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Summary Paragraph 

 

As they proliferate, fungi expose antigens at their cell surface that are potent 
stimulators of the innate immune response, and yet the commensal fungus 
Candida albicans is able to colonize immuno-competent individuals.  We show 
that C. albicans may evade immune detection by presenting a moving 
immunological target.  We report that the exposure of β-glucan, a key Pathogen 
Associated Molecular Pattern (PAMP) located at the cell surface of C. albicans and 
other pathogenic Candida species, is modulated in response to changes in carbon 
source.  Exposure to lactate induces β-glucan masking in C. albicans via a 
signaling pathway that has recruited an evolutionarily conserved receptor (Gpr1) 
and transcriptional factor (Crz1) from other well-characterized pathways.  In 
response to lactate, these regulators control the expression of cell wall related 
genes that contribute to β-glucan masking.  This represents the first description 
of active PAMP masking by a Candida species, a process that reduces the 
visibility of the fungus to the immune system.   
 

 

Vertebrates recognize microbial pathogens via immunological synapses between 

host Pattern Recognition Receptors (PRRs) and the corresponding Pathogen 

Associated Molecular Patterns (PAMPs)1.  Many PAMPs lie at the cell surface, the first 

point of contact with the host.  The fungal cell wall is a matrix of α- and β-mannans, 

phosphomannans, β-glucan, and chitin, each of which exerts immuno-modulatory 

effects1.  β-1,3-glucan, an essential component of most fungal cell walls, is a ligand for 

the C-type lectin receptor Dectin-11.  β-glucan recognition by Dectin-1 triggers 

phagocytosis and killing by neutrophils and macrophages2.  Some fungi have evolved 

strategies to prevent this interaction.  For example, Cryptococcus neoformans expresses 

an anti-inflammatory polysaccharide capsule that masks β-glucan3.  The RodA 

hydrophobin masks β-glucans at the Aspergillus fumigatus spore surface4.  We show 

that pathogenic Candida species actively mask surface β-glucan in response to the host 

metabolite lactate, thereby attenuating the recognition of Candida albicans by host 

phagocytes. 
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C. albicans possesses an elastic cell wall in which β-glucan is generally buried 

below an outer fibrillar layer of mannan, within an inner matrix of cross-linked glucan and 

chitin5.  However, β-glucan becomes exposed at bud growth sites, during yeast-hypha 

morphogenesis, exposure to antifungal drugs, and within biofilms6-9.  Moreover, β-glucan 

exposure increases during systemic infection7, in a remodeling process partly mediated 

by host cell antifungal activity10.  Indeed, the C. albicans cell wall undergoes significant 

remodeling in response to host-derived inputs including changes in carbon source, 

oxygen levels and iron availability11,12, or after in vitro exposure to antifungal drugs7.   

Specific signaling pathways mediate C. albicans cell wall remodeling in response 

to genetic perturbation or antifungal drug treatments7.  These include the Mkc1 cell 

integrity pathway, the Hog1 stress response pathway, the Cek1 pathway, and Ca++-

calcineurin (Cna1) signaling13-15.  However, the signaling pathways that drive cell wall 

remodeling in response to nutritional signals remain obscure.   

Changes in carbon source lead to alterations in cell wall structure, affect immune 

surveillance and enhance the virulence of C. albicans12,16.  The carbon sources available 

to support fungal growth and colonization differ between host niches.  Some contain 

glucose (e.g. blood), some lack glucose (e.g. the colon), while others contain significant 

concentrations of carboxylic acids such as lactate (e.g. the vagina and colon)17,18.  Here 

we define the mechanisms by which carbon source affects β-glucan exposure and 

immune surveillance.  We show that C. albicans exploits conserved signaling elements 

to actively mask this major PAMP in response to the physiologically relevant carboxylic 

acid L-lactate.  Furthermore, we show that this phenomenon is conserved in other 

pathogenic Candida species. 

 

Lactate triggers β-glucan masking in pathogenic Candida species 

The architecture of the C. albicans cell wall changes significantly with carbon 

source: cells grown on lactate possess thinner, less elastic cell walls compared to 

glucose-grown cells12,19.  Although the proportion of β-glucan relative to mannan and 

chitin remains similar12, we reasoned that β-glucan organization and exposure at the 

C. albicans cell surface might be affected by carbon source.  To test this, cells were 

stained with Fc-Dectin-1, and median fluorescence intensity (MFI) was quantified by flow 

cytometry.  Glucose-grown cells displayed a biphasic distribution of β-glucan exposure 

(Figures 1ai).  The low exposure population generally contained small cells, whereas 
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larger cells demonstrated higher levels of β-glucan exposure, consistent with previously 

described mothers with bud scars7,9.  In contrast, lactate-grown cells displayed a 

monophasic population of smaller, proliferating mother and daughter cells (Figures 1ai).  

Glucose-grown cells reproducibly displayed higher levels of β-glucan exposure than 

lactate-grown cells.  Significantly, cells grown on a mixture of glucose plus lactate, which 

were similar in size to glucose-grown cells, exhibited reduced levels of β-glucan 

exposure, equivalent to lactate-grown cells (Figures 1b, Supplementary Figure 1a).  

Therefore, lactate triggers β-glucan masking even in the presence of glucose.  (We 

defined β-glucan masking as a >50% reduction in MFI.)  These changes in β-glucan 

exposure are carbon source-dependent, not pH-dependent (Supplementary Figure 1b).  

β-glucan masking is retained over long periods (Supplementary Figure 1c), but is 

reversible (Supplementary Figure 1d): β-glucan exposure increased within 1 hour (<1 

generation) of transferring lactate-grown cells to glucose, whilst β-glucan masking 

occurred within 6 hours of adding lactate to glucose-grown cells and was retained 

throughout 72 hours growth on lactate (~51 generations).   

