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Abstract 

Background 

Neuropathic pain is a common side effect of chemotherapy and although precise mechanisms 

are unclear, oxidative stress and mitochondrial damage are involved. We investigated 

whether the mitochondria targeted antioxidant, MitoVitE, provided better protection against 

paclitaxel-induced mitochondrial damage in dorsal root ganglion (DRG) cells than a non-

targeted form of vitamin E, Trolox. We also determined whether MitoVitE, compared to 

duloxetine, could limit paclitaxel induced mechanical hypersensitivity in rats.  

Methods  

Mitochondrial function was measured in DRG cells exposed to paclitaxel with and without 

MitoVitE or Trolox. The effect of MitoVitE or Trolox on paclitaxel-induced cell killing in cancer 

cell lines was also determined. Rats received a cumulative dose of 8 mg kg-1 paclitaxel plus 

either MitoVitE (2mg-1 kg day-1), duloxetine (10mg kg-1 day-1) or vehicle control daily 

throughout the model. Mechanical hind paw withdrawal thresholds were measured every 2 

days. 

Results 

Paclitaxel caused loss of membrane potential in DRG cells. At 100µM paclitaxel median 

[range] change was 60.8 [44.0-77.5]%, p<0.0001, which was ameliorated by MitoVitE (86.3 

[62.3-103.8]%) but not Trolox (46.3 [46.3-57.4]%). Similarly, loss of metabolic activity and 

glutathione induced by paclitaxel (both p<0.0001) was also reduced by MitoVitE but not 

Trolox. Cytotoxicity of paclitaxel was not affected by co-exposure of ovarian cancer cells to 

either MitoVitE or Trolox but was slightly less effective against breast cancer cells in the 

presence of Trolox. Mean (SD) areas under the curve of withdrawal thresholds at 6h after 

injection of treatment in rats given paclitaxel + control, or + MitoVitE (p<0.0001) or  + 

duloxetine (p<0.0001) were 110.1 (5.0), 144.9 (10.2) and 155.9 (12.6) respectively. 

Conclusion 

Paclitaxel affected mitochondrial function and glutathione in DRG cells, which was abrogated 

by MitoVitE but not Trolox, without decreasing cancer cell cytotoxicity. In rats, paclitaxel 
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induced mechanical hypersensitivity was ameliorated by MitoVitE treatment to a similar 

extent as duloxetine. These data confirm mitochondria as a mechanistic target for paclitaxel-

induced damage and suggest mitochondria targeted antioxidants as future therapeutic 

strategies. 

 

MESH key words 
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Running title 

MitoVitE limits paclitaxel-induced damage and mechanical hypersensitivity  

Page 2 of 22British Journal of Anaesthesia

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

 

Chemotherapy induced peripheral neuropathy (CIPN) is a common and severe adverse effect 

of some commonly used chemotherapeutic drugs, including paclitaxel. The severity of 

symptoms can require a dose reduction, or even cessation of chemotherapy, impacting on 

survival. CIPN affects around 33% of patients, and can persist months or years beyond the 

cessation of treatment. It is characterized by numbness, paresthesia, and pain.1 2 Duloxetine 

is the only treatment which has been shown in a randomized clinical trial to be effective in 

some patients with CIPN3 and is recommended as a first line treatment for adults with this 

condition. However, long term management of CIPN is often inadequate and there is urgent 

need for a mechanism-derived novel treatment.4  

Mitochondria produce most of the body’s cellular energy via oxidative phosphorylation, 

producing reactive oxygen species (ROS) in the process. Although ROS are potentially toxic, 

they have essential roles in cell signalling and any damage is controlled by an interacting and 

highly regulated system of endogenous antioxidants. As well as being the main source of 

ROS, mitochondria are also a target for damage and when antioxidant defences are 

overwhelmed, oxidative stress can result in mitochondrial dysfunction and impairment of ATP 

production. Thus damage to mitochondria is caused primarily by ROS produced by the 

mitochondria themselves.5  

 

Paclitaxel has been shown to cause oxidative stress and mitochondrial damage6-7 and 

accumulates in neuronal tissue. Neuronal cells are particularly sensitive to oxidative insults, 

and ROS have been implicated in many neurodegenerative processes, including Alzheimer's, 

Parkinson's, and Huntington's diseases, acute brain ischaemia, and excitotoxicity. 

