SCIENTIFIC REPLIRTS

Oxidative costs of reproduction in
mouse strains selected for different
levels of food intake and which
e differ in reproductive performance

Published: 14 November 2016 Ageel H. Al Jothery'?, Lobke M. Vaanholt?, Nimesh Mody?, Anis Arnous*, Jens Lykkesfeldt?,

Lutz Binger®, William G. Hill®, Sharon E. Mitchell!, David B. Allison’ & John R. Speakman®

Oxidative damage caused by reactive oxygen species has been hypothesised to underpin the trade-
off between reproduction and somatic maintenance, i.e., the life-history-oxidative stress theory.
Previous tests of this hypothesis have proved equivocal, and it has been suggested that the variation
in responses may be related to the tissues measured. Here, we measured oxidative damage (protein
carbonyls, 8-OHdG) and antioxidant protection (enzymatic antioxidant activity and serum antioxidant
capacity) in multiple tissues of reproductive (R) and non-reproductive (N) mice from two mouse strains
selectively bred for high (H) or low (L) food intake, which differ in their reproductive performance, i.e.,
H mice have increased milk energy output (MEO) and wean larger pups. Levels of oxidative damage
were unchanged (liver) or reduced (brain and serum) in R versus N mice, and no differences in multiple
measures of oxidative protection were found between H and L mice in liver (except for Glutathione
Peroxidase), brain or mammary glands. Also, there were no associations between an individual’s
energetic investment (e.g., MEO) and most of the oxidative stress measures detected in various tissues.
These data are inconsistent with the oxidative stress theory, but were more supportive of, but not
completely consistent, with the ‘oxidative shielding’ hypothesis.

Trade-offs between life history components form the basis of our understanding of the evolution of life histories!?.
It is assumed that resources (or the ability to utilise them?) are limited and consequently animals cannot maxi-
mize all their life history components at the same time. That is an increase in current reproductive effort comes at
the cost of reduced future reproductive effort and/or increased mortality?. Oxidative stress has been proposed to
be a potential proximal physiological cost of reproduction®6. Oxidative stress results from an imbalance between
the production of reactive oxygen species (ROS) and the capacities of antioxidants and repair systems, leading
to damage to lipids, proteins, and DNA”. ROS include free radicals and non-radical species derived from oxygen
primarily as by-products of oxidative phosphorylation in mitochondria. According to the expectations derived
from the oxidative stress theory, investment in protection and repair are reduced during reproduction, leading to
an increase in oxidative damage and hence leading to negative effects on future survival and fecundity.

Over the last decade many studies have attempted to evaluate this idea by measuring components of the
repair and protection systems, and levels of oxidative damage that are subsequent of reproductive attempts. The
resultant data, however, have proved confusing with some studies supporting the hypothesis (increased damage
due to reproduction), other studies more neutral (no effect of reproduction) and some studies showing trends
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Variables H mice(N=22) | Lmice (N=15) | Outcomes of T-test
i%%i‘iif{fg) measured prior to 249404 252+40.6 ti2s=—0.32, P=0.75
Body mass (g), d15 of lactation 32.84+0.7 29.94+0.8 t30=2.77,P=0.01
MEI (k] d !, d12-d14 of lactation 2109+7.6 129.4+6.5 t134=38.12,P<0.001
DEE (kJ d'), d15-d17 of lactation 90.4.4+2. 722421 t134=5.05, P<0.001
MEO (kjd 1) 120.6+6.7 57.1£6.7 t13,=7.19,P<0.001
Litter size at weaning (d18) 7.1+0.3 57404 t),6=2.48,P=0.02
Litter mass (g) at weaning 70.9+2.6 452+2.8 t13,=6.65,P<0.001
Pup mass (g) at weaning 10.1£0.2 8.1+£0.3 t) =642, P<0.001

Table 1. Reproductive performance of lactating female mice selected high (H) and low (L) food intake.
Mean =+ SEM for variables measured in H and L mice prior and during lactation. Results for independent t-test
are shown. MEI: Metabolisable energy intake; DEE: Daily energy expenditure; MEO: Milk energy output.
Values shown are mean + SEM.

in the opposite direction to that predicted (reduced damage)®-'>. The cause of the variation in responses has
been the subject of much recent speculation®*!%17, including the suggestion that it may stem from poor exper-
imental design, or differences between the field and laboratory in the extent of resource limitation. In part the
variation may arise from the wide diversity of tissues and assays that have been measured in different studies. In
general, measurements based on serum or plasma have been supportive of the hypothesis, but measurements on
tissues have been less supportive or contradictory'’. Indeed recent studies have shown that it is possible to get
data both confirming and refuting the hypothesis in the same individuals by examining responses in different
tissues, or using different markers!'®'. This raises the question of what tissues and biomarkers provide the most
critical tests of the hypothesis'’, and why different tissues show such variable responses. It has been suggested
that one reason why females in lactation may show a reduced level of damage in some tissues is because there are
trans-generational consequences of the levels of damage sustained by the female during reproduction®. Females
may therefore protect themselves during reproduction because this shields their offspring from oxidative damage:
the ‘oxidative shielding hypothesis'®. The tissues where damage is generally shown to be reduced (the liver) may
be crucial in this respect because some of the secreted substrates in milk may be synthesised in the liver. Lactating
females may therefore protect their livers (and presumably their mammary glands) to shield their offspring, but in
so doing neglect to protect other tissues that would likely not impact their offspring, but have negative life history
consequences for themselves.