This lactate-induced β-glucan masking phenotype was observed in almost all 

C. albicans clinical isolates examined (Supplementary Figure 2).  (The molecular basis 

for the single exception, Clade 4 strain S20175.016, is discussed below).  These blood, 

oral, vaginal, nail, and animal isolates were from eight epidemiological clades20. Other 

pathogenic yeasts in the CTG clade including C. albicans, C. dubliniensis, C. lusitaniae, 

C. parapsilosis and C. orthopsilosis displayed lactate-induced β-glucan masking (Figure 

1aii-iv).  Candida glabrata is more closely related to S. cerevisiae than to the other 

Candida species, yet masking was observed for C. glabrata but not S. cerevisiae (Figure 

1av,vi).  Therefore, many pathogenic Candida species display lactate-dependent 

masking, suggesting that this phenotype might promote immune evasion, and hence a 

pathogenic lifestyle.   

 

Growth of C. albicans on lactate reduces phagocytic recruitment  

Lactate-grown C. albicans cells stimulate less IL-17 production by human 

peripheral blood mononuclear cells (PBMCs), and are phagocytosed less efficiently by 

J774.1 macrophages than glucose-grown cells16.  We recapitulated these observations 

with murine bone marrow-derived macrophages and also demonstrated that lactate 

attenuates neutrophil recruitment during infection in vivo (Figures 1c,d).  Lactate-grown 
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cells recruited fewer neutrophils to the intraperitoneal space than glucose-grown cells 

(p=0.0022) (Figure 1d).  No difference was observed in the total number of CD45+ 

immune cells collected (p=0.94), but the recruitment of (CD11b+ Ly6Chigh) inflammatory 

monocytes was increased (Figure S3a).  Furthermore, lactate-grown cells stimulated 

less TNFα (p=0.0005) and less MIP1α (p<0.0001) from human M1-activated monocyte-

derived macrophages than glucose-grown cells (Figures 1e,f, Supplementary Figure 

3b,c).  Therefore, lactate-grown C. albicans cells stimulate altered immune responses 

compared to glucose-grown cells.  This is consistent with our observation that lactate-

grown cells are more virulent than glucose-grown cells in a murine model of systemic 

candidiasis12.   

 

β-glucan masking does not depend on lactate metabolism  

Lactate exists as two isomers, D- and L-lactate.  C. albicans does not metabolize 

D-lactate, but assimilates L-lactate, the form generated by the host.  Gastrointestinal 

microbiota secrete D- and L-lactate.  The above work used a racemic mixture of D/L-

lactate (1:1), and therefore we tested each enantiomer separately.  β-glucan masking 

was triggered by L-lactate, but not by its D-isomer (Figure 2a).  Furthermore, β-glucan 

masking was activated by spent culture medium from macrophages (L-Lactate) or the 

gut bacterium Lactobacillus reuteri, (D- and L-Lactate) (Figure 2b).  Therefore, β-glucan 

masking is triggered by the lactate isomer of physiological relevance to both host niches 

and the gut microbiota.  

We tested whether lactate metabolism is essential for β-glucan masking.  In 

C. albicans lactate assimilation depends on uptake via the Jen1/2 transporters21 and the 

glyoxylate cycle enzyme isocitrate lyase (Icl1)17.  Lactate-induced β-glucan masking 

persisted in icl1Δ single and jen1Δ jen2Δ double mutants (Supplementary Figure 4).  

Therefore, β-glucan masking is not dependent on lactate metabolism. 

 

Gpr1 is a lactate sensor in C. albicans 

Lactate sensors have been described in mammals and fish.  For example, lactate 

stimulates lipolysis in mammalian adipocytes via the G-protein coupled receptor GPR81, 

and key lactate binding residues have been defined22.  We identified Gpr1 as the closest 

C. albicans orthologue of human GPR81.  In C. albicans, Gpr1 and its Gα protein Gpa2 
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activate cAMP signaling to promote yeast-hypha morphogenesis and virulence23.  In 

S. cerevisiae, the Gpr1 ligand is glucose, and its glucose binding site has been defined 

experimentally24.  The ligand binding regions from ScGpr1 and CaGpr1 diverge at key 

residues (Supplementary Figure 5), consistent with a change in ligand specificity.  

Indeed, methionine, rather than glucose, has been proposed as the CaGpr1 ligand23. 

Given the structural relatedness between L-lactate and L-methionine 

(Supplementary Figure 5), we tested whether Gpr1 mediates lactate-induced β-glucan 

masking. Masking was lost in the gpr1Δ gpa2Δ double mutant (Figure 2c), significantly 

attenuated in gpr1Δ cells and partially attenuated in gpa2∆ cells relative to their CAI4 

parent (Figure 2c, Supplementary Figure 6a,c), indicating that this phenotype is 

dependent on Gpr1 and partially on its G-alpha protein Gpa2.  As described above, 

C. albicans S20175.016 did not display lactate-induced β-glucan masking 

(Supplementary Figure 2).  Sequencing of both GPR1 alleles from this strain revealed 

non-synonymous SNPs relative to GPR1 from SC5314.  Transforming GPR1 from 

SC5314 into S20175.016 was sufficient to restore lactate-induced β-glucan masking 

(Figure 2c), confirming that Gpr1 is required for this phenotype.  

We examined the impact of lactate on the localization of Gpr1-GFP in C. albicans.  

Gpr1-GFP localizes to the cell surface in C. albicans grown on minimal medium 

containing glucose23.  In our hands, Gpr1-GFP localized to the cell surface and vesicles 

under these conditions (Figure 2di), suggesting dynamic cycling of this receptor.  