Neuropathic pain as a result of paclitaxel therapy may be related to mitochondrial damage to 

neuronal cells8-9 and so antioxidants which are able to protect inside mitochondria may be 

useful. Antioxidants can be targeted selectively to mitochondria by conjugation to a lipophilic 

cation.10 MitoVitE consists of α-tocopherol attached to a triphenylphosphonium (TPP) cation, 

enabling its rapid uptake through the plasma and mitochondrial membranes and 

accumulation within mitochondria as a result of the large membrane potential (negative 

inside) across the mitochondrial inner membrane. MitoVitE accumulates in all major organs of 

mice and rats after oral, intraperitoneal (i.p.) or intravenous administration.11 Trolox (6-

hydroxy-2,5,7,8-tetra methylchroman-2-carboxylic acid) is a synthetic, water soluble cell-

permeable derivative of vitamin E which accumulates in the cell cytosol and has potent 

antioxidant activity with direct scavenging activity against peroxyl and alkoxyl radicals.12 

A number of rodent models of CIPN have been developed, including a paclitaxel induced CIPN 

model. Behavioural changes develop over time, with related neurobiological changes 

demonstrated, including mitochondrial dysfunction.13    
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The aim of this study was to investigate the effects of two vitamin E-based antioxidants in an 

in vitro model of paclitaxel-induced oxidative stress and mitochondrial damage in a DRG cell 

line, and effects on mechanical hypersensitivity in a preclinical model of paclitaxel CIPN in 

rats.  

Materials and methods 

In vitro studies 

An immortalized dorsal root ganglion (DRG) neuronal stem cell line (50B11) with nociceptive 

properties was used (a kind gift from Professor Ahmet Hoke, from Johns Hopkins School of 

Medicine, Baltimore, MA, USA). When differentiated, these cells extend neurites, express the 

capsaicin receptor transient receptor potential vanilloid family-1 (TRPV-1) and other 

receptors characteristic of small sensory neurones, generate action potentials when 

depolarized, and respond to capsaicin.14 Cells (used at passage 5-15) were grown to 70% 

confluence in neurobasal media devoid of phenol red (Invitrogen, Paisley, UK) supplemented 

with 10% v/v foetal calf serum, B27 (Invitrogen, Paisley, UK), 2% w/v glucose, 0.5mM L-

glutamine, 50µg/ml gentamycin, 250µg/ml amphotericin-B and 5µg/ml ciprofloxacin, in a 

humidified incubator containing 5% CO2 at 37°C. Cells were then treated with 75µM forskolin 

and allowed to differentiate into DRG for 24h. Neurite outgrowth normally started around 10 

hours after addition of forskolin. After 24h exposure to forskolin, paclitaxel (0-100µM) was 

added, corresponding broadly to levels seen in the circulation during clinical use. However, 

paclitaxel accumulates in cells and tissues and so the concentration range was extended to 

allow for this. In addition some cells were also concurrently exposed to 1µM MitoVitE, 1µM 

Trolox or a relevant solvent control. 

 

Acid phosphatase activity 

Acid phosphatase activity was used to assess cell viability.15 Differentiated cells were grown 

in 96-well plates and treated as described above for 24h then washed twice with phosphate 

buffered saline (PBS). Acid phosphatase solution containing 0.1M sodium acetate, 1% v/v 

Triton X-100, 5mM p-nitrophenyl in distilled water (pH 5.0) was added to each well and cells 

were incubated in the dark for 1h at 37°C. Sodium hydroxide (0.25M) was added to stop the 

reaction and the absorbance measured using a spectrophotometer at 450nm.  

 

Mitochondrial function  

Mitochondrial membrane potential was analyzed in intact cells using the fluorescent probe 

JC-1 (5,5,6,6-tetrachloro-1,1,3,3-tetraethylbenzimidazolcarbocyanine iodide, Invitrogen, 

Paisley, UK). Briefly, after 24h treatments as described above, cells were washed with PBS 

and then incubated for 30 min with 7.5µM JC-1 in PBS at 37oC, in the dark. Following 
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incubation, cells were washed twice with PBS and the red/green fluorescence ratio was 

measured immediately.16 Results were corrected for cell viability. 