One tissue that may be crucial in this respect is the brain. The brain is post-mitotic and has been shown to be
highly susceptible to oxidative damage. Paradoxically, however, very few studies have measured the consequences
of reproduction on oxidative damage in the brain, one of which concerned male rats where costs of reproduction
are low?!, and two others concerned lactating striped hamsters and lactating mice that showed opposing results,
with increased oxidative damage in brains of lactating hamsters (measured by hydrogen peroxide)?? and reduced
damage in lactating mice (measured by protein carbonyls) compared to non-reproductive controls®. In the cur-
rent study we measured the consequences of reproduction (lactation) in female mice for oxidative damage in a
liver, brain and mammary tissue. We used a variety of biomarkers of oxidative protection (lROMS and antioxi-
dant enzyme activities of SOD; superoxide dismutase, GPx; glutathione peroxidas and CAT; catalase) and damage
(protein carbonyls and 80OHAG), and compared these in lactating and non-reproducing mice from two strains
selected for different levels of food intake (high, H and low, L). We have previously shown that these lines differ
significantly in their levels of reproductive performance with H mice having a higher performance than L mice,
i.e., milk production was greater and weaned pups that were ~30% larger®*. In line with the oxidative stress theory,
we hypothesised that mice from the H line, with their higher reproductive effort, would reduce investment in
protection and repair during lactation, leading to an increase in oxidative damage compared to L mice. Similarly,
lactating mice would be expected to have increased damage compared to non-reproducing mice.

Results
Selection lines. Reproductive success was higher in H mice than in L mice with 22 out of 29 vs. 15 out of 41
litters successfully weaning pups. Body mass (BM) prior to mating did not differ between mice that did or did not
fall pregnant within each line, i.e., for L line mean BM of non-pregnant mice and pregnant mice was 27.0 £ 2.6
and 25.6 £ 2.16 respectively (t-test: p=0.08) and for H line it was 25.5%3.1 and 24.9 + 2.0 respectively (t-test:
p=0.6). Also, there were no significant differences in BM between mice of the L and H line prior to mating
(Table 1).

During lactation H mice had 62% higher metabolisable energy intake (MEI) and more than doubled milk
energy output (MEO) compared to L mice. H mice weaned 25% larger pups (Table 1).

Serum. Effects of line and reproductive status. General linear models (GLM) with reproductive status
(non-reproductive, N vs. reproductive, R) and line (H vs. L) as fixed factors were performed to test for differences
between oxidative stress markers in serum and tissues. Reactive oxygen metabolites (dROM) and non-enzymatic
antioxidant activity (OXY) levels in serum were reduced by 15-25% in reproductive (R) versus non-reproductive
(N) mice (Table 2 and Fig. 1). In addition, H mice had significantly higher levels of dROMs than L mice of both
reproductive groups.(Table 2, Fig. 1A). A significant effect of line was also found for levels of OXY, but post-hoc

SCIENTIFICREPORTS | 6:36353 | DOI: 10.1038/srep36353 2



www.nature.com/scientificreports/

Variables NH RH NL RL Line Reproductive status
n 10 20 10 14

dROMs 11.52*4+0.40 9.18°4-0.28 9.26°40.52 6.83°+0.50 F,5,=31.6,P<0.001 | F,5;,=31.7, P <0.001
OXY 295.90%0+22.0 253.30°+10.60 | 380.10°+65.40 | 286.90**+14.20 | F,5,=57,P=0.020 | F,5 =55, P=0.023
OS Index 40.40*£2.57 37.51*+1.99 30.64*" +5.09 24.15*+1.85 F5=19.1,P<0.001 | F,5=2.6,P=0.11

Table 2. Descriptive statistics for oxidative markers measured in serum of lactating and non-reproductive
mice selected for high and low food intake. Measurements of reactive oxygen metabolites (dROMs) and total
non-enzymatic antioxidants (OXY) in reproductive and non-reproductive mice of selection lines for high or
low food intakes. OS index was calculated by dividing dROMS by OXY * 1000. Values shown are mean + SEM.
Results of two-way ANOVAs are shown with line and reproductive status as fixed factors. No significant
interactions between line and reproductive status were found in the models and these were therefore removed
before final analysis.NH: Non-reproducing high food intake mice; RH: Reproducing high food intake mice;
NL: Non-reproducing low food intake mice; RL: Reproducing low food intake mice. Different letters indicate
significant differences between groups (post-hoc Tukey tests, p < 0.05).

