is therefore 534 

frequently a ‘missing parameter’ which is leftover after other more obvious structures have 535 

been measured and taken into account (for notable exceptions, see Coward and Kim, 1981; 536 

Fischer and Coward, 1982; Cooper et al., 1982). Estimates of layer-parallel shortening in 537 

orogenic fold and thrust belts are significant and vary from 15% (e.g. Morley, 1986; 538 

McNaught and Mitra, 1996) through to 20% in the Spanish Pyrenees (Koyi et al., 2004) and 539 

33% in the Scottish Caledonides (e.g. Fischer and Coward, 1982). 540 

Layer-parallel compaction is also interpreted from the analysis of seismic sections 541 

across large-scale offshore gravity-driven fold and thrust belts within MTDs, which reveals a 542 

mismatch in restoration of upper marker layers (that display less thrusting and folding than 543 

those lower down) (Butler and Paton, 2010). Butler and Paton (2010, p.9) attributed this 544 

mismatch to heterogeneous lateral compaction increasing (we calculate by up to 8%) in their 545 

upper layer. The restored fold and thrust systems in the case study display up to 41.8% 546 

shortening (Table 1). However, there is approximately 10% ‘missing’ contraction in the top 547 

green horizon that marks the upper portions of the thrusts (Fig. 7; Table 1). Although it is 548 

uncertain as to how much layer-parallel compaction affected the entire sequence, we suggest 549 

that this mismatch in contraction through the fold and thrust system may be accounted for by 550 

a ~10% increase in heterogeneous lateral compaction up through the sediment. This figure is 551 

not dissimilar to our estimate of an 8% increase in heterogeneous lateral compaction up 552 

through large-scale fold and thrust belts described by Butler and Paton (2010, p.9). 553 

A number of variables may result in different layer-parallel compaction calculations 554 

between natural seismic and outcrop examples (noted above) which typically show an 555 

increase in compaction towards the sediment surface, and experimental sandbox models (e.g. 556 

Koyi et al., 2004) that display a reduction upwards through the model. Teixell and Koyi 557 

(2003) undertook sandbox experiments using a combination of glass microbeads and sand 558 

that display 18-32% layer-parallel compaction. However, layers composed of glass 559 

microbeads displayed less layer-parallel shortening, principally due to the packing properties 560 

of glass spherules that compact less than the sub-angular quartz sand (Teixell and Koyi, 561 

2003). Thus, it appears that layer-parallel compaction in models is primarily accommodated 562 

through porosity reduction (Koyi et al., 2004). 563 

We suggest that these conflicting patterns of layer parallel compaction, which 564 

increases towards the sediment surface in nature, and reduces towards the top of experiments 565 

may relate to; 1) More heterogeneous lithologies in nature compared to sand boxes; 2) 566 

Expulsion of pore fluids in nature (that don’t exist in sand boxes); 3) The recognition in many 567 

sand box experiments that “the amount of layer parallel compaction observed in the models 568 

does not equate to the (greater) amount of layer parallel shortening in a natural case” (Koyi et 569 

al. (2004, p. 218). 4) Increasing vertical compaction down a natural sediment pile that does 570 

not effectively exist in a cm-scale sandbox. The effect of vertical compaction associated with 571 
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overburden loading is typically to expel pore fluids, reduce porosity and thereby increase the 572 

strength of the sediment with depth. 573 

In summary, line-length balancing in the case study reveals significant reductions in 574 

fold and thrust shortening up through slump systems that we attribute to increasing (by 575 

~10%) heterogeneous lateral compaction towards the sediment surface (Fig. 12). The bulk 576 

amount of lateral compaction through the entire sequence is likely to be significantly greater, 577 

with some estimates from seismically imaged offshore fold and thrust belts placing this figure 578 

as high as 40% (Butler and Paton, 2010). We suggest that in the case study MTDs, the 579 

increasing component of layer-parallel compaction towards the sediment surface reflects 580 

increasing porosity reduction associated with lateral compaction in the upper parts of the 581 

sediment pile. These uppermost sections (typically within ~1 m of the sediment / water 582 

interface) have largely escaped vertical compaction linked to depositional overburden 583 

loading, and are therefore more susceptible to porosity reduction associated with later 584 

horizontal layer-parallel compaction. 585 

The precise timing of layer-parallel compaction within the deformational sequence is 586 

open to debate. As fold and thrust systems maintain typical angular relationships and pristine 587 

geometries, any heterogeneous lateral compaction must have occurred at the very earliest 588 

stages of slumping prior to fold and thrust initiation (see also Butler and Paton, 2010). 589 

Upright folding that could be attributed to such lateral shortening is interpreted to predate 590 

thrusts, as such folds are carried and passively rotated on back-steepened thrusts (Alsop and 591 

