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Abstract 27 

Introduction.  Muscle fiber cross-sectional area (CSA) and proportion of different fiber types 28 

are important determinants of muscle function and overall metabolism.  Genetic variation 29 

plays a substantial role in phenotypic variation of these traits, however, the underlying genes 30 

remain poorly understood. 31 

Aims.  This study aimed to map quantitative trait loci (QTL) affecting differences in soleus 32 

muscle fiber traits between the LG/J and SM/J mouse strains. 33 

Methods.  Fiber number, CSA, and proportion of oxidative type I fibers were assessed in the 34 

soleus of 334 genotyped female and male mice of the F34 generation of advanced intercross 35 

lines (AIL) derived from the LG/J and SM/J strains.  To increase the QTL detection power, 36 

these data were combined with 94 soleus samples from the F2 intercross of the same 37 

strains.  Transcriptome of the soleus muscle of LG/J and SM/J females was analysed using 38 

microarray. 39 

Results.  Genome-wide association analysis mapped 4 QTL (genome-wide p<0.05) 40 

affecting the properties of muscle fibers to Chromosome 2, 3, 4 and 11.  A 1.5-LOD QTL 41 

support interval ranged between 2.36 Mb and 4.67 Mb.  Based on the genomic sequence 42 

information, functional and transcriptome data, candidate genes were identified for each of 43 

these QTL. 44 

Conclusion.  Combination of analyses in F2 and F34 AIL populations with transcriptome and 45 

genomic sequence data in the parental strains is an effective strategy for refining QTL and 46 

nomination of the candidate genes.   47 

 48 
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Introduction 51 

Skeletal muscle plays a broad range of biological functions including locomotion, 52 

thermoregulation, respiration, postural support, protection of bones and viscera; as well as 53 

serving as a source of amino acids in times of starvation or disease.  Muscle tissue in 54 

livestock also provides an essential source of dietary proteins.  In humans, there is more 55 

than a 2-fold difference in muscle mass between individuals of similar age and same sex (3, 56 

33).  This is the outcome of variability in the number of muscle fibers and their size (51).  57 

These differences are of clinical relevance.  Variability in muscle mass significantly impacts 58 

energy expenditure (58), influencing preponderance to obesity.  In addition, individuals with 59 

lower muscle mass may be more vulnerable to impairment of these vital functions due to 60 

aging and/or disease related muscle loss.  It has recently been reported that there is a 61 

positive association between muscle mass and longevity in older adults (66). 62 

 63 

Human skeletal muscles are mainly comprised of a mixture of type I, IIA and IIX muscle 64 

fibers (62).  The number of fibers, their size and varying proportions of the fiber types affect 65 

morphological and functional properties of the muscle (6).  A larger diameter of the fibers 66 

and higher number of fibers typically leads to augmented muscular strength and power (25, 67 

28).  The proportion of type I muscle fibers is a factor determining success in endurance 68 

sporting events (15, 18) and overall metabolism in humans (24, 29, 44, 74).  In livestock, 69 

proportion of oxidative type I fibers is associated with meat quality (65). 70 

 71 

In humans, genetic factors account for around half of the variation in strength (19, 24, 74) 72 

and the upper limit heritability is even greater (over 0.9) for muscle mass (26).  Heritability 73 

estimates of proportion of type I fibers is also high, ranging between 0.4 and 0.9, indicating 74 

that genetic factors play an important role in determining muscle fiber properties (37, 63).  75 

Effects of genetic factors on muscle fibers have also been demonstrated in mouse (20, 22, 76 



59), cattle (68), sheep (10, 38) and pig (71).  However, the specific genes underlying these 77 

effects remain largely elusive. 78 

 79 

Attempts at mapping the polygenic architecture of muscle fiber properties in mouse (11), pig 80 