Tukey tests did not indicate any differences between RH and RL mice or NH and NL mice (Table 1, Fig. 1B). The
serum oxidative stress index (OSI =dROM/OXY*1000) was not significantly different between R and NR, but did
differ significantly between the lines, with H mice having a higher OSI compared to L mice by approximately 25%.

Effect of body mass, food intake and reproductive traits. ~General linear models (GLM ) were rerun with several
individual variables (i.e., BM, food intake; FI, and the reproductive traits: metabolisable energy intake; MEO,
daily energy expenditure; DEE, litter mass; LM or litter size; LS) as covariate to test how these variables affected
the results. No significant correlations with BM, food intake (FI) or reproductive traits and these oxidative
stress biomarkers were observed in General Linear Models (GLM) where they were added as covariates (See
Supplementary Table 1&2).

Liver. Effects of line and reproductive status. No significant effects of line or reproductive status were found
on oxidative stress markers measured in liver, except for the antioxidants catalase (CAT) and Glutathione
Peroxidase (GPx) (Table 3). Both, CAT and GPx activity were significantly lower in reproductive compared to
non-reproductive mice (Table 3, Fig. 2A). In addition, a significant effect of selection line was found for GPx,
with lower levels observed in H compared to L mice (Table 3, Fig. 2B). Post-hoc Tukey tests revealed a significant
difference between H and L mice in reproductive, but not in non-reproductive mice (Fig. 2B).

Effect of body mass, food intake and reproductive traits. ~An inverse relationship between BM and protein car-
bonyl (PC) levels was found and this relationship did not differ with line or reproductive status (Supplementary
Table 1, GLM with BM as covariate, line; F, ;o= 2.42, p=0.13, Reproductive status, F, 3,=0.01, p=0.92, BM,
p=0.03, y=—0.1x+ 3.09). FI and measurements of reproductive traits (MEI, DEE, and MEO) were not sig-
nificant covariates in GLMs for any measure of liver oxidative stress (Supplementary Table 1&2). Although, a
significant interaction between MEI and line was found for both superoxide dismutase (SOD) and GPx activ-
ities (SOD, MEIX line, P=0.02; GPx, MEIX line, P=0.03). Pearson correlation showed that both SOD and
GPx activity in reproductive L mice were positively correlated to MEI (SOD, r=0.65, P=0.04; GPx, r=0.67,
P=0.05), whereas this correlation was not significant in reproductive H mice (P > 0.05). Additional markers of
reproductive effort (LM and LS) were inversely related to protein damage in both lines (Pearson correlations: LM,
r=—0.45, P=0.048, Fig. 3C; LS, r=—0.46, P=0.043; Fig. 3D). Mice with higher reproductive effort (heavier LM
or larger LS) had reduced protein damage in their liver. No significant associations between reproductive effort
and any other measures of liver oxidative stress were found (all P > 0.05, See Supplementary Table 2).

Brain. Effects of line and reproductive status. Levels of PC were significantly decreased in reproductive
vs non-reproductive mice and levels of CAT were significantly increased, but no effects of line were observed
(Table 4, Fig. 4). The other oxidative stress markers were not affected by reproductive status or line (Table 4).

Effect of body mass, food intake and reproductive traits. Despite the lack of differences between the treatment
groups, there was a significant interaction between line and BM for SOD activity indicating that the relationship
between SOD and BM differed between the lines (Line x BM; F, 35 =5.01, P = 0.03, Supplementary Table 1).
Indeed, SOD activity in non-reproductive H mice was positively correlated with BM (y=1, 71x — 31.5, r=0.66,
P=0.05), but this relationship was absent in non-reproductive L mice (r = —0.47, P=0.17) and reproductive H
(r=0.47,P=0.18) and L mice (r=—0.08, P =0.82). FI and BM were not significant covariates in GLMs with any
other oxidative stress biomarkers in the brain. GLMs with reproductive traits revealed a significant interaction
between line and DEE for GPx activity (Line x DEE; F, ;,=4.71, P=0.04)); i.e., GPx activity was inversely cor-
related with DEE in reproductive L mice (y = 3.32x + 289, r=—0.72, P=0.03), but not in reproductive H mice
(r=0.12, P=0.76, see Supplementary Table 2).