 

Metabolic activity was assessed by measuring the rate of reduction of AlamarBlue™ in intact 

cells after 24h treatment as described above.17 AlamarBlue™ (Invitrogen) is a redox indicator 

that exhibits both fluorescent and colourimetric changes in response to changes in metabolic 

activity via oxidative metabolism. Briefly, following cell treatments, AlamarBlue™ was added 

to each well and fluorescence was measured every 15 min for 2h at 37oC.  Metabolic activity 

was determined as the rate of change in fluorescence over time. Results were corrected for 

cell viability. 

 

Glutathione (GSH) 

Cellular GSH levels were measured as an indicator of oxidative stress. The lipophilic 

compound monochlorobrimane (MCB, Sigma, Dorset, UK) binds to GSH via the action of the 

enzyme glutathione-S-transferase. The fluorescence of the resulting MCB-GSH conjugate is 

proportional to cellular GSH concentration.18 Cells were treated for 24h as above, washed 

with PBS and incubated with 20µM MCB for 30 minutes at 37°C. GSH was analysed by 

measuring fluorescence at excitation/emission wavelengths of 340/520nm. Results were 

corrected for cell viability. 

 

Cancer cell cytotoxicity 

Since it is possible that antioxidants would either interfere with or enhance the ability of 

paclitaxel to kill cancer cells, we also conducted experiments using the breast 

adenocarcinoma-like oestrogen-sensitive cell line, MCF-7, and the ovarian carcinoma cell line 

A2780, to assess paclitaxel induced cell killing in the presence of the antioxidants. Cells were 

cultured in Dulbecco’s modification of Eagle’s medium (DMEM) supplemented with 4.5g/l 

glucose, 10% v/v foetal calf serum, 50µg/ml gentamycin and 250µg/ml amphotericin-B for 

24h. Cell viability was measured using acid phosphatase activity as described above. 

Animal model 

All studies were carried out in accordance with Animals (Scientific Procedures) Act 1986, and 

within the confines of project and personal licences issued by the UK Home Office, following 

relevant aspects of the ARRIVE Guidelines. Male Sprague Dawley rats, bred in-house and 

weighing 250-300g (approximately 7 weeks old) were used. Rats were housed up to 6 per 

cage at 19-22°C, on a 12-hour light/dark cycle from 7am to 7pm. Animals had free access to 

food and drinking water. Animals were housed in the testing room throughout experiments 

and for at least three days prior to baseline sensitivity measures. 
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Rats were allocated by cage to receive either paclitaxel or its vehicle control (Cremophor/EL 

and ethanol 1:1 [v/v] and diluted with saline as for paclitaxel and hereafter referred to as 

Cremophor) with and without MitoVitE or duloxetine as positive comparator. Since treatment 

with paclitaxel may contaminate other animals via coprophagy, animals could not be 

individually randomised to treatment group. Rats received 4 x doses of 2mg kg-1 paclitaxel or 

Cremophor by i.p. injection every second day19 and also received either 2mg kg-1 day-1 

MitoVitE, 10mg kg-1 day-1 duloxetine or equivalent vehicle control by daily i.p. injection 

starting 7d before paclitaxel administration, to allow steady state tissue concentrations to be 

reached and to allow assessment of any effects in naïve animals. The injection site was 

varied daily to minimise any local tissue damage.  

For behavioural sensory testing, rats were acclimatised to testing apparatus in 2 x 20 min 

sessions on separate days prior to testing, and further habituated for 20 min immediately 

prior to testing on any given day. To ensure blinding of the tester to the treatment, rats from 

several cages were briefly combined in a single cage before testing commenced; group 

allocation was only confirmed by tail number after testing was complete. Mechanical 

withdrawal thresholds were measured using the up-down method using a series of von Frey 

filaments of varying weights to gauge the withdrawal threshold and thereby mechanical 

sensitivity.20 Starting with a 2g filament, increasingly heavier filaments were applied to the 

plantar region of the hind paw until a paw withdrawal response was observed. Sequentially 

smaller filaments were then tested until no response was observed, then increased again 

until a response was observed. This approach was repeated until there were five measures 

after the initial response. The value of the final filament tested, and sequence of responses 

were then used to calculate the mechanical threshold using the equation devised by Chaplan 

et al.20 Behavioural measures were undertaken 3, 6 and 9 h after the MitoVitE or duloxetine 

injection, every 2 d starting 3 d before paclitaxel administration and continuing until 14 d 

after initial paclitaxel administration.  