(17, 43, 52, 55, 77), cattle (1) and carp (80) have been made.  A number of QTL have been 81 

identified in these studies.  However, the resolution achieved in the F2 population is not 82 

adequate for reliable nomination of the candidate genes in the majority of the QTLs of 83 

polygenic traits. The mouse soleus muscle (primarily consists of type I and IIA fiber types), 84 

closely resembles the fiber type composition of human skeletal muscles (primarily comprised 85 

of type I, IIA and IIX fiber types), and is therefore a particularly interesting experimental 86 

model.  In our previous study, we mapped soleus muscle fiber traits in an F2 intercross 87 

between the LG/J and SM/J laboratory mouse strains (11).  These strains differ in a number 88 

of muscular phenotypes, with the LG/J strain displaying a greater proportion of type I fibers, 89 

and a greater cross-sectional area (CSA) of type I and IIA muscle fibers.  We identified in 90 

that study three significant QTLs contributing to the difference in the CSA of muscle fibers 91 

between LG/J and SM/J strains (11).  Regions of conserved synteny from the identified loci 92 

were also implicated in fiber phenotypes in pig supporting the importance of these genomic 93 

regions in determining muscle fiber properties.  However, the exact genes underlying their 94 

effects remain to be determined. 95 

 96 

Integration of advanced study populations, high throughput gene expression technology and 97 

increasing availability of knockout models aid identification of the causative genes.  98 

Nomination of the genes underlying QTL effects can be facilitated by improving the mapping 99 

resolution, and by utilising genomic sequence and transcriptome information.  Advanced 100 

intercross lines (AIL) have been proposed as a powerful population for mapping QTLs (16).  101 

It has been demonstrated recently that a joint F2 and AIL analysis can combine the 102 



advantages of both mapping populations by increasing the power to detect QTLs and 103 

achieving a higher mapping resolution of various traits in mice (13, 47).  Additionally, testing 104 

for differences in specific gene expression has led to several nominations of quantitative trait 105 

genes (30, 35).  For validation of such candidate genes, phenotypic effects of relevant 106 

alleles can be examined in experimental populations where these alleles segregate albeit on 107 

a different genetic background.  In addition, available knockout models offers particularly 108 

attractive option for validation experiments. 109 

In the present study we aimed to fine-map QTL and nominate candidate genes affecting the 110 

CSA and proportion of oxidative type I fibers in the soleus muscle in a combined analysis of 111 

F2 and F34 AIL mice, and by cross referencing QTL data with soleus transcriptome profiles in 112 

the parental strains.  Further filtering of the emerged candidates was carried out in an 113 

independent AIL and a knockout model. 114 

  115 



Methods 116 

Muscle Samples 117 

This study was carried out on soleus muscles dissected from females and males of the F34 118 

advanced intercross lines (AIL) of the LG/J and SM/J inbred strains.  Animals were 119 

maintained as previously described (13) and sacrificed at 94 ± 4 days.  All procedures were 120 

approved by the Institutional Animal Care and Use Committee of the University of Chicago.  121 

Soleus muscle samples from F34 AIL mice described in our previous study (47) were 122 

subjected to histological analyses.  The final sample size used in the present study was 334 123 

F34 mice, 142 females and 192 males, after discarding samples of poor tissue quality.  A set 124 

of 94 F2 samples (38 females and 56 males) described in our previous study (11) was also 125 

used in order to increase the QTL detection power. 126 

In addition, we also analysed soleus muscle samples for two hypothesis driven studies 127 

aimed at testing the effects of identified candidate genes on percentage of oxidative, type I 128 

fibers.  First, we examined solei samples from the Chd6 ATPase knockout (n=6), 129 

heterozygous (n=4) and wild type (n=4) females.  The generation of the Chd6 mutant mice 130 

has been previously reported (40).  Briefly, the genetic manipulation generated an allele with 131 

the ATPase domain of Chd6 (exon 12) flanked by loxP sites so that the action of Cre 132 

recombinase would delete this domain.  The mice were mated to a germline Cre-expressing 133 

strain (Jackson lab strain 003465) to delete both exon 12 and the neomycin resistance 134 

marker used for the targeting.  Subsequently breeding generated the Chd6 ATPase 135 

knockout mice utilized in the present study.  Second, solei of the advanced intercross mice 136 

(generations F9-F12), all homozygous carries of the C57BL/6J (n=22) or DBA/2J (n=23) 137 

alleles at the region harbouring the Alad gene were selected from the tissue bank of our 138 

previous study (9). 139 

Phenotype assessment 140 



The soleus muscles were frozen in isopentane cooled in liquid nitrogen.  Transverse 141 

sections from the belly of the muscle were cut at a thickness of 10 µm with a cryotome 142 

