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Purpose of Review 

Mesenchymal stromal/stem cells (MSCs) have potent anti-inflammatory and 

immunomodulatory properties, in addition to their ability to form cartilage and bone. The 

purpose of this review is to highlight recent developments and current knowledge gaps in our 

understanding of the protective effects of MSCs against inflammatory arthritis, and to discuss 

their clinical exploitation for the treatment of rheumatoid arthritis (RA). 

Recent Findings 

The weight of evidence for protective mechanisms of exogenously administered MSCs is on 

immunomodulatory effects, including inhibition of dendritic cell maturation, polarisation of 

macrophages to an anti-inflammatory phenotype, and activation of regulatory T cells, thereby 

dampening inflammation and preventing joint damage. Evidence for direct effects on tissue 

repair is scant. Recent studies have identified MSC subsets in vivo and an important question 

is whether MSCs in their native tissues have similar immunoregulatory functions. Recent 

proof-of-concept clinical studies have shown a satisfactory safety profile of allogeneic MSC 

therapy in RA patients with promising trends for clinical efficacy. 

Summary 

Allogeneic MSCs could be effective in RA. Larger, multicentre clinical studies are needed to 

provide robust evidence, and MSC treatment at early stages of RA should be explored to 

“reset” the immune system. 
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Introduction 

Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory joint disease. The cellular 

effectors include both innate and adaptive immune cells. In addition, fibroblast-like 

synoviocytes (FLS) adopt an aggressive and invasive phenotype which contributes to joint 

damage, and increased osteoclast activity mediates excessive bone resorption. Current 

treatment strategies mainly aim to suppress autoimmune inflammation using disease-

modifying anti-rheumatic drugs and biologics. While the success of immune modulation and 

cytokine inhibition is considerable, ~30% of patients in trials do not respond satisfactorily to 

treatments[1,2]. Even when clinical remission is achieved, cartilage and bone damage may be 

established or continue to progress. A challenging goal is to induce remission via permanent 

immune tolerance, protect against structural damage, and repair existing damage.  

Mesenchymal stromal/stem cells (MSCs) have immunomodulatory and tissue-repair 

properties, and their use for management of RA is being explored. The original definition of 

human MSCs is based on in vitro properties of isolated and culture-expanded plastic-adherent 

cells, namely tri-lineage differentiation to osteoblasts, chondrocytes and adipocytes, and 

expression of CD73, CD90 and CD105, but not haematopoietic or endothelial markers[3]. 

MSCs have been isolated from several connective tissues, including bone marrow[4], 

synovium[5,6], periosteum[7,8], adipose tissue[9], and umbilical cord[10] (Figure 1). 

MSCs can regulate inflammation via an array of mechanisms, involving both the adaptive 

and innate immune response. These include inhibition of T cell proliferation and function, 

induction of CD4+CD25+FoxP3+ regulatory T cells (Tregs), suppression of B-cell 

proliferation, differentiation, and immunoglobulin production, suppression of dendritic cell 

maturation, promotion of macrophage polarisation towards an anti-inflammatory phenotype, 

and suppression of NK cells (for review see[11]). Immunomodulation by MSCs is mediated 

via both direct cell-cell contact and secretion of soluble factors such as prostaglandin E2 

(PGE2), indoleamine 2,3-dioxygenase (IDO), nitric oxide (NO) and Interleukin-10 (IL-10), 

released in response to stimulation by IFN-γ from activated immune cells[11]. All these 

mechanisms could contribute to resolution of inflammation in RA. 

This review will examine MSCs as a possible therapy for RA by critically assessing recent 

literature on the mechanisms by which MSCs modulate the immune system and promote 

repair. 
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Insights into MSC immunomodulatory mechanisms in RA 

Preclinical studies have shown beneficial effects of MSC therapy in models of RA-like 

inflammatory arthritis[12]. One of the first studies to demonstrate protective effects of 

intraperitoneally injected mouse MSCs against joint destruction in collagen-induced arthritis 

(CIA) failed to detect administered MSCs in the joints, suggesting that prevention of joint 

damage resulted predominantly from a dampening down of the immune system[13]. 