Mammary glands.  Effects of line and reproductive status.  No significant differences between lactating mice

of the two strains (H and L) were found for any of the measured biomarkers of oxidative stress in mammary tissue
(Table 5).
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Figure 1. Markers of oxidative stress in the serum of non-reproducing female mice (NH, black bars, N=10;
NL, dark grey bars, N=10) and reproducing mice at day of weaning (RH, striated bars; N =20, RL, light grey
bars, N =14) (A) Reactive oxygen metabolites (ROM:s). (B) Total non-enzymatic antioxidants capacity (OXY,
untransformed data). Different letters inside the bars indicate significant differences between groups.

Effect of body mass, food intake and reproductive traits. Food intake was negatively correlated with mam-
mary gland GPx activity (GLM, F, ;,=4.9, P=0.03). Correlation between reproductive traits and oxidative stress
measures in the mammary gland revealed a significant interaction between line and LS for SOD activity (GLM,
F,;,=4.9, P=0.03), but the correlation between SOD activity and LS did not reach significance in either line
(RH; r=10.38, P=0.08, RL; r=—0.36, P=0.21, Supplementary Table 2).

Discussion

We measured a variety of biomarkers of oxidative stress, and compared these in lactating (R) and non-reproducing
mice from two strains that had been selected for different levels of FI, that we have previously shown differ signif-
icantly in their levels of reproductive performance®:.

As in previous studies, there were no differences in BM between mice from the L and H strain prior to mating,
but reproductive success was increased in mice of the H line?%. That is mice from the H line produced larger litters
and weaned larger pups. This can be attributed to the increased MEI and MEO in H mice resulting in higher
energy availability for pup growth. The oxidative stress theory predicts that there is a trade-off between repro-
duction and somatic maintenance*° and mice from the H line, with their higher reproductive effort, would thus
be expected to reduce investment in protection and repair during lactation, leading to an increase in oxidative
damage. Similarly, mice that were enabled to reproduce would be expected to have increased damage compared
to mice that were prevented from reproducing. In agreement, with this prediction antioxidant protection meas-
ured by OXY levels in serum, and CAT and GPx activity in livers of the lactating mice were reduced compared
to non-reproductive mice. However, oxidative damage (measured by dROMs in serum, PC in the liver and brain
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Variables NH RH NL RL Line Reproductive status | n
PC 0.64+0.03 0.62+0.03 0.68+0.03 0.66 +0.05 F,;;=1.87,P=0.180 Fy3;,=029,P=0.592 | 40
80OHAG* 57.0+£12.90 76.10+14.50 70.80+£15.20 63.80£13.70 F,3=0.01, P=0.990 F13=022,P=0.647 | 21
8OHAG' 2.84+0.44 1.570.24 2.16+0.68 4.70+1.03 F,,=0.98,P=0.333 F,,=090,P=0.354 | 24
SOD 12.114+1.46 14.124+0.83 14.19£0.65 12.99+ 0.97 F,3,=0.20,P=0.654 F3;,=0.20,P=0.710 | 40
CAT 15.27°40.81 10.48°+0.87 | 12.44*°+1.29 | 10.83°+0.60 | F,3,=1.70,P=0210 | F,3,=11.30,P=0.002 | 40
GPx 612.70*°4+65.10 | 286.10°424.09 | 727.50° +29.80 | 506.20° 4 23.10 F,35=18.50,P <0.001 | F,;5=49.60, P <0.001 | 38

Table 3. Descriptive statistics for oxidative markers measured in liver tissue of lactating and non-
reproductive mice selected for high and low food intake. Measurementsof various oxidative stress markers
in liver tissue of reproductive (R) and non-reproductive (N) mice of selection lines for high (H) or low (L) food
intakes.Values shown are mean &+ SEM. Results of two-way ANOVAs are shown with line and reproductive
status as fixed factors. No significant interactions between line and reproductive status were found in the
models and these were therefore removed before final analysis. NH: Non-reproducing high food intake mice;
RH: Reproducing high food intake mice; NL: Non-reproducing low food intake mice; RL: Reproducing low
food intake mice. PC: Protein carbonyls; 8OHAG: 8-hydroxy-2-deoxyguanosine; *measured by ELISA method;
"measured by HPLC method; SOD: Superoxide dismutase; CAT: Catalase; GPx: Glutathione peroxidase.
Different letters indicate significant differences between groups (post-hoc Tukey tests, p < 0.05).

and 8OHAG in the liver), which would be anticipated to be increased, was unaltered or reduced in lactating mice.
Also, when comparing mice with different levels of reproductive effort (H vs. L mice) contradictory results were
found, with no differences in antioxidant protection in serum, liver, brain or mammary tissue (except for GPx
in liver which was reduced in H mice) and no differences in oxidative damage, except in serum (dROMs), where
reproductive L mice were found to have reduced damage.