(Leica CM1850UV) at -20˚C.  The muscle sections were subjected to ATPase staining (acid 143 

pre-incubation, pH 4.47) to distinguish between fiber types (8).  Microscopic images of 144 

stained sections were taken at x5 and x20 magnification.   145 

The following phenotypes were assessed: muscle fiber number (type I and IIA) and percent 146 

of type I muscle fibers, cross-sectional area (CSA) of type I and type IIA fibers (Figure 1).  147 

Muscle fiber traits were manually analysed using ImageJ software (NIH-version 1.43).  25 148 

measurements of each fiber type were taken using the freehand selection tool at x20 149 

magnification to obtain a value representing the mean CSA of type I or type IIA fibers for that 150 

muscle.  This was deemed as a representative sample by empirical testing as described 151 

previously (11).  Total number of type I and type IIA muscle fibers were counted using the 152 

ImageJ cell counter plugin on x5 magnification images.  As all fibers in mouse soleus pass 153 

through the belly of the muscle (69), this method provides an accurate estimate of the 154 

number of fibers constituting the muscle.  Total number of type I fibers and total number of 155 

type IIA fibers were counted, permitting derivation of percentage of type I fibers.  Over the 156 

course of the study ~200,000 muscle fibers were counted and ~6,700 fibers measured for 157 

CSA. 158 

Statistical analyses 159 

The GraphPad Prism version 5.0 statistical package was used (GraphPad software, La Jolla, 160 

CA).  Data are presented as mean ± SD, unless otherwise stated.  The CSA of type I and 161 

type IIA fibers were analysed using a two-way (sex and fiber type) paired-measures (type I 162 

and type IIA fibers) ANOVA. 163 

Genotyping and QTL mapping 164 

Mice were genotyped using a custom designed SNP array that included 4,610 polymorphic 165 

SNPs that were approximately evenly distributed across the genome, as described 166 



previously (13).  The genome-wide association analysis was performed in the combined 167 

population of the F34 and recently published F2 intercrosses (11) using the R package 168 

QTLRel (12).  This software accounted for the complex relationships (e.g., sibling, half-169 

sibling, cousins) among the F34 mice by using a mixed model, as previously described (12, 170 

13).  Due to the sex differences in muscle mass in these mice (47), and the discovery of sex 171 

specific QTL in other studies (45, 46), we included sex as an additive and interacting 172 

covariate.  Threshold of significance was estimated by 1000 permutations (14).  We defined 173 

the support interval for each QTL as the 1.5-LOD drop off on either side of the peak marker.  174 

This interval was expressed in physical map position (Mb) by using the nearest genotyped 175 

SNP that flanked the support interval, based on the mouse genome build GRCm38.p3. 176 

Transcriptome analysis 177 

Soleus muscle tissues from 92-day old LG/J and SM/J females (n=3 of each strain) were 178 

used.  RNA was isolated using TRIzol (Invitrogen Life Technologies, Carlsbad, CA) followed 179 

by purification and DNase digestion using RNeasy minikits (Qiagen, Venlo, Netherlands) 180 

according to the manufacturer’s instructions.  Quantification of total RNA was performed on 181 

a NanoDrop spectrophotometer (Thermo Scientific) and quality tested on an Agilent 182 

Tapestation with R6K Screentapes (RIN ≥7.3).  Generation of sense strand cDNA from 183 

purified total RNA (Ambion® WT expression kit, Ambion, Austin, Texas) followed by 184 

fragmentation and labelling (GeneChip WT labelling kit, Affymetrix, Santa Clara, CA) were 185 

performed according to the manufacturer’s instructions.  Hybridisation, washing, staining and 186 

scanning of microarrays were carried out on Affymetrix Mouse Gene 2.0 ST microarrays 187 

according to the manufacturer’s standard protocols using a GeneChip Fluidics station 450 188 

and GCS3000 scanner (Affymetrix®, Santa Clara, CA).  Microarray data are available in the 189 

ArrayExpress database (www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-190 

5290. 191 

 192 



Data pre-processing and quality control analysis was performed using Affymetrix® 193 

Genechip® Expression Console v1.2.  Probe cell intensity data on the Mouse Gene 2.0 ST 194 

array (CEL files) were processed using the RMA16 algorithm (Affymetrix, Santa Clara, CA, 195 