Following lactate addition, Gpr1-GFP was internalized (Figure 2div-vi).  Methionine also 

triggers Gpr1-GFP internalization23.  We recapitulated this response, but only at non-

physiological concentrations (100mM), and methionine did not activate β-glucan 

masking (Figure 2diii,d).  Pyruvate promoted partial masking, which was lost in the 

gpr1∆ gpa2∆ background (Figure 2f, Supplementary Figure 6b).  Neither proline nor 

acetate triggered β-glucan masking, or promoted Gpr1-GFP internalization (Figure 2e,f).  

In contrast, lactate consistently stimulated robust Gpr1-GFP internalization and β-glucan 

masking at low concentrations (2mM, 10mM: Figure 2div,v) in a Gpr1-Gpa2-dependent 

manner (Supplementary Figure 6b).  These data highlight the specificity of Gpr1-

dependent lactate-induced masking.   
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Lactate-induced β-glucan masking does not depend on cAMP signaling  

C. albicans Gpr1 and Gpa2 act upstream of the cAMP pathway to activate yeast-

hypha morphogenesis23.  Therefore, we examined lactate-induced β-glucan masking in  

C. albicans cyr1Δ cells lacking adenylyl cyclase that are defective in cAMP signaling and 

display cell wall defects.  These cells exhibited abnormally high β-glucan exposure 

(Supplementary Figure 7a).  However, lactate still induced β-glucan masking 

(Supplementary Figure 7a).  Likewise, β-glucan masking persisted in pde2Δ cells lacking 

the inhibitory cyclic phosphodiesterase (Supplementary Figure 7a).  Furthermore, 

exogenous cAMP did not influence β-glucan masking (Supplementary Figure 7a).  We 

conclude that, despite the involvement of Gpr1, lactate-induced β-glucan masking is not 

mediated by cAMP signaling.  

These data suggest that Gpr1 plays dual roles in morphogenetic regulation23 and 

lactate-induced β-glucan masking (Figure 2).  In other systems G-protein coupled 

receptor specificity is mediated by ligand-specific interaction with G-alpha subunits25.  

We therefore investigated the role of the second G-alpha subunit, Cag1.  A cag1∆ strain 

exhibited constitutive β-glucan masking (Supplementary Figure 6a,c), suggesting that 

Cag1 plays an inhibitory role in this process.  Therefore, Cag1 and Gpa2 may modulate 

the specificity of Gpr1 signaling to the β-glucan masking and cAMP pathways via 

mechanisms that remain to be defined.   

We further tested whether key morphogenetic signaling pathways mediate lactate-

induced β-glucan masking.  Cells lacking Efg1 and Cph1, which regulate hyphal 

development and are targets of cAMP and MAPK signaling, respectively, displayed 

normal lactate-induced β-glucan masking (Supplementary Figure 7b).  Furthermore, 

inactivation of Cek1, an ERK-family protein kinase that regulates Cph1 and influences 

cell wall structure and β-glucan15, did not perturb masking (Supplementary Figure 7c).  

Nor was masking affected in cla4Δ or cst20Δ cells (Supplementary Figure 7d,e), which 

lack Ste20p-like kinases for Cek1-Cph1 signaling26.  Therefore, lactate-induced β-glucan 

masking is not dependent on morphogenetic signaling via the MAPK or cAMP pathways.   

 

A Crz1-dependent pathway triggers lactate-induced β-glucan masking  

To identify regulators of lactate-induced β-glucan masking, we examined 

transcription factors known to influence cell wall organization.  This revealed the 
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involvement of Crz1, which regulates membrane integrity, antifungal drug tolerance, and 

cell wall remodeling13,27.  Lactate-induced β-glucan masking was blocked in C. albicans 

crz1Δ cells, and this defect was suppressed by CRZ1 reintegration (Figure 3a).   

In C. albicans, Crz1 is activated by the calcineurin pathway in response to calcium 

and cell wall stress.  Under these conditions, calcineurin signaling is blocked by deletion 

of CNA1 (encoding the catalytic subunit of calcineurin) or CNB1 (encoding the regulatory 

subunit), or by pharmacological inhibition of calcineurin by FK50628.  However, lactate-

induced β-glucan masking was not perturbed in cna1Δ or cnb1Δ cells or in wild-type 

cells treated with FK506 (Figure 3a), suggesting that lactate-dependent Crz1 activation 

is not mediated via calcineurin.  

Calcineurin controls Crz1 localization in response to calcium28.  In C. albicans, 

Ca2+ triggers calcineurin-mediated dephosphorylation of Crz1, leading to its nuclear 

accumulation28.  We recapitulated this observation (Figure 3b) and observed that lactate 

also triggers nuclear accumulation of GFP-Crz1 (Figure 3b).  Significantly, the nuclear 

accumulation of GFP-Crz1 was reduced in gpr1Δ gpa2Δ cells in response to lactate, but 

not in response to calcium (Figure 3b).  In contrast, loss of CNB1 prevented GFP-Crz1 

nuclear accumulation in response to calcium, but not in response to lactate (Figure 3b).  

We conclude that Crz1 is activated by alternative signaling pathways depending on the 

nature of the input signal.  Whilst Crz1 is activated via calcineurin in response to 

calcium28, the response to lactate is mediated via Gpr1.  This signaling is not dependent 

on the protein kinase C cell integrity pathway (Supplementary Figure 8).   