Statistical analysis 

For in vitro studies, 6 independent experiments with 4 technical replicates were undertaken 

(n=6). No assumptions were made about data distribution and all data are presented as 

median, interquartile/full range. Statistical analysis was undertaken using Analyse-it add in 

for Microsoft Excel (Analyse-it Software Ltd., Leeds, UK). Kruskal Wallis analysis of variance 

was used for each in vitro treatment, with Mann Whitney post hoc testing and correction for 

multiple comparisons as appropriate. For in vivo studies 5-9 rats per group were used. Data 

are presented as mean and standard deviation (SD) and were analysed using two-way 

repeated measures ANOVA with Bonferroni-corrected post hoc comparisons (Graph-Pad 

Prism v5.0, California, USA). A p value of <0.05 was considered to be significant. 
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Results 

In vitro studies 

 

Acid phosphatase activity 

There was a significant dose dependent effect of paclitaxel exposure on DRG cell viability 

such that at 100uM paclitaxel the median [range] viability was 66.3 [58.0-88.3]%. However 

there was no additional effect of MitoVitE or Trolox (see Supplementary data). All subsequent 

measures were corrected for median viable cell number. 

 

Mitochondrial function  

Exposure of cells to paclitaxel at all doses without antioxidants resulted in decreased JC-1 

red/green fluorescence ratio, indicating a loss of mitochondrial membrane potential 

(p<0.0001, Fig 1A). Mitochondrial membrane potential in cells without paclitaxel was similar 

to cells with antioxidant only, but in cells co-treated with paclitaxel and MitoVitE, membrane 

potential was only decreased at the highest dose of paclitaxel (Fig 1A). Cells treated with 

Trolox had similar loss of membrane potential to paclitaxel alone (Fig 1A), suggesting that it 

was ineffective at preventing loss of potential induced by paclitaxel. Mitochondrial metabolic 

activity was significantly lower in cells treated with paclitaxel regardless of dose (p<0.0001, 

Fig 1B). In cells co-treated with MitoVitE there was no decrease in metabolic activity even at 

the highest paclitaxel dose (Fig 1B). Trolox in contrast, worsened the loss of metabolic 

activity (Fig 1B). 

 

Glutathione (GSH) 

Compared to control treatments, cellular GSH levels were significantly lower in cells exposed 

to paclitaxel without antioxidants, independent of the paclitaxel dose (p<0.0001, Fig 1C). Co-

exposure of paclitaxel with MitoVitE but not Trolox, mitigated the effect on GSH (Fig 1C).  

 

Cancer cell cytotoxicity 

Exposure of the A2780 ovarian carcinoma cell line or the MCF7 breast adenoma cell line to 

paclitaxel resulted in dose-dependent decreases in acid phosphatase activity, indicating loss 

of cell viability, such that at 100µM paclitaxel, only 60% of cells were viable. Co-exposure of 

cells to paclitaxel plus MitoVitE showed similar loss of viability (Figs 2A and 2B). Similar 

results were seen in Trolox treated ovarian cancer cells (Fig 2A), but paclitaxel mediated 

killing of breast cancer cells was less effective in the presence of Trolox (Fig 2B). 

 

As a result of the promising effects of MitoVitE observed in vitro we then went on to assess 

its effects in vivo, with duloxetine as comparator. 
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In vivo studies 

None of the treatments had an effect on weight gain (Supplementary file).There was also no 

effect of MitoVitE or duloxetine on withdrawal thresholds in the absence of paclitaxel 

administration, i.e. in naïve animals (see Supplementary file). 

Mechanical withdrawal thresholds of a hind paw were examined, every second day, at 3, 6, 

and 9h after the daily injection of MitoVitE or duloxetine (Fig 3). Rats receiving paclitaxel with 

vehicle control treatments had significantly lower withdrawal threshold values compared to 

those receiving Cremophor from 4 days following the first paclitaxel injection until the end of 

the study (day 14). Rats receiving paclitaxel plus duloxetine had significantly higher 

withdrawal threshold values than rats given paclitaxel plus vehicle control on days 8-12. 