Previous studies in both wild and laboratory animals studying the relationship between reproductive effort
and oxidative stress have shown similarly ambiguous results. Several studies have shown oxidative damage
(dROMs) to be unchanged in reproductive vs. non reproductive animals!!-1>152526_ whereas others have found a
positive association between lactation and oxidative damage in serum®!%?’. In addition, within the same species
contradictary results have been reported showing increased oxidative damage in one macromolecule (proteins),
but not in others (lipids and DNA)'#". Several studies in mammals and birds have found oxidative damage to be
positively related with natural LS/clutch size (Mammals:>'°, Birds:*>?°). However, the present and other studies
in mammals and birds found no such relationship!>?23°-33 or a negative relationship?'. Also, house mice with
increased LS did not show any changes in enzymatic antioxidants (glutathione, oxidised glutathione, and CAT) in
various tissues (liver, heart, muscle) compared to mice with reduced LS*. Studies in mice with increased LS and
concurrent pregnancy did not show increased oxidative damage (glutathione and protein thiol) in the liver, heart
and urine (80HAG) compared to those with increased litters®.

These findings are mostly inconsistent with the predictions from the oxidative stress theory and are in agree-
ment with the idea that antioxidant levels are responsive to ROS production, and hence low levels of antioxidants
do not necessarily translate into increased oxidative damage”***”. Changes in enzymatic antioxidant levels for
any given condition may depend on the capacity of a steady-state level of tissue antioxidant and on the particular
sites where ROS are generated. Since SOD is the first enzyme acting on the main superoxide free radical produced
from the electron transport chain, converting it to H,0,%, the steady-state level of SOD in liver may be sufficient
to cope with any elevation in O- production. This might explain why we did not observe a change in SOD activity
between reproductive and non-reproductive mice. Given the main role of CAT and GPx activity to convert H,0,
to water®, the observed reduction of liver CAT and GPx activity in lactating mice with no associated oxidative
damage to protein and DNA (specifically induced by OH™ that derived from H,0,) suggests that the levels of
H,0, that needed to be detoxified were actually lower in lactation. This could be linked to an increased metabolic
rate®®#, Since other important antioxidants (e.g. non-enzymatic and exogenous antioxidants) were not measured
here, it is possible that these levels may be responsible for the lack of increased damage in the liver tissue.

Contrary to the expectations from the oxidative stress theory a reduction in or lack of oxidative damage in
reproductive mice compared to non-reproductive mice was found in this study, as has been observed many times
previously®!21423 The oxidative shielding hypothesis proposed by Blount et al.?® hypothesises that transition to
the reproductive state triggers a pre-emptive reduction in levels of oxidative damage in certain markers and tis-
sues, to shield mothers, and in particular their gametes and developing offspring, from harm caused by an inev-
itable increase in oxidative damage resulting from the increased expenditure of reproductive effort. This would
explain why in studies comparing reproductive vs. non-reproductive animals a reduction in oxidative damage is
often observed.

Another explanation for a lack of oxidative damage in reproductive mice stems from the fact that reproductive
mice increase their FI many-fold during lactation; it has been hypothesised that an increase in the gross intake of
dietary antioxidants - as a direct consequence of increased FI during lactation - may result in reduced oxidative
damage in laboratory animals'2 If this was correct a positive relationship would be expected between food con-
sumption and antioxidant levels in the serum®!°. However, the lack of association between the total antioxidants
in the serum and food intake in the present study, combined with the reduction of total antioxidants in reproduc-
tive compared to non-reproductive mice suggested the reduction of oxidative damage observed in lactating mice
was unlikely to be driven by the difference in oral antioxidant consumption. In agreement with this, a recent study
has shown no differences in oxidative damage between lactating mice fed standard or low antioxidant diets.
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Figure 2. Markers of enzymatic antioxidants in the liver of non-reproducing female mice (NH, black bars;
NL, dark grey bars) and reproducing mice at day of weaning (RH, striated bars; RL, light grey bars).

(A) Catalase (CAT) activity. (B) Glutathione peroxidase (GPx) activity. Different letters inside the bars indicate
significant differences between groups (N =10 per group).

Lactation is recognised as the most energetically demanding phase of a mammals life’. On the day of dissec-
tion, MEO of reproductive mice in both lines was almost tripled compared to non-reproductive mice, but no cor-
responding increase in oxidative damage was observed, confirming that a simple link between expenditure and
ROS production is too simplistic (see also***°). In addition, GLMs with DEE as a covariate revealed no significant
relationships between DEE and any of the oxidative stress markers measured. Previous work on the relationship
between energy expenditure and oxidative protection and damage is confused. Experimentally increased energy
demands, by exposure to the cold, produced complex patterns of change in protection and damage in short-tailed
field voles (Microtus agrestis)*~** and mice** with no overall effect on survival****. In contrast, Fletcher et al.!®
did find a positive relationship between DEE and plasma oxidative damage (protein carbonyls) in lactating red
squirrels.