 

Lactate-dependent targets of Crz1 include cell wall functions 

We performed genome-wide transcriptional profiling to identify genes that might 

contribute to lactate-induced β-glucan masking in C. albicans and investigate the impact 

of the Crz1 transcription factor.  Using RNA sequencing, we compared glucose alone 

and glucose plus lactate cells, which grow at similar rates (Supplementary Table 1).  The 

157 lactate-regulated genes we identified were significantly enriched (p<10-5) in 

functions related to the plasma membrane, cell surface, and cell periphery, consistent 

with the changes in cell wall β-glucan exposure (Supplementary Table 2).  Furthermore, 

the regulation of two-thirds of these 157 genes was compromised by CRZ1 inactivation, 

suggesting that they are either direct or indirect targets of Crz1 (Supplementary Table 1).  

ACE2, a transcription factor regulating cell wall integrity, protein mannosylation and 
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chitin synthesis29, was induced in crz1Δ cells exposed to lactate.  Also, we identified 

overlaps between Ace2 targets identified by ChIPSeq30 and the genes highlighted by our 

RNA sequencing (Supplementary Table 3). Therefore, the influence of ACE2 on lactate-

induced β-glucan masking was tested.  We examined ace2∆ cells by confocal and 

fluorescence microscopy because their aggregation, due to a severe cytokinesis 

defect29, precludes flow cytometry.  The ace2∆ cells displayed high levels of β-glucan 

exposure in the presence of lactate (Figure 4a,b), indicating a block in masking.  This 

suggests the involvement of a Crz1-Ace2 network in lactate-induced β-glucan masking 

(Figure 5, Supplementary Table 3).  

We tested whether lactate-regulated cell wall genes influence lactate-induced β-

glucan masking, reasoning that the outer mannan layer might contribute to masking31,32 

(Figure 4a, b).  Mnn14∆ cells did exhibit a partial masking defect (26.2% decrease in 

MFI; we define masking as a >50% decrease) (Figure 4a).  However, mnn22∆ and 

exg2∆ cells retained the masking phenotype (Figure 4a,b), and although the levels of β-

glucan exposure were elevated for cht2Δ and pga26Δ, lactate still triggered masking 

(Figure 4a, b).  Also, our microscopic analyses of wild-type, gpr1∆ gpa2∆ and crz1∆ cells 

did not reveal a simple inverse relationship between mannan distribution and β-glucan 

exposure at the cell surface (Figure 2g,h, 3c).  Therefore major changes in mannan 

distribution do not appear to account for lactate-induced β-glucan masking.  We tested 

whether key cell wall crosslinking enzymes are required for this phenotype by examining 

a triple crh11∆ crh12∆ utr2∆ mutant that lacks three cell wall glycosidases.  These cells 

displayed a gross increase in glucan exposure, but retained some degree of β-glucan 

masking (Supplementary Figure 9), suggesting that Crh11, Crh12 and Utr2 are not 

essential for masking.   

 

 

Discussion 

 

We show that L-lactate, generated by host cells or bacteria in the host’s 

microbiota, actively triggers masking of a major PAMP at the fungal cell surface (Figure 

1).  This lactate-induced β-glucan masking phenotype, which is observed in a range of 

pathogenic Candida species (Figure 1), is triggered by physiologically relevant 
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concentrations of lactate and is not activated by other host-derived metabolites such as 

acetate, methionine, or proline (Figure 2).  This PAMP masking correlates with reduced 

uptake of C. albicans cells by macrophages in vitro, decreased stimulation of TNFα and 

MIP1α by human macrophages, and diminished recruitment of neutrophils in vivo 

(Figure 1).   

Carbon source-mediated immune evasion is likely to be significant in the context of 

host colonization because C. albicans cells adapt rapidly to the mixtures of carbon 

sources offered by host niches (Figure 2, Supplementary Figure 1)17.  Lactate levels can 

reach 2-4 mM in blood and vaginal secretions, and can comprise approximately 2% of all 

carbon metabolites generated by the gut microbiota33.  Glucose is essentially absent 

from the colon, present at 3–5 mM in the blood, and at concentrations of up to 20 mM in 

vaginal secretions11,18,34.  Although changes in additional PAMPs may contribute to the 

effects of carbon source, the importance of fungal β-glucan exposure and Dectin-1-

mediated fungal recognition is widely recognized35-38.  Taken together, the data indicate 

that changes in PAMP exposure occur as the fungus adapts to local nutrients within host 

niches, and this affects the visibility of the colonising fungus to host immune defences.  

This idea is consistent with the observations that β-glucan exposure changes during the 

progression of systemic candidiasis7,9, that C. albicans adaptation affects immune 

recognition by Dectin-1 during systemic candidiasis20, and that changes in carbon 

source alter the virulence of C. albicans12. 

How does lactate trigger β-glucan masking?  We show that lactate triggers a 

signaling pathway that has co-opted the Gpr1 G-protein coupled receptor and the Crz1 

transcription factor from the cAMP and calcineurin signaling pathways, respectively 

(Figures 2 and 3).  Maiden et al. showed that the Gpr1-Gpa2 module triggers 

filamentation in response to amino acid signals in a cAMP independent fashion23.  We 

hypothesize that a parallel pathway involving Gpr1, and possibly Gpa2, mediates lactate 

signaling to Crz1.  This pathway does not require calcineurin, which is reminiscent of 

undefined calcineurin-independent modes of Crz1 regulation in other fungi39,40.  Crz1 

then appears to regulate the expression of targets including ACE2 (Table S1), the 

inactivation of which affects lactate-induced β-glucan masking (Figure 4).  Deletion of 

ACE2 also leads to β-glucan exposure at the S. cerevisiae cell surface6.  In C. albicans, 

Crz1 regulates additional cell wall genes that may collectively mediate β-glucan masking 

(Figures 4,5, Supplementary Table 1).  However, individual cell wall mutations did not 

block this phenotype.  Taken together these observations support the view that PAMP 
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masking is a polygenic trait that is influenced by cumulative changes in the quantity, 

crosslinking and organization of multiple cell wall macromolecules6, and that the 

expression of these traits is modulated by lactate-Gpr1-Crz1 signaling (Figure 5).  