Marco, 2011). Early upright folding is also preserved at the extreme open-toes of slumps in 592 

areas where thrusts failed to propagate (Alsop et al., 2016b). Similar patterns were observed 593 

in the sand box models of Koyi (1995) and Koyi et al. (2004), where layer parallel 594 

compaction developed early in the structural sequence, particularly at the leading edge of the 595 

deformation front “where less-compacted sediments are accreted”. 596 

 597 

6.6. Do linked thrust systems in MTDs undergo constant rates of slip?  598 

Chapman and Williams (1984) note that a change in gradient of points on cumulative 599 

displacement-distance (CD-D) graphs relates to a change in rate of slip along the floor fault. 600 

While straight line graphs indicate a constant rate of slip along the floor fault, profiles with 601 

concave curves represent variable slip rates along the floor fault. All CD-D graphs measured 602 

across imbricate systems display broadly linear relationships (Fig. 8), suggesting a constant 603 

rate of slip along the floor fault during its displacement history. In detail however, plots 604 

display a distinct steeper step in the CD-D profile, consistent with an interpretation of an 605 

increased rate of slip along the floor thrust (Fig 8c, d). This step could reflect the position of 606 

potential out of sequence thrusting (e.g. thrust 4 from Fig 8c shown in Fig. 2h), and/or thrusts 607 

with marked displacement gradients toward their tips (e.g. thrust 3 from Fig. 8d shown in Fig. 608 

9h). The steps observed in CD-D plots from the present study are typically greater than the 609 

more gently curving plots from thrusts cutting lithified sequences (Chapman and Williams, 610 

1984). The stepped profile in CD-D plots from Peratzim likely marks a component of 611 

variable slip along the floor thrust, once again highlighting the greater variability in thrusts 612 

cutting unlithified sediments.  613 

 614 

6.7. What influences patterns of displacement along individual thrusts in MTDs?  615 
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It has previously been suggested that lithology may play a role in how thrusts propagate and 616 

resulting patterns of displacement along them (e.g. Chapman and Williams, 1985, p.759). 617 

Muraoka and Kamata (1983) analysed displacement along normal faults cutting Quaternary 618 

lacustrine sediments, and observed that values of displacement typically increased where 619 

faults cut more competent beds, and then decreased where the same fault cut less competent 620 

strata on each side. Muraoka and Kamata (1983, p.492) also noted that displacement was 621 

more constant in the competent horizons and more variable in the incompetent layers. Similar 622 

patterns have recently been recorded from thrusts cutting lithified rocks (Ferrill et al., 2016). 623 

Muraoka and Kamata (1983, p.492) also suggest that depending on stress concentrations, 624 

competent beds “may play a role as either initiators or inhibitors of faulting” resulting in 625 

variable slopes on displacement-distance plots, while “incompetent layers act as passive 626 

strain absorbers” resulting in constant slopes on displacement-distance plots. Irregular 627 

displacement profiles may thus be created by restricting propagation of a single fault across 628 

‘barriers’ that are “partially dependent on lithology (or competency)” (Ellis and Dunlap, 629 

1988, p.184). In summary, non-linear slopes, or inflections in displacement-distance (D-D) 630 

graphs, can be considered to represent variations in fault development resulting from a 631 

number of factors including changes in lithology (Williams and Chapman, 1983) and/or pre-632 

existing strain that weakened the rock (Noble and Dixon, 2011, p.74). 633 

The competency of the ~10 cm thick ‘orange’ detrital marker unit within the thrusted 634 

sequence at Peratzim is demonstrated by a more parallel (Class 1B) style of folding, greater 635 

displacement of this unit along thrust ramps, and the interpretation that thrusts initiate in this 636 

horizon and diminish up and downwards into adjacent aragonite-rich units (Fig. 12). Steps in 637 

displacement-distance profiles also correspond to this same stratigraphic level which as a 638 

more competent layer affects the thrust propagation. In general, D-D profiles display steeper 639 

gradients toward the surface where less competent sediments are preserved. 640 

Dramatic displacement gradients observed at Peratzim, where thrusts tip-out into 641 

overlying sediments, is similar to the “abrupt displacement gradients at the fault tips in the 642 

bounding mud rock beds” (Ferrill et al., 2016). Thus, as noted by Hedlund (1997, p.254), 643 

displacement-distance graphs can not necessarily be used to predict the location of fault tips 644 

(as originally suggested by Williams and Chapman, 1983; Chapman and Williams 1984). 645 