Modulation of T cell function, including suppression of T cell proliferation and activation of 

Tregs, has been implicated[13,14,15], and recent studies have provided additional insights 

into the immunomodulatory effects of MSCs in inflammatory arthritis. Lopez-Santalla et 

al.[16*] showed that intravenous administration of human adipose-MSCs (Ad-MSCs) in CIA 

mice decreased GM-CSF-expressing CD4+ T cells, key effector cells in RA 

pathophysiology[17], in blood and spleen. Regulatory T cells, including classical Tregs and 

IL10+IL17-CD4+ Tr1 cells, were decreased in spleen and increased in draining lymph nodes, 

suggestive of their mobilisation towards inflamed tissues. In addition, an increased proportion 

of Th17 cells expressed the anti-inflammatory cytokine IL-10[16*], suggesting that the 

previously reported induction of a regulatory phenotype in Th17 cells by MSCs[18,19] also 

occurs in vivo in the context of CIA. Indeed, this was confirmed in a study by Luz-Crawford 

et al. that further showed this to be dependent on glucocorticoid-induced leucine zipper 

(GILZ), which inhibits the pro-inflammatory transcription factors NF-ϰB and activator 

protein 1 (AP-1), in MSCs[20**]. Downregulation of NF-ϰB signalling may also occur via 

decreased expression of microRNA (miR)-548e and a resulting de-repression of IκB 

translation[21*]. Intraperitoneal injection of MSCs in conjunction with a miR-548e-encoding 

adeno-associated virus prevented the beneficial effects of MSC transplantation on CIA, while 

intraperitoneal injection of antisense-miR-548e alone showed improved arthritis outcome, 

although the main cell type targeted was not clear from the evidence provided[21*]. 

Follicular helper T (Tfh) cells, which provide proliferative signals to B cells in secondary 

lymphoid tissues[22], have also been implicated in the immunosuppressive effects of MSCs. 

Umbilical cord (UC) MSCs inhibited Tfh cell differentiation in vitro, and intravenous 

administration of human UC-MSCs in mice after onset of CIA decreased the number of Tfh 

cells in the spleen, and suppressed their capacity to support B lymphocyte differentiation in 

an ex vivo co-culture assay[23**]. Inhibitory effects of MSCs on B cells were recently shown 
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to be dependent on interactions between MSCs and T cells[24*], and effects on Tfh cells 

could thus mediate the indirect suppressive effects of MSCs on B cells. 

Strategies to augment the immunomodulatory potency of MSCs have been explored to 

enhance therapeutic efficacy. For example, co-administration of MSCs and Tr1 cells was 

more effective in reducing inflammation, pannus formation and cartilage erosion in the CIA 

model compared to single cell therapy, possibly through increased IDO expression in MSCs 

induced by IFN-β and IL-10 produced by the Tr1 cells[25*]. Another strategy involved 

engineering of MSCs with microparticles loaded with the glucocorticoid budesonide. Such 

MSCs exhibited enhanced IDO activity compared to budesonide-preconditioned and naïve 

MSCs, resulting in improved in vitro immunosuppression[26].  

Protective effects of MSCs against excessive osteoclast-mediated bone resorption, resulting 

in local and systemic bone loss, are likely mediated via suppression of inflammatory 

cytokines that promote osteoclastogenesis[27], and independently, via boosting of 

Tregs[28,29]. Direct inhibitory effects of MSCs on osteoclastogenesis via production of the 

RANKL decoy receptor osteoprotegerin[30], or through CD200/CD200R-dependent 

inhibitory interactions with osteoclast precursors[31], have also been suggested. In addition, a 

recent study reported that prevention of local and systemic bone loss by administration of 

syngeneic Ad-MSC to CIA mice was associated with a decrease in CD11b+c-fms+ osteoclast 

precursors in bone marrow[32*], though the mechanisms remain to be elucidated. 

Of note, several studies have failed to demonstrate an improvement in experimental CIA with 

MSC treatment, with some even reporting a worse outcome[12]. In a comprehensive study, 

Schurgers et al.[33] did not detect any benefit from MSC therapy in CIA, using both 

intravenous and intraperitoneal routes to administer either syngeneic or allogeneic MSCs. In 

contrast, injection of Tregs before or after disease onset let to a dramatic improvement of 

arthritis[33]. Contradictory results may arise from variables including source of MSCs, tissue 

of origin, MSC culture conditions, timing of treatment, number of cells injected, route of 

injection and treatment regime[10]. Although MSCs have low immunogenicity and display 

low levels of MHC I and absence of MHC II and co-stimulatory molecules, culture expansion 

and differentiation of MSCs into mature cell types can increase the expression of MHC class 

I and II molecules[34], and allogeneic MSCs may elicit both a humoral and cellular response 

in vivo[35,36,37]. Hence, these cells may not be completely immune privileged. Donor-
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variability is also likely a confounding factor and many studies fail to demonstrate whether 

findings are reproducible using MSCs from different human donors. 