How is β-glucan masked at the cell surface?  β-glucan is generally buried below 

the outer fibrillar layer of the C. albicans cell wall, and is therefore masked by mannans.  

Mutations that compromise the mannan outer layer or glucan cross-linking cause β-

glucan exposure at the cell surface (Figure 4).  Mannan attachment to the inner glucan-

chitin layer is dependent on cell wall remodeling enzymes whose expression is affected 

by growth on different carbon sources41.  Therefore, mannans play a general role in β-

glucan masking and may contribute to lactate-induced masking.  However, mutants with 

defects in individual cell wall genes are still capable of lactate-induced masking, 

suggesting that β-glucan masking is dependent on overall changes in cell wall 

architecture.   

In conclusion, this study reveals that C. albicans actively masks a major PAMP in 

response to host-derived carbon sources, essentially turning C. albicans into a moving 

target for the immune system in response to host-specific signals.  This type of immune 

evasion is likely significant for disease progression in the host during periods of 

anaerobic metabolism (when lactic acid production is high), in the gastrointestinal tract 

(where anaerobic bacteria generate high lactate concentrations), and in patients with 

diabetes, short-bowel syndrome or bacterial infection (when serum lactate 

concentrations become elevated).  This precedent, where C. albicans exploits host cues 

to modulate its immune visibility, may apply to other fungal pathogens (Figure 1)42,43.   

 

 

Methods 

 

Strains and culture conditions.  Strains used in this study are listed in Table S4. In all 

cases, WT indicates the prototrophic parent of a given mutant strain, with the exception 

of SN152, for which auxotrophy has been demonstrated to have no impact on fungal 

virulence44.  C. albicans was routinely cultured on YPD (1% yeast extract, 2% bacto-

peptone, 2% glucose, 2% bacto-agar) agar plates stored at room temperature. For 

glucose and lactate exposure, cells were incubated overnight at 30°C, 200 rpm in 5 mL 
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YNB without amino acids (Sigma Y1250) prepared according to the manufacturer’s 

instructions plus 2% glucose and/or 2% D/L-lactate (Sigma, L1375) as indicated.  All 

auxotrophic strains were grown in media with appropriate supplements. 

 

BMDM phagocytosis assay.  All experiments were conducted by approval of the 

College of Life Sciences and Medicine Ethics Review Board, University of Aberdeen, 

and they all adhered to local and institutional policy requirements.  C57BL/6 wild-type 

mice were bred and housed in the University of Aberdeen animal facility.  Female mice 

aged 21 weeks were used to generate bone marrow derived macrophages (BMDM) by 

flushing femurs and tibia with RPMI 1640 GlutaMAX (Thermo Fisher Scientific, Waltham, 

MA, USA) supplemented with 10% (v/v) heat-inactivated foetal calf serum (FCS; Sigma-

Aldrich, Dorset, UK), 200 U ml-1 penicillin/streptomycin (Sigma), 10 mM HEPES (Sigma). 

Bone marrow cells were cultured for 7 days at 37°C with 5% CO2 in supplemented RPMI 

plus 15% (v/v) Lee’s conditioned medium. Following cell counts, 1.2 x 105 BMDM in 

300μl supplemented RPMI medium were seeded into 8-well imaging slides (ibidi, 

Munich, Germany) to adhere overnight. Phagocytosis assays were performed by 

combining 3:1 thimerosal-fixed yeast:adhered macrophages as described previously45. 

Immediately prior to imaging, wells were replenished with fresh CO2-independent 

medium (Thermo Fisher Scientific) supplemented with FCS and glutamine 

(Sigma).  Conditions were maintained at 37°C with 5% CO2 during 4h image acquisition 

at 1 minute intervals using an UltraVIEW® VoX spinning disk microscope (Nikon, Surrey, 

UK) with Volocity® software (Improvision, PerkinElmer, Coventry, UK).  Triplicate movies 

were analysed for percent phagocytosis at 4 hours post inoculation for each condition 

with 4 independent experimental replicates conducted (a total of 200-300 macrophages 

combined with approx. 600-800 yeast per condition).  Data were analysed by Mann-

Whitney U test using GraphPad Prism 7 (GraphPad Software Inc., La Jolla, CA, USA). 

Variance within the groups was not statistically different (F test to compare variances, 

p=0.1253). 

 

Monocyte isolation, purification and macrophage differentiation.  Blood from four 

healthy volunteers was collect according to the local guidelines and regulations, 

approved by the College Ethics Review Board of the University of Aberdeen and 

following informed consent of the donors (CERB/2012/11/676).  Peripheral blood 
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mononuclear cells (PBMCs) were isolated by Ficoll-Paque PLUS (GE Healthcare) 

density centrifugation according to the manufactures instructions. Highly pure unlabelled 

monocytes were obtained from PBMCs by depletion of non-monocytes using a 

magnetically activated cell sorting (MACS) system together with a human pan-monocyte 

isolation kit (Miltenyi Biotec).  Purified monocytes were washed twice with PBS and cells 

were suspended in RPMI 1640 (Dutch modification) supplemented with 10% heat-

inactivated FBS, 2 mM L-glutamine, 1 mM sodium pyruvate, 1% MEM non-essential 

amino acids (NEAA (100x), Gibco), 100 U/ml penicillin, 100 mg/ml streptomycin and 

50 ng/ml recombinant hGM-CSF (Gibco).  Cells were seeded into cell culture dishes at a 

density of 1x106 cells/cm2, incubated at 37°C in a humidified atmosphere containing 5% 

CO2.  On day 3 10ml fresh medium containing recombinant cytokines was added to the 

cultures.  After 5 days cells were collected, seeded into 24-well plates at a density of 

1x105 cells/well and left overnight to adhere.  Macrophages were fully activated with 50 

ng/ml IFN-g and 100 ng/ml LPS 24 hours prior to co-culture with formaldehyde fixed C. 

albicans yeast.   