This is especially true where thrusts cut unlithified sediments as D-D analysis is much more 646 

variable, and displacement gradients towards fault tips are more pronounced and potentially 647 

non-linear making meaningful extrapolation difficult. 648 

In summary, displacement-distance plots of thrusts cutting unlithified sediments 649 

reveal that displacement is more variable with more pronounced displacement gradients 650 

towards fault tips than observed in faults cutting lithified sequences. In addition, mechanical 651 

stratigraphy associated with more competent detrital-rich beds may influence the fault 652 

profiles on D-D graphs.  653 

 654 

6.8. How do critical taper angles in MTDs compare to those in accretionary complexes? 655 

The critical taper model is used to predict the evolution and geometry of large-scale fold and 656 

thrust belts and accretionary complexes (e.g. Davis et al., 1983). The shape of the wedge is 657 

generally considered to reflect the strength of the material and friction along the basal 658 
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detachment, with weak wedges associated with low-friction basal decollements being marked 659 

by relatively long narrow tapers (e.g. see Koyi et al., 2004).  660 

In the case study, we provide bulk estimates of the critical taper angles by measuring 661 

the thickness of the deformed slump horizons at various distances up to 500 m along the 662 

MTDs. This thickness and distance data were presented in Alsop et al. 2016b (their fig. 7a), 663 

with the variation in thickness providing the taper angle above the sub-horizontal decollement 664 

for each slump. The taper angles of slumps 4, 5, and 6 determined in this study are 0.38°, 665 

0.28° and 0.19° respectively. These angles are exceptionally low, and an order of magnitude 666 

less than taper angles for large scale fold and thrust belts forming accretionary wedges, such 667 

as observed in Taiwan where angles of 4.7° were recently calculated (e.g. Yang et al., in 668 

press). Given that the taper angles of MTDs in the case study are two orders of magnitude 669 

less than large-scale accretionary complexes, we suggest that the low taper angles in slumps 670 

that form MTDs are a consequence of a) exceptionally weak saturated sediments that form 671 

the fold and thrust ‘wedge’, b) low-friction basal detachments that follow ‘easy-slip’ sub-672 

horizontal bedding horizons, c) an overlying water column in Lake Lisan that comprised 673 

relatively dense hyper-saline brines, and would facilitate and encourage slumping at lower 674 

critical taper angles for a given water depth (see fig. 4 in Yang et al., in press). In the case 675 

study area, the ratio of MTD thickness to downslope extent is ~1:250, while the across strike 676 

extent is ~1:100 (see Alsop and Marco, 2011). These ratios are significantly larger than in 677 

typical accretionary complexes and would also be a consequence of the exceptionally low 678 

critical taper angles. 679 

 680 

7. Conclusions 681 

 682 

7.1. Thrusts cutting unlithified sediments display greater variations in the relative thickness 683 

of hangingwall and footwall cut-offs (or stretch) compared to thrusts cutting lithified rocks. 684 

Values of stretch, which compares the relative cut-off thickness of equivalent hangingwall 685 

and footwall sequences, may be as low as 0.3 along thrusts cutting unlithified sediments. This 686 

ratio is significantly less than the minimum 0.5 values reported from thrusts cutting lithified 687 

rocks, and reflects the extreme variation in stratigraphic thickness that may affect soft-688 

sediment deformation (Fig. 12).  689 

 690 

7.2. Fault-propagation folds in unlithified sediments display tighter interlimb angles 691 

compared to models developed for lithified sequences. 692 

Interlimb angles of <60° are associated with thinning of the forelimb, whereas interlimb 693 

angles of >90° occur with pronounced (>60%) forelimb thickening (Fig. 12). We suggest that 694 

the simple shear component of deformation in unlithified sediments modifies the forelimb 695 

thickness and interlimb angles to a greater extent than in lithified rocks. 696 

 697 

7.3. Thrust ramps within slumps initiate in relatively competent horizons in the hangingwall 698 

of the underlying detachment. 699 

Relatively competent units cut by thrust ramps may display the greatest displacement, which 700 

then progressively reduces both upwards and downwards along the ramp. This relationship 701 

suggests that ramps do not necessarily propagate upward from the underlying flat, but rather 702 

initiate in relatively competent horizons in the hangingwall of the detachment (Fig. 12). 703 
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Continued displacement along thrust ramps may however subsequently mask original 704 

displacement patterns, resulting in simple ‘steps’ in D-D graphs. 705 

 706 

7.4. In slumps associated with MTDs, the average spacing of thrust ramps and the thickness 707 

of the thrust sequence displays an approximate 5:1 ratio across a range of scales.  708 

Thicker hangingwall and footwall sequences are in general associated with larger thrust 709 

displacements, although displacement patterns on thrusts cutting unlithified sediments are 710 

more variable than those cutting lithified rocks.  711 

 712 

7.5. Thrust systems within slumps and MTDs broadly balance, although heterogeneous 713 

lateral compaction may increase by ~10% towards the surface. 714 

More than 40% shortening is observed within some fold and thrust systems at Peratzim. 715 