The current study is one of the first to study impacts of reproduction on oxidative stress to the brain. The brain
may be an important target for oxidative damage because it is enriched in polyunsaturated fatty acids which are
prone to be oxidised*. In addition, brain tissue is recognised to have a low antioxidant capacity combined with
a high iron metal content?. Finally, it is widely thought that post-mitotic tissues like the brain are more likely to
accumulate oxidative stress due its slower turnover rate?. A recent study of the responses to oxidative stress in
greenfinches that had been fed paraquat showed that mortality risk was only correlated with damage to brain
tissues. In contrast with the predictions of life history —oxidative stress theory, the lactating mice observed here
and in another study on lactating MF1 mice? had significantly lower brain protein damage compared to NR
mice. This result is inconsistent with work on lactating striped hamsters where ROS production, measured by
hydrogen peroxide, was significantly increased in lactating hamsters compared to NR hamsters?%. Although, in
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Figure 3. Pearson’s correlations between (A) Food intake and DNA damage (measured by ELISA) in pooled
reproducing mice (RH and RL, N=11, filled circles) and pooled non-reproducing mice (NH and NL,
N=10, open circles). Reproducing mice, R2=0.473, P-Value=0.142; Non-reproducing mice, R?=—-0.559,
P-Value =0.093 (B) Litter mass and liver protein damage (PC) in reproducing mice, RH mice (N= 10,

filled circles) and RL mice (N =10, open circles). Regression lines for RH mice,. R*= —0.62, P-Value = 0.05.
Regression line for RL mice,. R?= —046, P-Value =0.186., (C) Litter size and liver protein damage (PC) in
reproducing mice, RH mice (N =10, filled circles) and RL mice (N= 10, open circles). RH mice, R>=0.148,
p=—0.492, RL mice, R?=0.246. p=— 0.404.
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PC 031°°40.02 | 0.30°°+£0.04 | 0.40°+0.04 0.25+0.01 F5,=0.12,P=0.780 | F,;,=4.90,P=0.032 | 40
SOD 17054254 | 17444195 | 13514121 15504234 | F ,;=1.83,P=0.190 | F,;,=0.40,P=0.550 | 39
CAT 023002 | 041°+0.06 | 0.23°+0.02 0.36°+0.04 | F;,=0.001,P=0.950 | F,,,=10.9,P=0.002 | 40
GPx 40.90+12.20 | 523041160 | 24104475 | 514041220 | F,;,=0.62,P=0460 | F,;,=2.70,P=0.110 | 35

Table 4. Descriptive statistics for oxidative markers measured in brain tissue of lactating and non-
reproductive mice selected for high and low food intake. Measurements of various oxidative stress markers in
brain tissue of reproductive (R) and non-reproductive (N) mice of selection lines for high (H) or low (L) food
intakes. Values shown are mean -+ SEM. Results of two-way ANOVAs are shown with line and reproductive
status as fixed factors. No significant interactions between line and reproductive status were found in the models
and these were therefore removed before final analysis. NH: Non-reproducing high food intake mice; RH:
Reproducing high food intake mice; NL: Non-reproducing low food intake mice; RL: Reproducing low food
intake mice. PC: Protein carbonyls; SOD: Superoxide dismutase; CAT: Catalase; GPx: Glutathione peroxidase.
Different letters indicate significant differences between groups (post-hoc Tukey tests, p < 0.05).
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Figure 4. Markers of oxidative damage and enzymatic antioxidant in the brain of non-reproducing female
mice (NH, black bars; NL, dark grey bars) and reproducing mice at day of weaning (RH, striated bars; RL,
light grey bars, N =10 for each group). (A) Protein carbonyls (PC, untransformed data). (B) Catalase (CAT,
untransformed data) activity. Different letters inside the bars indicate significant differences.

the same study there was no change in the brain damage measured by MDA?. This again points out the difficul-
ties in comparing studies that use different biomarkers for oxidative damage or in different species. However,
caution is needed in interpreting the data on oxidative stress in whole brain tissue as different parts of the brain
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Variables RL RH Line

n 15 22

PC 0.38+£0.03 0.37+0.02 F,3,=0.07,P=0.788
SOD 4.3740.55 4.2040.30 F,3,=0.09, P=0.761
CAT 0.34+0.04 0.29+£0.02 F,;,=0.83,P=0.369
GPx 157.40 +11.60 153.48 £6.03 F,3;=0.11,P=0.747

Table 5. Descriptive statistics for oxidative markers measured in mammary tissue of lactating mice
selected for high and low food intake. Measurements of various oxidative stress markers in mammary tissue of
reproductive (R) mice from selection lines for high (H) or low (L) food intakes. Values shown are mean & SEM.
Results of one-way ANOVAs are shown with line and reproductive status as fixed factors. No significant
interactions between line and reproductive status were found in the models and these were therefore removed
before final analysis. RH: Reproducing high food intake mice; RL: Reproducing low food intake mice. PC:
Protein carbonyls; SOD: Superoxide dismutase; CAT: Catalase; GPx: Glutathione peroxidase. Different letters
indicate significant differences between reproductive statuses and lines.