However rats receiving paclitaxel plus MitoVitE had significantly higher withdrawal threshold 

values than rats given paclitaxel plus vehicle control, over the longer timeframe of days 4-14 

(with the exception of day 6).  

For both MitoVitE and duloxetine treatment groups, significantly increased withdrawal 

thresholds were not consistent across the 3, 6 and 9h time points indicating time-dependent 

drug effects (Fig 3). To directly assess this, area under the curve (AUC) values between days 

0 and 14 were calculated for each individual animal at each time point (Fig 4A). There was no 

significant difference between 3, 6 and 9h time points in the rats receiving either Cremophor 

or paclitaxel plus vehicle control. However in rats receiving paclitaxel plus duloxetine there 

was a significant effect of time, with a peak effect at 6h. In contrast, although there was a 

significant effect of time in the rats receiving paclitaxel plus MitoVitE there was a 

progressively increasing effect between 3 and 9h. This led us to assess an additional 24hr 

time point following the last drug/vehicle administration (day 14, Fig 4B). There was a 

significant effect at the 6h time point only in rats treated with paclitaxel plus duloxetine, 

compared with rats given paclitaxel plus vehicle control. The effect was more prolonged in 

rats receiving paclitaxel plus MitoVitE with a significant effect at 6, 9 and 24h (Fig 4B). 
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Discussion 

We found that in DRG cells in vitro, paclitaxel affected aspects of mitochondrial function. 

There was loss of mitochondrial membrane potential, reduced metabolic activity, and loss of 

glutathione. Co-treatment of cells with paclitaxel plus MitoVitE but not Trolox, protected 

against these effects. MitoVitE also did not decrease the ability of paclitaxel treatment to kill 

cancer cells in two different cancer cell lines, whilst cytotoxicity against breast cancer cells 

was decreased by Trolox. In a rat model of chemotherapy induced neuropathic pain, we also 

showed that MitoVitE decreased paclitaxel-induced mechanical hypersensitivity to a similar 

degree as duloxetine. Moreover, at the doses tested, the duration of action of MitoVitE was 

more prolonged than that of duloxetine. 

Chemotherapy remains the mainstay of cancer treatment for solid tumours but side effects 

can be severe enough to limit treatment. Paclitaxel acts by binding to microtubules and 

causing arrest of mitosis in cancer cells, followed by apoptotic cell death. Although 

proliferating cancer cells are susceptible to the action of paclitaxel, neuronal cells are also 

targets for damage and it has been shown that paclitaxel initiates opening of the 

mitochondrial permeability transition pore leading to loss of mitochondrial function in DRG 

cells.21 In paclitaxel treated rats, neuropathic pain behaviour was shown previously to be 

associated with evidence of mitochondrial damage in peripheral nerves,9 and administration 

of mitochondrial poisons such as rotenone was seen to worsen such behaviours.22 

The main function of mitochondria is to produce energy via oxidative phosphorylation but 

they are also an important source of ROS production, essential for signalling pathways. 

Although excessive mitochondrial ROS can be detrimental, antioxidant systems work in 

synergy to control potential damage under normal conditions.5 Exposure of a variety of cell 

types to paclitaxel has been shown to result in increased ROS production and oxidative 

stress7 8 and in animals, treatment with spin trap global radical scavengers reduced pain 

behaviour induced by paclitaxel.23 Recently, an inhibitor of mitochondrial p53 accumulation 

was reported to limit paclitaxel induced mitochondrial damage and prevented mechanical 

allodynia, supporting the mechanistic importance of mitochondrial dysfunction and the 

rationale for targeting treatment specifically at mitochondria.24  

Antioxidants can be modified to specifically target mitochondria and may be more effective 

than those that do not. MitoVitE is able to enter mitochondria by virtue of the TPP cationic 

conjugate which enables accumulation several hundred fold inside the mitochondrion relative 

to cytosolic levels. It has been shown to be many more times more effective at protecting 

against oxidative damage to mitochondria than other non-targeted antioxidants10 11 and we 

and others have shown it to be effective in other disease models involving mitochondrial 
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damage and oxidative stress.25 26 Trolox is a water soluble derivative of α-tocopherol which 

permeates cells easily but cannot protect inside mitochondria. It has been shown to be 

beneficial against oxidative stress in both cells and animals but has far lower antioxidant 

activity than MitoVitE in standard in vitro rat brain homogenate lipid peroxidation assays.27 In 

DRG cells in vitro, we found that MitoVitE but not Trolox, protected against mitochondrial 

dysfunction induced by paclitaxel. 