USA) which fits a robust linear model at probe level by employing background correction, 196 

quantile normalisation of log2 transformed data and summarisation to probe level data (CHP 197 

files, 41,345 probe sets).   198 

 199 

Data was analysed for differentially expressed genes in Partek® Genomics Suite® version 200 

6.6, build 6.15.0730 (Partek Inc., St Louis, MO) using a Mus musculus build mm10 201 

annotation file for Mouse Gene 2.0 ST microarrays (MoGene-2_0-st-v1.na35.mm10).  CEL 202 

files (Expression Console v 1.2, Affymetrix, Santa Clara, CA) were imported to Partek 203 

Genomics Suite v 6.6 and processed using RMA normalisation with background correction 204 

of log2 transformed data and probe set summarisation by median polish.  Differential 205 

expression analysis between the LG/J and SM/J strains of all genes (n=41,345 transcript 206 

clusters) was determined by 1-way ANOVA with Storey’s FDR, and q-value ≤0.05 207 

considered significant (n=819 genes differentially expressed ≥ 1.2 fold; see Supplementary 208 

Table 1).   209 

To assess transcription of positional candidate genes in each strain, a hypothesis driven 210 

analysis of differential gene expression was performed between the LG/J and SM/J strains 211 

on all genes mapping to the support interval defined for each QTL in the GWAS described 212 

above.  Using Partek Genomics Suite v.6.6, a total of 159 genes that were represented on 213 

the mouse Gene 2.0ST microarray, were identified in Mus musculus genome build 214 

GRCm38, mm10 within mapping co-ordinates Chr2:158908559–162608559 (26 genes), 215 

Chr3:33308451–35708451 (15 genes), Chr4:57605946–62913639 (77 genes) or Chr 216 

11:27900000–31500000 (41 genes).  1-way ANOVA identified differentially expressed genes 217 

between the LG/J and SM/J strains (P<0.05).  Fold change was calculated using the 218 

geometric mean of samples in each group.   219 



Candidate genes 220 

Nomination of the candidate genes was based on the following three criteria.  First, we 221 

scrutinized polymorphisms in positional candidates between the LG/J and SM/J strains.  The 222 

emphasis was on the indels and SNPs that would affect the coding sequence and lead to 223 

changes in amino acids.  To assess whether amino acid substitution would influence the 224 

function of a protein, evolutionary conservation at the site of substitution and properties of 225 

substituted amino acids were considered using three different bioinformatics tools as 226 

described by Nikolskiy and colleagues (56).  Second, we examined expression of positional 227 

candidates across a panel of over ninety mouse tissues and cell types available in BioGPS 228 

GeneAtlas MOE430, gcrma dataset (79).  This analysis permits a quantitative comparison of 229 

transcript abundance of a gene between tissues.  We considered that an abundant 230 

expression in skeletal muscle lineage, i.e. muscle tissue and/or C2C12 myogenic cell line, 231 

implies functional and/or structural relevance of a gene in this tissue.  Third, we compared 232 

gene expression levels in the soleus muscle between the two strains as described in the 233 

previous section.  Expression difference in this analysis might point at the strain-specific, 234 

genotype-dependent mechanism underlying the phenotypic difference. 235 

 236 

Results 237 

Phenotypic analyses 238 

CSA.  Cross section analysis of soleus muscle fibers were done on mice of both sexes from 239 

the F34 cohort.  For muscle fiber cross-sectional area, we observed a statistically significant 240 

sex by fiber type interaction (P<0.0001).  In the female F34 mice there was no significant 241 

difference between type I and type IIA muscle fiber areas (913 ± 229 μm2, n=140; and 952 ± 242 

242 μm2, n=140 respectively; P=0.2).  However, there was a significant difference within the 243 

males, with the type I muscle fiber area being smaller than IIA fiber area (1084 ± 238 μm2, 244 



n=187; and 1215 ± 294 μm2, n=187 respectively; P< 0.0001).  Muscle fiber area was lower 245 

in females than males for type I CSA, (P < 0.0001) and type IIA CSA (P < 0.0001). 246 

Percentage of type I fibers.  The number of type I fibers as a percentage of total fibers 247 

varied substantially between individuals, ranging from 30% to 67% in females, and from 26% 248 

to 59% in males (Figure 1) and was greater in females than males (46 ± 8%, n=142; and 39 249 