On the day of co-culture, macrophages were washed with PBS and fresh medium 

added.  Then, C. albicans was pre-grown in YNB Glucose, Glucose + Lactate, or Lactate 

for 4 hours as described, fixed with 4% methanol-free formaldehyde (Thermo), and 

washed 3x with sterile 1xPBS (Sigma), was added to each well at an MOI of 5:1 

macrophages. For each donor, PBS only wells were also included. At times 0, 6, and 24 

hr post infection, 100 uL of supernatant was collected from each well and stored at -20. 

Cytokines and chemokines were quantified using the Luminex® Screening kit (R&D) and 

read on a BioPlex 200 System (Bio-Rad) according the manufacturer’s 

recommendations. Statistical analyses were performed using Graph Pad Prism (v 7), 

and significance was determined using the Friedman test for matched non-parametric 

data. Bars represent 95% CI.   

 

Neutrophil recruitment assay.  BALB/c female mice (n=6/group, 8-12 weeks old, 

Harlan, UK) were injected intraperitoneally with 107 C. albicans (SC5314) pre-grown in 

either glucose or lactate and then resuspended in 100 µL sterile saline. Group size was 

determined from previous experiments as the minimum number of mice needed to 

detect statistical significance (p<0.05) with 90% power. Mice were randomly assigned to 

groups by an investigator not involved in the analysis and the fungal inocula were 
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randomly allocated to groups. Mice were house in Individually Ventilated Cages (IVCs) 

and were provided with food and water ad libitum. Inocula were delivered in an 

unblinded fashion. After 4 h, mice were sacrifice using the schedule 1 method cervical 

dislocation. Immune infiltrates were collected by peritoneal lavage 46.  Cells were labeled 

to distinguish neutrophils (CD45+, CD11b+, F4/80-, Ly6G+) and macrophages (CD45+, 

CD11b+, F4/80+, Ly6G-). Using flow cytometry, 10,000 cells were analysed for each 

mouse. Cells were analysed on a BD Fortessa flow cytometer, with automatic 

compensation protocols. Data represent percent neutrophils. Statistical analyses were 

performed using Graph Pad Prism (v 7), and significance was determined using Mann-

Whitney U test. Bars represent 95% CI.  Variance within the groups was not statistically 

different (F test to compare variances, p=0.1633). All animal experiments were 

performed under UK Home Office project license PPL 60/4135 granted to DMM in 

accordance with Home Office ethical guidelines.   These experiments were performed by 

DMM, ERB, and SEH.  

 

Quantification of β-glucan exposure in cell populations.  Yeasts were grown in YNB 

+ 2% glucose, + 2% glucose and 2% lactate, or 2% lactate overnight and inoculated into 

fresh medium for 4 hours. Cells were stained for β-glucan exposure using Fc-Dectin-1 47. 

Cells were counted by haemocytometer and 2.5 x 106 cells were washed with cold FACS 

buffer (1xPBS, 1% FCS, 0.5 mM EDTA). Cells were resuspended in 100 µL FACS buffer 

+ 5 ng/µl Dectin-Fc and incubated in the dark on ice for 1 h. Cells were washed (5000 

rpm, 3 min) twice in 100 µL FACS Buffer and resuspended in 100 µL FACS buffer plus 

1:200 Gt F(ab')2 anti-Human IgG(gamma) conjugated to Alexafluor 488 (Invitrogen, cat. 

No. H10120) or Novex TRITC (Abcam, cat. No. A18822), for GFP-expressing cells. Cells 

were incubated in the dark on ice for 1 h and washed as above. Cells were fixed in 4% 

Formaldehyde (methanol- free), diluted in FACS Buffer, and stored on ice in the dark 

until analysis using either a FACS Calibur flow cytometer or BD Fortessa flow cytometer. 

For each experiment, 10,000 events were acquired for each sample.  Fresh glucose-

grown C. albicans SC5314 cells were used as a positive control for each run.  As a 

secondary-only control, aliquots from all cells to be analysed were pooled, diluted to 2.5 

x 106 cells, and treated as above except that no Dectin-Fc was added.  Median 

Fluorescence Intensity (MFI) is reported for each sample as determined using FlowJo v 

10 software.  This measure was selected as the most appropriate for the bimodal data 
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observed for cells grown in glucose.  Masking was defined as more than 50% decrease 

in MFI based on 6 independent biological replicates of glucose vs. glucose-lactate grown 

cells.  Plots are representative of at least two biological replicates for strains with no 

masking defect and at least three biological replicates for strains with an observed 

masking defect.  

 

Spent culture media.  J774.1 macrophages (ECACC, HPA, Salisbury, UK) were 

resuspended from liquid nitrogen stocks and grown to confluency in RPMI-1640 + L-

glutamine + 10% FCS-HI + 100 U/mL Penicillin + 100 µg/ml Streptomycin. Cells were 

split and incubated for 3 days in fresh medium. The supernatant was collected and 

passed through a 0.45 µm filter. C. albicans SC5314 was pre-grown in YNB plus 2% 

glucose, washed with 1xPBS, and incubated in fresh medium or spent, filtered 

supernatant for 6 hours. Cells were stained for β-glucan as described above.   