Mitochondrial membrane potential is an indicator of the efficiency of the electron transport 

chain which creates the membrane potential, and the inner membrane permeability.28 Using 

a novel flow cytometry technique, Zhang and colleagues reported that paclitaxel dose 

dependently reduced mitochondrial membrane potential of isolated mitochondria from HeLa 

cells.29 JC-1 is a widely used tool for measurement of mitochondrial membrane potential and 

is thought to be a more reliable measure than other cationic probes16 28 although it must be 

interpreted alongside other measures of mitochondrial function. In isolated mitochondria 

from human neuroblastoma, paclitaxel induced release of cytochrome C and loss of 

mitochondrial membrane potential30 and in human melanoma cell lines paclitaxel exposure 

resulted in decreased expression of mitochondrial uncoupling protein 2 (UCP2) with increased 

ROS generation and loss of mitochondrial membrane potential, suggesting opening of the 

mitochondrial pore.31 We also found that paclitaxel caused loss of mitochondrial membrane 

potential in intact DRG cells.  

 

We used AlamarBlue as a measure of mitochondrial metabolic activity; this compound is 

catalysed by oxidoreductases in mitochondria and can be used as a global measure of 

mitochondrial metabolic activity.16 17 AlamarBlue can be reduced by NADPH, FADH, FMNH, 

NADH and the cytochromes thus allowing the respiratory chain to function to near 

completion. We found that paclitaxel caused lower metabolic activity, and MitoVitE but not 

Trolox, abrogated this. Decreased metabolic activity seen here in viable cells is probably an 

adaptive mechanism as a result of increased UCP2 expression in response to increased ROS 

formation. UCP2 acts as a uncoupler to reduce ROS formation and not ATP formation as 

indicated by the degree of decline in the mitochondrial membrane potential. Decreased 

metabolic activity represents a protective response. 

Increased total glutathione can suggest oxidative stress, but consumption and loss of GSH 

can represent overwhelming of the glutathione system. Glutathione levels decreased in DRG 

cells exposed to paclitaxel in the present study and this was less marked in cells treated with 

MitoVitE but not Trolox. In mouse tissue slices, paclitaxel-mediated release of calcitonin 

gene-related peptide, a sensory neuropeptide implicated in paclitaxel induced neuropathy, 

was abolished by treatment with glutathione.32  
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Antioxidants are known to protect against chemotherapy-induced oxidative stress and so 

addition of antioxidants to cancer chemotherapeutic regimens could in theory decrease their 

efficacy in killing cancer cells. The efficacy of cell killing in breast carcinoma cell lines by 

some chemotherapeutic drugs was shown previously to be reduced by concomitant treatment 

with non-biological antioxidants.33 Another study reported that although resveratrol, a 

naturally occurring antioxidant found in grapes and other red berries, reduced the efficacy of 

paclitaxel to kills some breast cancer cell lines, susceptibility of MCF-7 cells was not 

diminished.34 However a subsequent study found increased cytotoxicity of paclitaxel in the 

presence of resveratrol even in paclitaxel resistant breast cancer cell lines.35 However we 

found that MitoVitE did not inhibit the cytotoxic action of paclitaxel against two different 

types of cancer cells whereas Trolox seemed to reduce killing in the MCF7 cells. In attempts 

to improve drug delivery, vitamin E has been used to form D-α-tocopherol polyethylene 

glycol (PEG) 1000 succinate by the esterification of tocopherol succinate with PEG 1000, to 

create a redox sensitive paclitaxel pro-drug which apparently increases paclitaxel induced 

cytotoxicity in A549 cells.36 

We used the well-characterized rat model of paclitaxel-induced neuropathic pain, where rats 

exhibit reduced mechanical withdrawal thresholds as assessed using Von Frey filaments, 

indicative of mechanical allodynia.19 20 Several rat models of paclitaxel-induced CIPN exist, 