may be affected differently*>*°. The observed reduction in brain oxidative damage is consistent with the elevation
of brain CAT activity and may be consistent with the oxidative shielding hypothesis. Although it is unlikely that
damage to the female’s brain could directly impact the offspring in the same way that damage in the liver, serum
and mammary glands could, one could speculate that it is easier to activate protective mechanisms all over, rather
than switching it on in specific tissues and not in others. If this is the case, however, one would have expected to
detect a decrease in oxidative damage in both the liver and mammary tissue as well, which was not observed here.
We actually showed a reduction in protein damage in liver with increased reproductive effort (i.e., LS) which con-
tradicts the predictions from the empirical data and oxidative shielding hypothesis where a positive relationship
between reproductive effort and oxidative damage is expected®.

There is a considerable literature suggesting that breastfeeding in humans reduces breast cancer risk®'.
Moreover, human breast cancer risk was inversely related to the number of children that had been breast-fed
over an individual’s life>2. It would hence be expected that oxidative stress would be lower among lactating mice
with larger litter sizes. However, consistent with the results of the only other study investigating oxidative stress
in mammary tissue of mice®, we found that multiple measures of oxidative stress in the mammary gland were
not significantly altered between mice with different reproductive effort (H vs. L mice). Hadsell et al.** measured
the levels of oxidative damage to proteins and DNA in the mammary gland of mice during a normal lactation
relative to those mice forced to prolong lactation. Mitochondrial protein and DNA damage markers (PC and
80HAG) were significantly increased for mice forced to prolong lactation. However, oxidative damage markers
(PC and MDA) in the whole mammary homogenate were not significantly different between the groups®. The
paucity of studies on the mammary gland in small rodents may be because mammary tissue may transdifferen-
tiate to adipose tissue when animals are not breeding®* and hence there is no available comparison tissue in the
non-breeding animal, although comparisons between individuals with different levels of reproductive perfor-
mance, like we did here, can be made.

The lack of signs of oxidative stress changes caused by reproduction in the mammary gland could possibly
be due to high levels of protein turnover in these tissues*’. Daily protein turnover in the mammary glands of
lactating rats was shown to be around 62%°. The inverse relationship observed between food intake in lactation
and GPx activity, with no increased protein damage, suggested that other important antioxidant systems (e.g.
non-enzymatic antioxidants) may be responsible for the lack of increased damage in the mammary gland.

Conclusions

The present study showed unchanged (liver) or reduced (brain and serum) levels of oxidative damage in lactating
versus non-lactating mice. Moreover, no differences in multiple measures of oxidative stress in the liver (except
for GPx), brain and mammary glands were observed between mice with different levels of reproductive effort (H
vs. L lines). Associations between measures of oxidative damage and reproductive performance demonstrated
that oxidative damage (protein carbonyls) was reduced with greater reproductive effort (liver), Finally, there were
no associations between the individual’s energetic investment (MEI, DEE, MEO) and almost all of the oxidative
stress measures detected in various tissues.

These findings are inconsistent with the life history-oxidative stress theory which predicts that oxidative dam-
age should be higher among lactating mice and with increased reproductive effort. The reduction in oxidative
damage in the brain of reproductive animals and the absence of an increase in damage to the mammary tis-
sue during reproduction is consistent with predictions from the oxidative shielding hypothesis*. However, the
observed negative association between oxidative damage in the liver and reproductive effort was not. At present
there is no comprehensive idea explaining the totality of the available data®!’.

Materials and Methods

Source of mouse lines.  We used mice, Mus musculus, from the maintenance (M) requirement strains®
which originated from a common background generated by a three strain cross, which were selected for 38 gen-
erations for high (H) and low (L) food intake (FL, for more details see®’). We have recently shown that a correlated
trait to the selection on FI is a large difference in reproductive performance?, with the high intake line having
much greater reproductive investment than the low intake line.
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Breeding protocol and sample collection. Virgin female mice, aged 9-12 weeks, were individually
housed in shoebox cages (48 cm x 15cm x 13 cm) under a 12h L: 12h D photoperiod at 21 £ 2°C and a relative
humidity of 59 4= 5%. All cages were provided with sawdust, paper bedding and a cardboard tube. Animals had ad
libitum access to water and food (D12450B, Research Diets, New Brunswick, NJ, USA). After 12 days of baseline
monitoring, seventy females (N =29 for RH and N=41 for RL) were mated to non-sibling males of the same
line for 11-15 days. Twenty age-matched adult females (N= 10 for each line) were not mated and considered as
non-reproductive (N) controls (NH & NL). Pregnant mice (R, N=22 for RH and N= 15 for RL) were monitored
daily to establish the day of parturition (day 0), and the timing for pregnancy was back calculated from the day
of birth as day —1 (last day of pregnancy) to day —18 (beginning of pregnancy). FI, body mass (BM), litter size
(LS), litter mass (LM) and pup mass (PM = LM/LS) for lactating mice and their pups were measured from day
5 until day 18 of lactation. Lactation was terminated on day 18 and all mice were culled by CO, overdose. Blood
samples were collected into non-heparinised tubes by cardiac puncture and left on wet ice to clot. Serum was
extracted using centrifugation at 14000 g for 10 minutes at 4 °C and stored at —80 °C for later analysis. Liver, brain
and mammary tissue (for reproductive mice, R only) were collected from all animals and stored at —80 °C until
analysis.