However, a 23% reduction in the amount of shortening taken up by folding and thrusting 716 

along individual thrusts suggests that heterogeneous lateral compaction may increase by 717 

~10% toward the surface (Fig. 12). We suggest that sediment towards the top of the 718 

depositional pile that has undergone less compaction and overburden loading during 719 

deposition, will then be more prone to lateral compaction and horizontal shortening during 720 

subsequent slope failure associated with MTDs. 721 

 722 

7.6. Linked thrust systems cutting unlithified sediments display distinct steps in cumulative 723 

displacement-distance (CD-D) plots representing increased rates of slip along the floor 724 

thrust. The stepped profile in CD-D graphs from thrusts cutting unlithified sediments likely 725 

marks a component of variable slip along the floor thrust, once again highlighting a greater 726 

inconsistency when compared to thrusts cutting lithified rocks. 727 

 728 

7.7. Thrusts cutting more competent horizons in unlithified sediments are marked by 729 

‘horizontal steps’ in displacement-distance (D-D) graphs.  730 

Mechanical stratigraphy associated with more competent detrital-rich beds influences the 731 

fault profiles on D-D graphs (Fig. 12). D-D graphs also illustrate that thrusts cutting 732 

unlithified sediments display more variable displacement, and more pronounced displacement 733 

gradients toward fault tips, compared to thrusts cutting lithified sequences.  734 

 735 

7.8. Critical taper angles in MTDs may be an order of magnitude less than those in 736 

accretionary complexes.  737 

Exceptionally low critical taper angles in MTDs are considered a consequence of weak 738 

saturated sediments translating on low-friction basal detachments. This results in extreme 739 

ratios of MTD thickness compared to their downslope extent, with these ratios being 740 

significantly larger than in typical accretionary complexes. 741 
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 750 

Fig. 1 a) Tectonic plates in the Middle East. General tectonic map showing the location of the 751 
present Dead Sea Fault (DSF). The Dead Sea Fault is a left-lateral fault between the Arabian 752 
and African (Sinai) plates that transfers the opening motion in the Red Sea to the Taurus – 753 
Zagros collision zone with the Eurasian plate. Location of b) shown by the small box on the 754 
DSF. b) Map of the Dead Sea showing the position of the strands of the Dead Sea Fault 755 
(based on Sneh and Weinberger, 2014). The black arrows represent the direction of slumping 756 
in MTDs within the Lisan Formation, and form an overall semi-radial pattern around the 757 
western margin of Dead Sea Basin. The location of the study area shown in c) is boxed. c) 758 

Image of the light-coloured Lisan Formation at the Amiaz Plain, with the brownish 759 
Cretaceous margin to the west and the Sedom salt wall to the east. The box shows the 760 
location of the detailed case study area at Peratzim. Location grid relates to the Israel 761 
Coordinate System. d) Schematic 3-D diagram illustrating the position of the study area in 762 
the Amiaz Plain, located between the Dead Sea western border fault zone and the Sedom salt 763 
wall to the east. The thickness of the Lisan Formation has been exaggerated.  764 

 765 
Fig. 2 Photographs of a) Slump 5, b) Slump 4, c) Slump 4 from Peratzim (N 31º0449.6 E 766 
35º2104.2). Note that thrust numbering is for reference and does not imply order of ramp 767 
development. Stereonets of d) Slump 5 thrust planes (N=13), and folds (N=33), showing 768 
mean thrust plane (129/22W), mean fold hinge (2/317) and mean axial plane (139/13W) 769 

orientations (see Fig. 2a). e) Slump 4 thrust planes (N=5), and folds (N=12), showing mean 770 
thrust plane (005/16W), mean fold hinge 1/198, and mean axial plane (002/12W) orientations 771 
(see Fig. 2b). f) Slump 4 thrust planes (N=13), and folds (N=23), showing mean thrust plane 772 
(162/9W), mean fold hinge (9/172), and mean axial plane (177/12W) orientations (see Fig. 773 
2c). Structural data on each stereonet is represented as follows: fold hinges (solid blue 774 
circles), mean fold hinge (open blue circle), poles to fold axial planes (open blue squares), 775 
poles to thrust planes (solid red squares) and mean axial plane (red great circle). Calculated 776 
slump transport directions based on fold data (blue arrows) and thrust data (red arrows) are 777 
subparallel to the trend of the outcrop section (black arrows). g, h) Photographs of Slumps 5 778 
and 6 respectively, showing piggyback and out-of-sequence thrusting. In g), the displaced 779 

detrital-rich marker horizon is highlighted by orange squares (footwall) and circles 780 
(hangingwall).  781 