employing a wide range of doses, treatment regimens and routes of administration. The 

specific model used here is amongst the most widely used and best characterized of 

paclitaxel induced CIPN models.19 We found, at the doses tested, treatment with MitoVitE (a 

mitochondria targeted form of tocopherol) limited paclitaxel-induced mechanical 

hypersensitivity to a similar level as that seen with duloxetine and moreover had a longer 

duration of action. Duloxetine has been shown to be effective in reducing neuropathic pain in 

clinical trials in patients treated with chemotherapy.3 4 In rat models of neuropathy other 

than that induced by paclitaxel, tocopherol (naturally occurring lipid soluble vitamin E) was 

reported to reduce allodynia after sciatic nerve crush injury,37 chronic constriction induced 

ischaemic injury38 and oxalipatin induced neuropathy.39 MitoVitE has been shown to be more 

effective in reducing mitochondrial damage in rat models of sepsis, another condition 

involving oxidative stress25 26 but there have been no studies describing its use in neuropathy 

or pain. 

MitoVitE has not been through Phase I trials and so cannot currently be used in patients; 

however this study demonstrates proof of concept regarding a beneficial effect of 

mitochondria targeted antioxidant protection for CIPN. Other antioxidants which specifically 

protect inside mitochondria may be suitable for clinical use.40 Further work should assess 

different antioxidant doses, varied timings of administration in relation to pain onset and any 
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potential synergy with duloxetine. It would also be of interest to study the impact on 

underlying neuropathology by quantifying intraepidermal nerve fibre density.41 

In summary we showed that paclitaxel induced mitochondrial damage in dorsal root ganglion 

cells in vitro and that this was ameliorated by MitoVitE but not Trolox. In a rat model of 

paclitaxel induced neuropathic pain, MitoVitE was as effective at reducing mechanical 

hypersensitivity as duloxetine, the first line treatment for patients with paclitaxel induced 

neuropathic pain. These results confirm the role of mitochondrial oxidative damage in 

paclitaxel-mediated CIPN and suggest novel future treatment strategies. 
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Legends to figures 

Figure 1 

Effect of a range of concentrations of paclitaxel plus 1µM MitoVitE or Trolox, or vehicle control 

on A. mitochondrial membrane potential, B. mitochondrial metabolic activity and C. 

glutathione (GSH) in dorsal root ganglion cells.  

 

Results are presented as percentage of data at baseline i.e. vehicle control treated cells 

without paclitaxel but with antioxidant treatment, to facilitate comparisons between 

treatments. Data are shown as box and whisker plots showing median, interquartile and full 

range (n=6). P value is Kruskal Wallis. * = significantly different to without paclitaxel. 

 

Figure 2 

Effect of a range of concentrations of paclitaxel plus 1µM MitoVitE or Trolox, or vehicle control 

on cell viability in A. the A2780 ovarian carcinoma cell line and B. in the MCF-7 breast 

adenocarcinoma-like oestrogen-sensitive cell line.  

 

Results are presented as percentage of data at baseline i.e. vehicle control treated cells 

without paclitaxel but with antioxidant treatment, to facilitate comparisons between 

treatments. Data are shown as box and whisker plots showing median, interquartile and full 

range (n=6). P value is Kruskal Wallis. * = significantly different to without paclitaxel. 

 

Figure 3 

 

Mechanical hind paw withdrawal thresholds of groups receiving Cremophor (black), paclitaxel 

with vehicle control (red), paclitaxel with duloxetine (green) and paclitaxel with MitoVitE 

(blue). Mechanical withdrawal thresholds measured at A. 3 hours B. 6 hours and C. 9 hours 

after drug or vehicle administration.  

 

Data are shown as mean (SD), n=5-9 per treatment group. Two-Way ANOVA followed by 

Bonferroni post hoc test used to compare all groups to paclitaxel with vehicle control. o = 

Cremophor p<0.001, * = paclitaxel with MitoVitE p<0.05, + = paclitaxel with duloxetine 

p<0.05.  

 

Figure 4 

A. Area under the curve values of mechanical withdrawal thresholds at 3, 6 and 9h after 

drug/vehicle administration as displayed in Fig 3. Data are shown as mean (SD), n=5-9 per 
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treatment group. Two-way repeated measures ANOVA with Bonferroni-corrected post hoc 

tests indicated time-dependent effects of both MitoVitE and duloxetine administration. B. 