L. reuteri isolated from pig gut was a generous gift from Dr Karen Scott (Rowett 

Institute of Nutrition and Health, University of Aberdeen). L. reuteri was incubated 

overnight in M2 medium (Sigma) at 37 °C, ambient air, 200 rpm. Cells were spun down 

and the supernatant was collected and passed through a 0.45 µm filter. C. albicans 

SC5314 was pre-grown in YNB plus 2% glucose, washed with 1xPBS, and incubated in 

fresh M2 or spent, filtered supernatant for 6 hours. Cells were stained for β-glucan as 

described above and 10,000 cells were analyzed by Flow Cytometry; n=2. 

 

Plasmid construction.  GFP-tagged proteins were generated by cloning the relevant 

ORF into CIp-NAT-GFP, which uses the CIp-NAT backbone 48 with the GFP ORF 

flanked by Age1 and Kas1 restriction sites to facilitate in-frame cloning under control of 

the ACT1 promoter.  The GPR1 ORF was inserted at the Age1 restriction site to 

generate GPR1-GFP.  The CRZ1 ORF was inserted in-frame at the Kas1 restriction site 

to generate GFP-CRZ1. 

 

RNA extraction and analysis.  Cells were incubated overnight in 5 ml volumes in the 

indicated conditions and transferred to fresh medium in 50 mL culture flasks for 4 h (30 

°C, 200 rpm) to an OD600 = 0.6.  RNA was obtained via Qiazol/chloroform extraction 

(QIAgen) according to the manufacturer’s instructions and assessed for quality by 



 

16 
 

NanoDrop 1000 (Thermo Scientific). RNA was DNAse treated (TURBO DNAse, Ambion) 

according to the manufacturer’s instructions and assessed for quality by Agilent 

Bioanalyser (RIN>8).  Samples were processed through the Ion Torrent Proton 

sequencer (CGEBM University of Aberdeen Genomics facility).  Raw fastq files were 

successively processed in the following order through Fastqc (v. 10.1), Trimgalore (v. 

3.1), Samtools (v. 1.19), STAR aligner (v. 2.4) and Htseq (v. 5.4).  Genome alignment 

was conducted against the C_albicans_SC5314_version_A21-s02-m09-r08 

chromosomes file provided by the Candida Genome Database 

(http://www.candidagenome.org/)49.  Aligned data were quality controlled via the Partek 

Genomics Suite® software, version 6.6, Copyright 2015, as per manufacturer’s 

instructions.  Biological replicates grouped by genotype and growth medium, and 

exhibited similar variance within each condition.  Gene expression analysis was 

performed using Partek® Genomics Suite® software using a log2 data transformation as 

the Partek® recommended default. GO term analysis was performed in parallel through 

the Candida Genome Database GO Term Finder and the Cytoscape v. 3 Clue GO 

plugin50.  Network construction was performed with Cytoscape V.3 freeware51. Statistical 

comparison among GO term enrichment percentages was performed with Graph Pad 

Prism (v. 6) using Student’s T-test for two-tailed data.  Data represent three independent 

biological replicates for each condition.  

 

Data availability.  The RNA sequencing dataset is available at EBI 

(http://www.ebi.ac.uk/arrayexpress/) under accession number E-MTAB-4579.  Other 

data that support the findings of this study are available from the corresponding author 

upon reasonable request.   
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Figure Legends 

 

Figure 1: Lactate activates β-glucan masking in Candida an attenuates 

phagocytic response.  (a) Flow cytometry analysis of β-glucan exposure.  Wild-type 

Candida albicans, C. dubliniensis, C. lusitaniae, C. parapsilosis, C. glabrata, and 

Saccharomyces cerevisiae were grown in glucose or lactate and examined for β-glucan 

masking.  The plots and Median Fluorescence Intensities (MFI) are shown for glucose-

grown cells (red; MFI value in top right of each panel) and lactate-grown cells (blue; MFI 

value, top left).  β-glucan masking was defined as a >50% decrease in MFI.  Plots are 

representative of data collected in two independent replicate experiments.  (b) β-glucan 

exposure for C. albicans cells grown in glucose (red) or glucose + lactate (purple).  (c) 
Percentage of glucose- or lactate-grown C. albicans cells phagocytosed by murine BMD-

macrophages; n=4 donor mice; measurements were performed in triplicate per mouse 

per condition and analysed using the Mann-Whitney U test; errors bars = 95%CI.  (d) 
Percentage of neutrophils recruited to the site of injection in BALB/c mice 

intraperitoneally infected with wild-type C. albicans pre-grown on glucose or lactate.  For 

each group, n=6 mice; data were analysed using the Mann-Whitney U test; error bars = 
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95%CI.  (e) TNF-α and (f) MIP1α responses from human M1-activated monocyte-

derived macrophages to glucose- and lactate-grown cells; n=4 donors were exposed to 

triplicate independent samples of Candida cells for each condition; the data were 

analyzed using Friedman test for matched non-parametric data; error bars = 95%CI. 