± 6%, n=189; respectively; P < 0.0001). 250 

Total fiber number.  No difference was observed in the total soleus fiber number between 251 

females and males (646 ± 102, n=120, and 667 ± 105, n=177, respectively; P= 0.0979).   252 

 253 

QTL analyses 254 

Muscle fiber traits approximated the normal distribution in both the F2 and F34 population 255 

(Supplementary Figure 1).  We identified significant QTL (at the 1% or 5% level of genome-256 

wide statistical significance) (39) for CSA of type I and type IIA fibers and the percentage of 257 

type I fibers.  We also identified chromosome-wide significant QTL for CSA of type I and type 258 

IIA fibers, the percentage of type I fibers and total fiber number (Table 1).  The size of the 259 

support interval of these QTL ranged from 0.4-40.7 Mb, with a median of 4.6 Mb.   260 

The QTL at the genome-wide level of significance for CSA of type I and type IIA fibers on 261 

chromosome 3 was named Mfq5.  The QTL at the genome-wide level of significance for the 262 

percentage of type I fibers on chromosome 2 and 4 were named Mfq4 and Mfq6, 263 

respectively.  The SM/J allele conferred a greater percentage of type I fibers at Mfq4, and a 264 

greater CSA at Mfq5.  The LG/J allele conferred a greater percentage of type I fibers at Mfq6 265 

locus. 266 

A significant QTL affecting CSA of type I and type IIA fibers was also detected on 267 

chromosome 11 (Figure 2) within the same region as locus Mfq3, previously identified in the 268 

F2 intercross of the same parental strains (11).  The QTL exhibited male-specificity in both 269 



type I and IIA fibers of the F34 mice (Figure 3).  Because this QTL recapitulated properties of 270 

the Mfq3 locus, which we also found to be male specific in the F2 population, we concluded 271 

that the same locus has been refined in F34 and did not assign a new name for this QTL.  272 

Earlier reported Mfq2 locus has been refined in a similar manner; a QTL on chromosome 6 273 

affecting CSA of type I and type IIA fibers (at 1% chromosome specific threshold) was 274 

engulfed by the support interval of Mfq2 and also replicated its increasing allele, LG/J, in 275 

both females and males (not shown). 276 

Gene expression analyses 277 

We hypothesized that each identified QTL harbours one or more genetic variants that drive 278 

phenotypic differences by means of differential gene expression.  Hypothesis driven analysis 279 

of differential expression in soleus muscle was performed between LG/J and SM/J strains for 280 

the genes in the most robust QTLs affecting fiber CSA or % Type I fibers (Mfq3, Mfq4, Mfq5 281 

and Mfq6).  The Mouse Gene 2.0 ST expression array contains 159 genes residing within 282 

the support intervals of these QTLs (Supplementary Table 2).  Twenty genes (Table 2) 283 

showed evidence of differential expression (ANOVA, p≤0.05), 2 of which, Alad and Hdhd3, 284 

were significant after correction for the multiple testing problem (Storey’s FDR q≤0.05).  285 

Compared to other tissues and cell types, expression of differentially expressed genes Mafb, 286 

Acyp2 and Mtif2 (Table 2), is particularly enriched in skeletal muscle (BioGPS, Mouse 287 

MOE430 gene expression data). 288 

Genomic analyses 289 

Positional candidates with non-synonymous polymorphisms provide a plausible genetic 290 

cause for the phenotypic differences.  Based on the genomic sequence of the LG/J and 291 

SM/J strains (56), we identified 21 genes in the QTL regions with non-synonymous 292 

polymorphisms predicted to affect protein function by at least one out of three algorithms 293 

used in the analysis (Supplementary Table 3).  Four of those genes (Mfq3: Mtif2, Rtn4, 294 