 782 

Fig. 3 Schematic cartoon illustrating the main structural parameters and definitions of bed 783 
thicknesses measured around fault-propagation folds and thrusts. 784 

 785 

Fig. 4 a) Graph comparing the stratigraphic thickness of thrust sequences with amount of 786 

displacement across the thrust (N=60). b) Graph showing that footwall thicknesses are always 787 
greater than the equivalent sequence in the hangingwall (N=57). c) Mean displacement versus 788 
mean thickness of hangingwall and footwall sequences from 16 different imbricate sequences 789 
throughout the study area. d) Data (N=8) from the Slump 5 thrust section (Fig. 2a) showing 790 
correlation of stretch with thickness of hangingwall sequence. e) Stretch versus displacement 791 

magnitude (Slump 5, Fig. 2a). f) Graph showing thickness of a stratigraphic sequence versus 792 
the average distance between thrust ramps. Data is based on 19 different imbricated 793 

sequences from the study area. Refer to Fig. 3 for definitions of thicknesses and parameters. 794 
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 795 
Fig. 5 a) Dip-isogon analysis of different layers forming a hangingwall anticline developed 796 
above Thrust 2 (T2) in Slump 5 (see Figure 2a for position). The detrital-rich horizon is 797 
marked in orange. Dip isogons join points of equal dip on adjacent folded surfaces, t0 is layer 798 
thickness measured along the axial surface, while tα is orthogonal layer thickness measured at 799 
various angles (α) to the axial surface. Representative 70° and 45° dip isogons are drawn on 800 
the upper and lower limbs of the fold respectively. b) t’α plot used to discriminate different 801 
classes of folds (see Ramsay, 1967, p.361 and Fossen, 2016, p.263. for details of technique). 802 
Colours relate to those in Fig. 5a, with upper fold limbs represented by coloured squares and 803 
lower limbs by circles. Detrital-rich units (in orange) more closely maintain layer thickness 804 
from the hinge to limbs of the fold, while aragonite-rich units display more extreme 805 
variations in layer thickness. c) Data from Slump 5 (Fig. 2a) showing that as % thickening of 806 

fold forelimbs occur (when compared to the backlimb thickness), there is a corresponding 807 
increase in the fold interlimb angle. Note that thrust numbering is for reference and does not 808 
imply order of ramp development. 809 

 810 
Fig. 6 Fault-propagation-fold charts based on the models of Jamison (1987). a) Fault-811 
propagation folds shown in Fig. 2c. b) Fault-propagation folds shown in Fig. 2b. c) Fault-812 
propagation folds shown in Fig. 2a. In each case, the fault-propagation fold number is given 813 
in the circle (see Fig. 2 for photographs of corresponding structures), while the observed % of 814 
forelimb thinning (-ve) or thickening (+ve) is shown in blue or red respectively. Refer to Fig. 815 
3 for definitions of thicknesses and parameters.  816 

 817 
Fig. 7 a) Photograph, b) interpreted line drawing and c) line-length balanced cross section 818 

across a fold and thrust system (see Fig. 2a). Note that due to the length of the restored 819 
section (c), it is shown as three partially overlapping sections. Major thrust ramps cutting the 820 
competent ‘orange’ marker are numbered T1-T9, and the underlying floor thrust, are 821 
highlighted in red. Note that thrust numbering is for reference and does not imply order of 822 
ramp development. Cross section is within 5° of the calculated thrust transport direction (see 823 
Fig. 2d). A deficit in shortening is preserved in the upper green marker layer (see Table 1). 824 

 825 
Fig. 8 Cumulative displacement-distance (CD-D) graphs (a-d), with numbers on graphs 826 
referring to thrust numbering on Figure 2. Note that thrust numbering is for reference and 827 
does not imply order of ramp development. a) CD-D graph from fold and thrust system 828 
shown in Fig. 2b. b) CD-D graph from fold and thrust system shown in Fig. 2c. c) CD-D 829 

graph from fold and thrust system shown in Fig. 2h). d) CD-D graph from fold and thrust 830 

system shown in Figs. 2a and 7.  831 

 832 
Fig. 9 Photographs (a, c, e, g, i) and associated displacement-distance (D-D) graphs (b, d, f, 833 
h, j) across thrusts in Slump 5. In the photographs, displaced horizons are marked by 834 
matching coloured squares (footwall) and circles (hangingwall), with displacement 835 
decreasing to the fault tip (yellow circle). The associated D-D graphs show the hangingwall 836 

cut-off markers (coloured circles) defining a displacement profile drawn downward from the 837 
fault tip (yellow circle) at the origin. The 10 cm thick detrital-rich competent horizon is 838 
highlighted by an orange marker in each case (as also shown in Figs 5, 7). Refer to Figures 2a 839 
and 7 for details of thrust numbering. 840 