Mechanical withdrawal thresholds in the 24h following the last drug/vehicle administration 

(day 14). Cremophor (black), paclitaxel with vehicle control (red), paclitaxel with duloxetine 

(green) and paclitaxel with MitoVitE (blue).  

 

Two-Way ANOVA followed by Bonferroni post hoc test used to compare all groups to 

paclitaxel with vehicle control. o = Cremophor p<0.001, * = paclitaxel with MitoVitE p<0.05, 

+ = paclitaxel with duloxetine p<0.05.  

 

Page 18 of 22British Journal of Anaesthesia

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

0        1     5      10    100  
mM Paclitaxel 

Vehicle control MitoVitE Trolox 
%

 m
et

ab
o

lic
  

ac
ti

vi
ty

 

* * * * 

0

20

40

60

80

100

120

140

NS P<0.0001 0

20

40

60

80

100

120

140

P<0.0001 

* * * 

* 

%
 m

em
b

ra
n

e
 

 p
o

te
n

ti
al

 

40

60

80

100

120

140

160

180

P=0.0086 

* 

P<0.0001 

* * * 

* 
* 

40

60

80

100

120

140

160

180

P<0.0001 

* * 

* 

%
 G

SH
 

NS 60

80

100

120

60

80

100

120

P=0.002 P<0.0001 

* * * 
* * 

* 

0        1     5      10    100  
mM Paclitaxel 

0        1     5      10    100  
mM Paclitaxel 

Fig 1 
A 

B 

C 

40

60

80

100

120

140

160

180

40

60

80

100

120

140

60

80

100

120

Page 19 of 22 British Journal of Anaesthesia

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

40

50

60

70

80

90

100

110

40

50

60

70

80

90

100

110

%
 v

ia
b

ili
ty

 A
2

7
8

0
 

40

50

60

70

80

90

100

110

P<0.0001 P<0.0001 P<0.0001 

MitoVitE Trolox 

* 
* 

* * * 
* 

* 

* 
* * 

* * 

0

20

40

60

80

100

120

140

P=0.0009 

* 

%
 v

ia
b

ili
ty

 M
C

F7
 

0

20

40

60

80

100

120

140

P=0.0021 

* 

* 
* * 

* 

0

20

40

60

80

100

120

140

P=0.0053 

0        1     5      10    100  
mM Paclitaxel 

0        1     5      10    100  
mM Paclitaxel 

0        1     5      10    100  
mM Paclitaxel 

Fig 2 A 

B 

Vehicle control 

Page 20 of 22British Journal of Anaesthesia

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
0 5 1 0 1 5

0

5

1 0

1 5

*

o o ooo

D a y s  a fte r P a c lita x e l

W
it

h
d

r
a

w
a

l 
th

r
e

s
h

o
ld

 (
g

)
b a s e lin e

0 5 1 0 1 5

0

5

1 0

1 5

*
+

*
+ +

o

*

o o o o o

D a y s  a fte r P a c lita x e l

W
it

h
d

r
a

w
a

l 
th

r
e

s
h

o
ld

 (
g

)

b a s e lin e

0 5 1 0 1 5

0

5

1 0

1 5

* *
+

*
+ +

o ooo

* *

oo

D a y s  a fte r P a c lita x e l

W
it

h
d

r
a

w
a

l 
th

r
e

s
h

o
ld

 (
g

)

b a s e lin e

A 

B 

C 

Fig 3 Page 21 of 22 British Journal of Anaesthesia

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

0 3 6 9

0

5

1 0

1 5

2 4

*
+

o o o o

* *

H o u rs  a fte r  in je c t io n

W
it

h
d

r
a

w
a

l 
th

r
e

s
h

o
ld

 (
g

)

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 h

6 h

9 h

******

*

C re m a p h o r

+  V e h ic le

P a c l ita x e l

+  V e h ic le

P a c l ita x e l

+  M ito V itE

P a c l ita x e l

+  d u lo x e t in e

A
U

C
 o

f 
W

it
h

d
r
a

w
a

l 
th

r
e

s
h

o
ld

A 

B 

Fig 4 Page 22 of 22British Journal of Anaesthesia

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