 

The influence of tissue source on MSC potency 

MSC from several tissues possess immunomodulatory properties, adding to the MSC 

armamentarium, but also raising critical questions regarding their equivalence vs. diversity in 

potency and clinical effectiveness. The potency of MSCs appears to be dependent on, among 

other factors, the ontogenetic pathways through embryonic tissue formation and the adult 

tissues in which MSCs reside postnatally. For instance, human MSCs from synovium display 

greater chondrogenic potency in vitro when compared with MSCs from bone marrow, 

periosteum and adipose tissue[38], while they are inferior to periosteal MSCs in bone-

forming potency in vivo[39]. Similarly, tissue source seems to affect the immunosuppressive 

effects of MSCs. For example, Ad-MSCs were found to have a greater immunosuppressive 

capacity on T cells and monocytes in comparison to bone marrow (BM) MSCs[40]. 

In addition to the plethora of “finite” adult MSCs, MSCs could be derived from embryonic 

stem cells, recognised as a potential “infinite” and more easily standardisable source of 

MSCs. It was recently shown that intraperitoneal administration of MSCs derived from 

human embryonic stem cells can ameliorate CIA when administered after disease onset. 

Injected MSCs were found to home to draining lymph nodes and to upregulate IDO 

expression by the host[41*]. 

 

Identification of MSC subsets in vivo 

Recent advances have been made in our understanding of the identity and functions of MSCs 

in vivo in their native tissues, mainly in bone marrow. Subpopulations of MSCs in mouse 

bone marrow are marked by Pdgfrα and Sca1[42], leptin receptor[43,44], Nestin[45], or 

Gremlin-1[46**], with varying degrees of overlap. MSCs have also been identified in mouse 

synovium[47]. It is becoming clear that different MSC subsets variably contribute to the 

formation of mesenchymal tissues during development and growth, adult tissue turnover, and 

following injury. In human bone marrow, MSCs are marked by LNGFR (CD271)[48,49] and 

CD146[50,51], with the latter shown to be a perivascular subset of LNGFR-expressing 

cells[52]. Pdgfrα and CD51 mark a subset of CD146+ MSCs that are Nestin+ in both adult 
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mouse and foetal human bone marrow[53], although Li et al. reported MSCs in adult human 

bone marrow to be enriched within the Pdgfrαlow/neg fraction of LNGFR+ cells[54]. 

Discovery of specific markers will allow isolation of defined MSC populations using 

standardised protocols, which will aid consistency in research and translation to clinic. In this 

regard, an important question is whether MSC subpopulations show varying 

immunomodulatory potency. A recent study[55*] reported that intra-articular injection of 

CD146+ UC-MSCs but not CD146- cells ameliorated CIA in mice. However, sorting for 

CD146 expression in this study was performed on culture-expanded cells. Tormin et al.[52] 

showed that CD146 expression by freshly sorted CD146neg/lowLNGFR+ MSCs from bone 

marrow was rapidly upregulated in culture under normoxia to levels comparable to 

CD146+LNGFR+ cells. The relationship between the CD146+ sorted cells in the study by Wu 

et al.[55*] and the cells marked by CD146 expression in vivo is therefore not clear. 

An in-depth analysis of MSC lineages and subtypes in vivo will aid investigations aimed at 

addressing whether MSCs have a specific function to regulate immune homeostasis in their 

native tissues, and whether immunomodulation is a generic function of MSCs or specific to a 

distinct MSC subset. In a recent study[56*], clonal analysis of immortalised human BM-

MSCs revealed the existence of clones lacking multipotency that were positive for CD317 

and were enriched for immunomodulatory transcriptional networks. Lineage tracing in mice 

allowed the identification of a rare non-differentiating BM-MSC subtype, distinct from 

perivascular MSCs, which was also found at 1%–3% frequency in human BM-MSC 

fractions[56*]. An intriguing scenario in RA pathogenesis is that stromal cells become unable 

to control the aberrant immune system and instead contribute to the perpetuation of joint 

inflammation in liaison with the immune system[57]. 