 841 
Fig. 10 Photographs (a, b, d, f) and associated displacement-distance plots (c, e, g) across 842 

thrusts in Slump 4 (see Fig. 2b). In the photographs, displaced horizons are marked by 843 
matching coloured squares (footwall) and circles (hangingwall), with displacement 844 
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decreasing to the fault tip (yellow circle). The associated D-D graphs show the hangingwall 845 
cut-off markers (coloured circles) defining a displacement profile drawn downwards from the 846 
fault tip (yellow circle) at the origin. Thicker detrital-rich competent horizons are highlighted 847 
by an orange and black marker in each case. Refer to Figures 2b for details of thrust 848 
numbering. 849 

 850 
Fig. 11 Photographs (a, b, d, f) and associated displacement-distance plots (c, e, g) across 851 
thrusts in Slump 4. In the photographs, displaced horizons are marked by matching coloured 852 
squares (footwall) and circles (hangingwall), with displacement decreasing to the fault tip 853 
(yellow circle). The associated D-D graphs show the hangingwall cut-off markers (coloured 854 
circles) defining a displacement profile drawn downwards from the fault tip (yellow circle) at 855 
the origin. Thicker detrital-rich competent horizons are highlighted by an orange and dark 856 

blue marker in each case. Refer to Figures 2c for details of thrust numbering. 857 
 858 
Fig. 12 Schematic cartoon summarising linked fold and thrust geometries generated in a 859 
downslope verging slump system. Schematic displacement-distance (D-D) graph highlights 860 
variations in offset across competent horizons (orange and blue circles shown on evolving 861 
thrust ramp). Note that lateral compaction is only illustrated on the right-hand side of the 862 
diagram.  863 

 864 

  865 
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Table 1. Balanced line-length restoration values of linked fold and thrust system in Slump 5 866 

(see Fig. 7).  867 

 868 

Marker 
horizon 

Present 
length 

Restored 
length  

Shortening 
(thrusts 
only) 

Shortening 
(folds 
only) 

Shortening 
(thrusts 
and folds) 

Missing 
shortening  
(as a % of blue 
39.2 m restored 
length) 

Missing shortening  
(as a % of blue 16.4 
m shortening) 

Top 
Green 

22.8 m 35.6 m 9.3 m 
(26.2%) 

3.3 m 
(9.3%) 

12.6 m 
(35.4%) 

3.8 m 
(9.7%) 

3.8 m 
(23.2%) 

Middle 
Orange 

22.8 m 38.8 m 13.6 m 
(35.1%) 

2.4 m 
(6.2%) 

16 m 
(41.2%) 

0.4 m 
(1%) 

0.4 m 
(2.4%) 

Lower 
Blue 

22.8 m 39.2 m 15.9 m 
(40.6%) 

0.5 m 
(1.3%) 

16.4 m 
(41.8%) 

0 m 
(0%) 

0 m 
(0%) 

 869 

 870 

References, 871 

Agnon, A., Migowski, C., Marco, S., 2006. Intraclast breccia layers in laminated sequences: 872 
recorders of paleo-earthquakes, in Enzel, Y., Agnon, A., and Stein, M., eds., New Frontiers in 873 
Dead Sea Paleoenvironmental Research, Geological Society of America Special Publication, 874 
p. 195-214. 875 

Alonso, J.L., Teixell, A.1992. Forelimb deformation in some natural examples of fault-876 

propagation folds. In: McClay, K. (Editor), Thrust Tectonics. Chapman and Hall. London. 877 
175-180. 878 

Alsop, G.I., Holdsworth, R.E. 1993. The distribution, geometry and kinematic significance of 879 
Caledonian buckle folds in the western Moine Nappe, northwestern Scotland. Geological 880 
Magazine 130, 353-362. 881 

Alsop, G.I., Holdsworth, R.E. 2007. Flow perturbation folding in shear zones. In: Ries, A.C., 882 
Butler, R.W.H. & Graham, R.D. (Eds) Deformation of the Continental Crust: The legacy of 883 

Mike Coward. Geological Society, London, Special Publications, 272, 77-103 884 

Alsop, G.I., Marco, S 2011. Soft-sediment deformation within seismogenic slumps of the 885 
Dead Sea Basin. Journal of Structural Geology 33, 433-457. 886 

Alsop, G.I., Marco, S. 2012a. A large-scale radial pattern of seismogenic slumping towards 887 
the Dead Sea Basin. Journal of the Geological Society 169, 99-110. 888 

Alsop, G.I., Marco, S. 2012b. Tsunami and seiche-triggered deformation within offshore 889 
sediments. Sedimentary Geology 261, 90-107. 890 