Psme4; Mfq5: Dnajc19) are prioritized further because of their preferential expression in 295 



muscle lineage (differentiated muscle and/or C2C12 myoblasts) compared to other tissues 296 

and cell types. Among those, the Mtif2 gene differs by 3 (rs26871496, rs26871494, 297 

rs29436813) and Rtn4 by 9 (rs29473364, rs29469198, rs13463765, rs29465940, 298 

rs26857726, rs26857725, rs29474377, rs26857722, rs26857721) amino acids between the 299 

two strains. At all SNPs the SM/J strains carries reference while the LG/J strain the 300 

alternative allele. 301 

Candidate gene analyses 302 

The Chd6 gene emerged as a differentially expressed positional candidate for the Mfq4 303 

locus affecting percentage of type I fibers (Table 2).  To test its effect we examined soleus 304 

muscles of Chd6 knockout, heterozygous and wild type littermates.  This analysis however 305 

revealed that the genotype of the animals did not have a significant effect (P=0.30) on the 306 

percentage of type I fibers (Figure 4). 307 

The Alad gene emerged as a candidate for another locus affecting proportion of type I fibers, 308 

Mfq6.  In the animals of an advanced intercross between the C57BL/6J and DBA/2J strains 309 

(these strains carry one or three copies of Alad, respectively (3)), we examined if percentage 310 

of type I fibers was genotype-dependent.  The analysis revealed no difference in the 311 

percentage of type I fibres between the carriers of the C57BL/6J and the DBA/2J alleles, 42 312 

± 7% and 42 ± 8%, respectively.  313 



Discussion 314 

A previous study on muscle weight in LG/J and SM/J strains identified a two-fold difference 315 

in soleus muscle size (47).  We then explored the cellular and genetic mechanisms 316 

contributing to this phenomenon, finding that the difference was largely due to the CSA of 317 

muscle fibers and we mapped QTL affecting muscle fiber traits in an F2 intercross between 318 

the LG/J and SM/J strains (11).  The present study, which utilizes the F34 advanced 319 

intercross, verified, refined and expanded our earlier findings.  320 

A number of studies have previously reported the effects of Stat5a and Stat5b (36), Pgc-1α 321 

(42), Ky (4), myostatin (54), leptin (61), calcineurin (76), Sod1 (5), alpha-actinin-3 (50), 322 

dystrophin (7), Tbx15 (41) and IIB myosin heavy chains (2) genes on muscle fiber area in 323 

knockout or mutant models.  In addition, Pgc-1α (75), calcineurin (76), Foxo1 (34) and 324 

myostatin (20) are reported to affect the proportion of muscle fiber types.  However, the 325 

genomic positions of these genes have not been linked to muscle fiber differences between 326 

the LG/J and SM/J strains, implicating involvement of novel genes.   327 

Muscle fiber number.  The number of fibers is an important determinant of muscle size and 328 

functional properties.  It is set during embryogenesis and the first post-natal week in mice 329 

(78).  The number of muscle fibers in males (667 ± 105) and females (646 ± 102) of the F34 330 

population was comparable to that observed in the soleus of the F2 population (645 ± 102 331 

and 595 ± 107, respectively), and within the range of the fiber count observed in solei of a 332 

variety of different strains of mice ~250-~900 fibers (32, 49, 57, 70, 72). 333 

From these data it emerged that males and females are born with a similar number of fibers 334 

in soleus muscle, and that the sex difference in muscle weight (males have approximately 335 

30% larger soleus than females) is due to the difference in fiber size.  Comparison of the 336 

parental strains also revealed a similar number of fibers (11), despite the 2-fold difference in 337 

soleus weight (47), demonstrating that size rather than number of fibers determines variation 338 

in muscle weight between the LG/J and SM/J strains. 339 



Fiber area.  The CSA of muscle fibers in the LG/J strain is 49% to 90% greater than the 340 

corresponding fibers in the SM/J strain, indicating that this variable accounts for a large 341 

portion of the muscle mass difference between the strains (47).   342 

The area of type I (1084 ± 238 μm2 and 913 ± 229 μm2 for males and females, respectively) 343 

and type IIA (1215 ± 294 μm2 and 952 ± 242 μm2, respectively) of the F34 mice was 344 

comparable to the corresponding fiber area of the F2 mice of the same lineage (11) and it is 345 

within the range reported for the type I, between 920 μm2 and 1780 μm2 (32, 57, 70), and 346 

type IIA fiber area, between 700 μm2 and 1400 μm2 (32, 70), in various inbred mouse 347 

strains.   348 

Percentage of type I fibers.  The percentage of type I fibers in male (39 ± 6%) and female 349 

(47 ± 8%) F34 mice were also within the range of previous studies, which showed the 350 

percentage of type I fibers in the soleus muscle fluctuates between ~25 and ~66% (32, 57, 351 