 

Figure 2: Lactate-induced β-glucan masking is specific, physiologically relevant, 

and mediated by Gpr1.  (a) β-glucan exposure for wild-type C. albicans cells grown in 

glucose (red), and glucose plus 2% D-lactate (blue, top panel) or glucose plus 2% L-

lactate (blue, bottom panel). Median Fluorescence Intensities (MFI) are indicated at the 

top of each panel, the value for glucose on the right, and for lactate on the left.  Plots are 

representative of three independent replicate experiments. (b) β-glucan exposure for C. 

albicans cells incubated for 6 h in fresh (red; MFI right) or spent (blue; MFI left) culture 

medium from J774.1 macrophages (36 h, top panel) or Lactobacillus reuteri  (overnight 

culture, bottom panel).  Plots are representative of two independent replicate 

experiments. (c) β-glucan exposure in C. albicans cells grown on glucose (red; MFI, top 

right) or lactate (blue; MFI, top left) for gpr1∆ gpa2∆ cells (top); GPR1 GPA2 wild-type 

cells (bottom); gpr1∆ cells (top); GPR1 wild-type cells (bottom); clinical isolate 

S20175.016 containing pACT1-GPR1-GFP (top); S20175.016 containing the control 

pACT1-GFP vector (bottom).  Plots are representative of data collected in three 

independent replicate experiments.  (d) Micrographs showing Gpr1-GFP internalization 

in C. albicans wild-type cells (SC5314) expressing Gpr1-GFP following 1 hr exposure to 

glucose, lactate, or methionine at the indicated concentration.  Micrographs are 

representative of three replicate experiments: scale bar = 10 µm.  (e) Gpr1-GFP 

localization after 1 hr of exposure to 100 mM of the indicated ligand.  Micrographs are 

representative of three replicate experiments: scale bar = 10 µm.  (f) Dose response 

curves showing β-glucan exposure for C. albicans cells grown for 4 hours in buffered 

YNB plus the indicated ligand at 2 mM (lactate only), 10 mM, 100 mM, or 150 mM.  

Values were normalized against 0 mM for each condition: n=3; error bars = 95%CI.  

(g,h) Mannan (ConA, red) and β-glucan (Fc-Dectin1, green) exposure for (g)  wild-type 

and (h) gpr1∆ gpa2∆ cells.  Micrographs are representative of two replicate experiments: 

scale bar = 5 µm.   
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Figure 3: Lactate-induced β-glucan masking is dependent on Crz1, but not 

calcineurin.  (a) Cytometric analysis of β-glucan exposure in C. albicans cells grown on 

glucose (red) or glucose plus lactate (blue): CRZ1 wild-type; crz1∆ mutant; crz1∆ + 

CRZ1 reconstituted strain; cna1∆; cnb1∆; wild-type cells exposed to 3.12 µg/ml FK506.  

Median Fluorescence Intensities (MFI) are indicated at the top of each panel, the value 

for glucose on the right, and for lactate or FK506 on the left.  Plots are representative of 

data collected in three independent replicate experiments.  (b) Micrographs showing the 

localization of GFP-Crz1 in wild-type (CAI4+CIp10), cnb1∆, and gpr1∆ gpa2∆ cells 

grown in or glucose alone (control), glucose and exposed to 100 µM CaCl2 (1 h), or 

glucose plus 2% lactate (4 h). Micrographs are representative of three replicate 

experiments: scale bar = 5 µm.  (c) Micrographs showing mannan (ConA, red) and β-

glucan (Fc-Dectin1, green) exposure in wild-type and crz1∆ cells following growth in 

glucose or glucose plus lactate.  Micrographs are representative of two replicate 

experiments: scale bar = 5 µm.   

 

Figure 4: Role of lactate-regulated genes in lactate-dependent β-glucan masking.  

(a) Fluorescent micrographs for wild-type (CAI4), mnn14∆, mnn22∆, exg2∆, cht2∆, 

pga26∆, and ace∆ cells stained for chitin (Calcofluor White, blue) and β-glucan (Fc-

Dectin1, green).  Micrographs are representative of two replicate experiments: scale bar 

= 5 µm.   (b) Confocal 3D rendered micrographs showing mannan (ConA, blue) and β-

glucan (Fc-Dectin1, green) exposure in wild-type (SC5314) and ace2∆ cells. 

Micrographs are representative of two replicate experiments: scale bar = 5 µm. (c)  β-

glucan exposure for C. albicans wild-type parent (CAI4), exg2∆, cht2∆, mnn14∆ cells 

grown on glucose (red) or glucose plus lactate (blue). Median Fluorescence Intensities 

(MFI) are indicated at the top of each panel, the value for glucose on the right, and for 

lactate on the left. Data were acquired using a FACSCalibur flow cytometer. Plots are 

representative of data collected in two independent replicate experiments.  (d) β-glucan 

exposure for MNN22 parent, mnn22∆, PGA26 parent and pga26∆ cells grown on 

glucose (red) or glucose plus lactate (blue).  Median Fluorescence Intensities (MFI) are 

indicated at the top of each panel, the value for glucose on the right, and for lactate on 

the left.  Data were acquired using a BD Fortessa flow cytometer.  Plots are 

representative of data collected in two independent replicate experiments.   
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Figure 5: Regulation of β-glucan masking in C. albicans.  (a) A Crz1 network 

contributes to lactate-induced gene regulation.  Differentially regulated 

genes are displayed as nodes and classified as either cell wall related (blue) or other 

(grey), based on their GO annotation.  Lactate- and Crz1-regulated clusters are based 

on the RNA sequencing dataset, and the Ace2 cluster represents genes bound at their 

promoters by Ace230.  The data used to generate this network in Cytoscape 3.2.1 are 

presented in Supplementary Table S3. A core set of six genes are regulated by lactate, 

Crz1 and Ace2, and three of these execute cell wall or cell surface-related functions 

(MNN22, FET3, HGT10).  (b) Model of β-glucan masking in C. albicans.  L-lactate is 

detected by Gpr1, which in turn signals to Crz1 in a calcineurin independent manner.  

With the help of Ace2, Crz1 regulates a polygenic response resulting in masking of β-

glucan on the C. albicans cell surface. 
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