Alsop, G.I., Marco, S. 2013. Seismogenic slump folds formed by gravity-driven tectonics 891 
down a negligible subaqueous slope. Tectonophysics 605, 48-69. 892 

Alsop, G.I., Marco, S. 2014. Fold and fabric relationships in temporally and spatially 893 
evolving slump systems: A multi-cell flow model. Journal of Structural Geology, 63, 27-49. 894 

Alsop, G.I., Weinberger, R., Levi, T., Marco, S. 2015. Deformation within an exposed salt 895 

wall: Recumbent folding and extrusion of evaporites in the Dead Sea Basin. Journal of 896 

Structural Geology, 70, 95-118. 897 

Alsop, G.I., Weinberger, R., Levi, T., Marco, S. 2016a. Cycles of passive versus active 898 
diapirism recorded along an exposed salt wall. Journal of Structural Geology 84, 47-67. 899 



                Alsop et al.             Fold and thrust systems in MTDs                                     22 
 

Alsop, G.I., Marco, S., Weinberger, R., Levi, T. 2016b. Sedimentary and structural controls 900 

on seismogenic slumping within Mass Transport Deposits from the Dead Sea Basin. 901 

Sedimentary Geology 344, 71-90. 902 

Arkin, Y., Michaeli, L., 1986. The significance of shear strength in the deformation of 903 
laminated sediments in the Dead Sea area. Israel Journal of Earth Sciences 35, 61-72. 904 

Armandita, C., Morley, C.K., Rowell, P. 2015. Origin, structural geometry, and the 905 
development of a giant slide: The South Makassar Strait mass transport complex. Geosphere, 906 

11, 376-403. doi:10.1130/GES01077.1 907 

Bartov, Y., Steinitz, G., Eyal, M., Eyal, Y., 1980. Sinistral movement along the Gulf of Aqaba - its 908 
age and relation to the opening of the Red Sea: Nature 285, 220-221. 909 

Begin, Z.B., Ehrlich, A., Nathan, Y., 1974, Lake Lisan, the Pleistocene precursor of the Dead 910 
Sea: Geological Survey of Israel Bulletin, 63, p. 30. 911 

Boyer, S.E., Elliot, D. 1982. Thrust systems. American Association of Petroleum Geologists 912 
Bulletin 66, 1196-1230. 913 

Bull, S., Cartwright, J., Huuse, M. 2009. A review of kinematic indicators from mass-914 
transport complexes using 3D seismic data. Marine and Petroleum Geology 26, 1132-1151. 915 

Butler, R.W.H., 1987. Thrust sequences. Journal of the Geological Society, London, 144, 916 
619-634. 917 

Butler, R.W.H., Paton, D.A. 2010. Evaluating lateral compaction in deepwater fold and thrust 918 
belts: How much are we missing from “nature’s sandbox”? GSA Today 20, 4-10. 919 

Chapman, T.J., Williams, G.D. 1984. Displacement-distance methods in the analysis of fold-920 
thrust structures and linked-fault systems. Journal of the Geological Society 141, 121-128. 921 

Chapman, T., Williams, G., 1985. Strains developed in the hangingwall of thrusts due to their 922 
slip/propagation rate: a dislocation model: Reply. Journal of Structural Geology 7, 759-762. 923 

Cooper, M. A., Garton, M.R., Hossack, J.R. 1982. Strain variation in the Hénaux Basse 924 
Normandie duplex, northern France. Tectonophysics 88, 321-323. 925 

Corredor, F., Shaw, J.H., Bilotti, F., 2005. Structural styles in the deep-water fold and thrust 926 
belts of the Niger Delta. American Association of Petroleum Geologists Bulletin 89, 753-780. 927 

Davis, D., Suppe, J., Dahlen, F.A. 1983. Mechanics of fold-and-thrust belts and accretionary 928 

wedges. Journal of Geophysical Research 88, (B2), 1153-1172. 929 

Debacker, T.N., Dumon, M., Matthys, A. 2009. Interpreting fold and fault geometries from 930 
within the lateral to oblique parts of slumps: A case study from the Anglo-Brabant 931 
Deformation Belt (Belgium). Journal of Structural Geology 31, 1525-1539. 932 

de Vera, J., Granado, P., McClay, K. 2010. Structural evolution of the Orange Basin gravity-933 

driven system, offshore Namibia. Marine and Petroleum Geology 27, 223-237  934 

Dotare, T., Yamada, Y., Adam, J., Hori, T., Sakaguchi, H. 2016. Initiation of a thrust fault 935 
revealed by analog experiements. Tectonophysics 684, 148-156.  936 