 

MSCs and repair 

The repair potential of MSCs has been extensively studied preclinically and trialled in 

patients with joint surface defects and/or osteoarthritis with promising results (for review 

see[58]). In a recent proof-of-concept phase I/II clinical trial, the intra-articular injection of 

autologous Ad-MSCs into the osteoarthritic knee improved function and pain without causing 

adverse events, and reduced cartilage defects as determined by MRI, with histological 

evidence of hyaline cartilage repair[59]. Instead, the use of MSCs in RA has primarily 

focused on immune modulation, and the prevailing view is that MSCs prevent joint damage 
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mainly via their immunosuppressive and anti-inflammatory activity. Evidence that the 

injected MSCs would contribute directly to joint tissue repair is scant. Bioluminescence 

imaging to trace luciferase-transfected MSCs after intra-articular injection in mice with 

proteoglycan-induced arthritis showed that MSCs were retained for several weeks in the 

injected joint[60], raising the possibility that injected MSCs could directly or indirectly 

modulate the local stromal compartment to promote intrinsic tissue repair. The recent 

identification of MSC populations in vivo and development of lineage tracing models will 

help address this knowledge gap. 

An exciting prospect is the use of MSC-derived extracellular vesicles (EV), which have been 

shown to play roles in mediating tissue regeneration and immunomodulation[61*,62]. 

Intriguingly, the beneficial properties of EV may not be reliant on stem cells only. A recent 

study demonstrated that neutrophil-derived EV delivered into the knee joints of mice with 

serum-transfer arthritis displayed anti-inflammatory properties, prevented cartilage 

degradation, and favoured cartilage anabolism by penetrating the avascular cartilage 

extracellular matrix to deliver bioactive molecules to the chondrocytes[63**]. EV, directly or 

loaded with therapeutics, could thus be harnessed as a therapeutic strategy in RA. 

 

Clinical evaluation of MSC therapy in RA 

Intravenous infusion of allogeneic BM- or UC-MSCs into 4 patients with established RA, 

resistant to DMARDs and at least one anti-TNFα agent, was safe and resulted in partial and 

transient clinical improvement[64]. Intravenous injection of UC-MSCs in addition to 

DMARDs in 136 patients with active RA who had inadequate responses to traditional 

medication induced a significant clinical improvement when compared with the control group 

of 36 patients who received DMARDs plus medium without MSCs. The therapeutic effects 

were maintained for 3-6 months, and correlated with an increased percentage of Tregs in 

peripheral blood[65]. In a recent multicentre, dose-escalation, randomised, single-blind 

(double-blind for efficacy), placebo-controlled, phase Ib/IIa clinical trial[66**], intravenous 

infusions of allogeneic Ad-MSCs in 46 patients with active refractory RA (with failure to at 

least two biologics) were in general well-tolerated without evidence of toxicity over 3 

months. There was a trend for clinical benefit, which was not persistent after 3 months, 

suggesting that cell therapy in RA would require repeated administration. However, in some 
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patients sensitisation against allogeneic cells was detected[66**], calling for caution in 

multiple cell infusions. 

In summary, preliminary data in human trials indicate that allogeneic MSCs could be 

effective in RA but larger, multicentre clinical studies are needed for sound evidence. So far, 

the use of MSCs in clinical studies has been restricted to patients with severe RA refractory 

to standard therapies. MSC treatment could be more effective if given at early stages of RA 

in order to “reset” the immune system by inducing regulatory networks. The selection criteria 

of RA patients for clinical studies will be crucial. 

 

Conclusions 

Advances have been made in understanding the mechanisms of the protective effects of MSC 

therapy in RA (Figure 12). The putative ability of MSCs to rewire an autoimmune process 

into a more naïve, tolerant state is an exciting concept. The study of the joint 

microenvironment and its interactions with the delivered cell populations will be crucial to 

maximise MSC therapeutic potential. The expanding knowledge of the mechanisms of MSC 

therapeutic effects will contribute to our understanding of the molecular taxonomy of RA, 

will inform patient stratification, and will unravel additional targets for pharmacological 

interventions in our journey to precision rheumatology. 
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Key points 

• Preclinical studies indicate that MSCs dampen joint inflammation via modulation of 

the adaptive and innate immune system. 

• MSCs do not seem to contribute directly to tissue repair but their immunomodulatory 

effects prevent joint damage and may favour intrinsic repair. 

• Clinical studies have shown a satisfactory safety profile of allogeneic MSCs in RA 

with promising trends for clinical efficacy but larger, multicentre clinical trials are 

needed. 
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Figure 1: Sources of MSCs discussed in this review. 

 

Figure 12: Schematic of proposed mechanisms of MSC therapy in RA. Mesenchymal 

Stem Cell (MSC), Interleukin 10 (IL-10), Prostaglandin E2 (PGE-2), Indoleamine 2,3-

dioxygenase (IDO), Nitric oxide (NO), Interferon gamma (INF-y), Immature Dendritic Cell 

(iDM), Mature Dendritic Cell (mDC), Pro-inflammatory macrophage (M1), Anti-

inflammatory Macrophage (M2). 

 

 