All procedures concerning animal care and treatment were carried out in accordance with the protocols
approved by the ethical committee for the use of experimental animals of the University of Aberdeen, and were
licensed by the UK Home Office under PPL 60/3705.

Metabolisable energy intake (MEI), Daily energy expenditure (DEE) and Milk energy output
(MEO). Measurements of MEI were performed on days 12-14 of lactation and the doubly labelled water
(DLW) technique was used to measure DEE over days 15-17 of lactation. MEI values were then subtracted from
the estimated DEE to calculate MEO (For details of the procedures see®®.

Reactive oxygen metabolites (ROMs) and non-enzymatic antioxidant capacity (OXY). The
levels of reactive oxygen metabolites and total antioxidants (exogenous and endogenous) present in serum were
quantified using the JROMS assay and OXY-Adsorbent test, respectively following the manufacturers protocol
(Diacron, Grosseto, Italy). For more details see supplementary materials A.

Enzymatic antioxidant activities. Frozen tissue samples were prepared for enzymatic activity measure-
ments by homogenising them in 1:20 ratio of ice-cold 50 Mm phosphate buffer. After centrifugation (4000 g at
4°C for 20 minutes), the supernatant was kept at —80 °C until analysis. Catalase (CAT) activity was measured
using fresh supernatant with the end point assay specifically for tissues mentioned by Cohen et al. (1970) and
further used by Aebi (1984). Total superoxide dismutase (SOD) activity was measured according to the method
of Marklund and Marklund®. Glutathione peroxidase (GPx) activity was measured according to the method of
Paglia and Valentine® and followed by Lawrence and Burk®'. For more details see supplementary materials B.

Oxidative damage to protein (Protein carbonyls). Protein oxidative damage in the different tissues
was determined by measuring the quantity of protein carbonyls in a protein sample following derivatisation of
proteins with dinitrophenylhydrazine (DNP, Protein carbonyl enzyme immune-assay kit, BIOCELL Corporation
Ltd., New Zealand) as described previously*!. Before the analysis protein concentration for each sample was deter-
mined using the Bradford assay to calculate the amount of sample required in the test (200-300 pg of protein).

Oxidative damage to DNA. DNA damage in liver tissue was detected by measuring the levels of
8-hydroxy-2-deoxyguanosine (8-OHdG). Two different methodologies were used. First by Enzyme linked
immune-sorbent assay (ELISA). Nuclear DNA was extracted from subsamples of liver tissue (Reproducing
high line (RH) =6, Reproducing low line (RL) = 5; Non-reproducing high line (NH) =5, and non-reproducing
low line (NL) = 5). Extraction, purification, and enzymatic digestion of DNA were performed as described by
Huang et al®2. 2. High-performance liquid chromatography coupled with electrochemical detector (HPLC-ECD).
Subsamples of frozen liver tissue (N =6 for each group) were analysed at the LIFEPHARM centre-University of
Copenhagen. See supplementary materials C.

Statistical Analysis. Data were tested for normality using the Shapiro-Wilkinsons test and natural loga-
rithms were used to normalize data where required. General linear models (GLM) with line, reproductive status,
and the interaction between line and reproductive status as fixed factors were used to determine whether repro-
ductive status (R vs. N) or line (H vs. L) affected levels of the oxidative stress markers in various tissues. These
models were rerun including various covariates (e.g., BM, FI or reproductive traits, i.e., LM, LS & MEO) to inves-
tigate relationships between these variables and oxidative stress markers, including interaction terms with the
covariate to establish whether the relationships differed between the groups. All interactions were not significant
unless otherwise stated in the results. Pearson correlations were used to determine relationships between vari-
ables within the different groups. Data are presented as means =+ s.e.m. Differences were considered statistically
significant at P < 0.05 (2-tailed). Minitab (Version 16; Minitab Inc., State College, PA, USA) was used to perform
all statistical analyses.
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