Eisenstadt, G., DePaor, D.G. 1987. Alternative model of thrust fault propagation. Geology 937 
15, 630-633. 938 



                Alsop et al.             Fold and thrust systems in MTDs                                     23 
 

El-Isa, Z.H., Mustafa, H. 1986. Earthquake deformations in the Lisan deposits and 939 
seismotectonic implications. Geophysical Journal of the Royal Astronomical Society 86, 413-940 
424. 941 

Ellis, M.A., Dunlap, W.J. 1988. Displacement variation along thrust faults: implications for 942 
the development of large faults. Journal of Structural Geology 10, 183-192. 943 

Ferrill, D.A., Morris, A.P., Wigginton, S.S., Smart, K.J., McGinnis, R.N., Lehrmann, D. 944 
2016. Deciphering thrust fault nucleation and propagation and the importance of footwall 945 
synclines. Journal of Structural Geology, 85, 1-11. 946 

Fischer, M.W., Coward, M.P. 1982. Strains and folds within thrust sheets: an analysis of the 947 

Heilam sheet, northwest Scotland. Tectonophysics 88, 291-312. 948 

Fossen, H. 2016. Structural Geology. 2nd Edition. Cambridge University Press, Cambridge, 949 
UK, p.510. 950 

Frey Martinez, J., Cartwright, J., Hall, B. 2005. 3D seismic interpretation of slump 951 
complexes: examples from the continental margin of Israel. Basin Research 17, 83-108. 952 

Garcia-Tortosa, F.J., Alfaro, P., Gibert, L., Scott, G. 2011. Seismically induced slump on an 953 
extremely gentle slope (<1°) of the Pleistocene Tecopa paleolake (California). Geology 39, 954 
1055-1058. 955 

Garfunkel, Z., 1981. Internal structure of the Dead Sea leaky transform (rift) in relation to 956 
plate kinematics: Tectonophysics 80, p. 81-108. 957 

Garfunkel, Z., Ben-Avraham, Z. 1996. The structure of the Dead Sea basin. Tectonophysics 958 

26, 155-176. 959 

Gibert, L., Sanz de Galdeano, C., Alfaro, P., Scott, G., Lopez Garrido, A.C. 2005. Seismic-960 
induced slump in Early Pleistocene deltaic deposits of the Baza Basin (SE Spain). 961 
Sedimentary Geology 179, 279-294. 962 

Haase-Schramm, A., Goldstein, S.L., Stein, M. 2004. U-Th dating of Lake Lisan aragonite 963 
(late Pleistocene Dead Sea) and implications for glacial East Mediterranean climate change. 964 
Geochimica et Cosmochimica Acta 68, 985-1005. 965 

Hedlund, C.A. 1997. Fault-propagation, ductile strain, and displacement-distance 966 
relationships. Journal of Structural Geology 19, 249-256. 967 

Jackson, C. A-L. 2011. Three-dimensional seismic analysis of megaclast deformation within 968 

a mass transport deposit: implications for debris flow kinematics. Geology 39, 203-206. 969 

Jacoby, Y., Weinberger, R., Levi, T., Marco, S. 2015. Clastic dikes in the Dead Sea basin as 970 
indicators of local site amplification. Natural Hazards 75, 1649-1676.  971 

Jamison, W.R. 1987. Geometric analysis of fold development in overthrust terranes. Journal 972 
of Structural Geology 9, 207-219. 973 

Jolly, B.A., Lonergan, L., Whittaker, A.C., 2016. Growth history of fault-related folds and 974 
interaction with seabed channels in the toe-thrust region of the deep-water Niger delta. 975 
Marine and Petroleum Geology 70, 58-76. 976 

Kim, Y.S., Sanderson, D.J. 2005. The relationship between displacement and length of faults. 977 
Earth Science Reviews 68, 317-334. 978 

Korneva, I., Tondi, E., Jablonska, D., Di Celma, C., Alsop, I., Agosta, F. 2016. 979 
Distinguishing tectonically- and gravity-driven synsedimentary deformation structures along 980 



                Alsop et al.             Fold and thrust systems in MTDs                                     24 
 

the Apulian platform margin (Gargano Promontory, southern Italy). Marine and Petroleum 981 
Geology 73, 479-491. 982 

Koyi, H. 1995. Mode of internal deformation in sand wedges. Journal of Structural Geology 983 

17, 293-300. 984 

Koyi, H.A., Sans, M., Teixell, A., Cotton, J., Zeyen, H. 2004. The significance of penetrative 985 

strain in the restoration of shortened layers – insights from sand models and the Spanish 986 

Pyrenees. In: McClay, K.R. (Editor) Thrust Tectonics and hydrocarbon systems. American 987 

Association of Petroleum Geology Memoir 82, 207-222. 988 
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