70).   352 

In the F34 mice we replicated our observation in the F2 population that the percentage of type 353 

I fibers was significantly greater in females than males.  This sex difference is also observed 354 

in various human muscles where, in general, women have a higher percentage of type I 355 

muscle fibers than males (27, 53, 60, 64, 67).  The phenomenon is likely to be explained, at 356 

least partly, by the effect of androgens; castration leads to a higher percentage of type I 357 

fibers in the soleus of male mice (73).   358 

Validation and refinement of genetic architecture.  In the present study, we validated and 359 

refined the genetic architecture of muscle fibers identified in an F2 intercross between the 360 

same parental strains (11).  In order to increase QTL detection power, we increased sample 361 

size by combining the F34 and F2 data.  The median mapping resolution of 4.6 Mb for muscle 362 

fiber QTLs was comparable with 3.7 Mb of muscle weight QTLs obtained in the same 363 

population albeit using ~1,600 fewer genetic markers than in the present analysis (47).  A 364 

genome-wide significant QTL identified in the present study between 27.9 Mb and 31.4 Mb 365 



on chromosome 11 (Table 1) overlapped with a significant QTL, Mfq3, mapped in the F2 366 

population (11).  In addition to the chromosomal location, the increasing allele of this locus 367 

(LG/J) and its male-specific effect (Figure 3) were also replicated in F34, suggesting that the 368 

same gene(s) were involved in two different populations and permitting us to refine the Mfq3 369 

locus from 51.6 Mb to 3.57 Mb.  The presence of two satellite QTL proximal of the refined 370 

Mfq3 (Table 1) suggests that the QTL observed in the F2 population (11) might have been 371 

an outcome of up to three linked loci.   372 

The recently reported “mini-muscle” locus, mapped to 67.1–70.2 Mb on chromosome 11, 373 

affects muscle fiber area and proportion of fiber types (21-23).  However, the mutation 374 

responsible for the “mini-muscle” phenotype maps to an intron of Myh4 gene located at 67.2 375 

Mb (31), between the support intervals of two adjacent QTLs affecting fiber type between the 376 

LG/J and SM/J strains (Table 1).  Together, these data suggest that a number of genes 377 

residing on chromosome 11 might be involved in the regulation of muscle fiber phenotypes. 378 

The QTL affecting the CSA of type I and type IIA fibers on chromosome 6, albeit at 1% 379 

chromosome-wide threshold of significance (Table 1), overlapped with the Mfq2 locus found 380 

in the F2 population, characterized by the same increasing allele, LG/J.  Thus, the support 381 

interval of Mfq2 could be considered to be 5.18 Mb rather than the previously reported 56.5 382 

Mb.  Importantly, the immediate proximity of the refined region (Chr 6: 110.8-116.0 Mb) to 383 

the syntenic region (Chr 6:116.0-118.0 Mb) implicated in the QTL affecting the diameter of 384 

pig IIA fibers (17) suggest that the same genes could be underlying the effects of these 385 

QTLs in mice. 386 

A QTL affecting percentage of type I fibers (at 10% chromosome-wide threshold) on 387 

chromosome 1 (67.6to 70.8 Mb) overlapped with Mfq1 locus which influenced the CSA of 388 

type I and type IIA fiber area in the F2 population (11).  However, because the CSA and 389 

percentage of type I fibers are poorly correlated traits both in the F34 (Supplementary Table 390 



4) and the F2 mice (11), it is likely that different genes are underlying the Mfq1 locus and the 391 

QTL identified in the F34 population.  Further studies are required to clarify this observation. 392 

Transcriptome analysis 393 

In the present study, the expressed transcriptome in soleus muscle of the parental strains 394 

was examined in order to facilitate nomination of the candidate genes within the refined QTL.  395 

We hypothesized that if the phenotypic effect of the QTL was brought about by the allele 396 

specific abundance of transcripts encoded by genes within the QTL, such genes would be 397 

differentially expressed in the transcriptome between the parental strains.  Comparison of 398 

expression of the genes within the four most robust QTLs identified Alad and Hdhd3 genes 399 

as potential candidates for the Mfq6 locus, which affects the proportion of type I fibers.  400 

Transcripts of both genes are more abundant in the LG/J compared to the SM/J strain.  This 401 

is consistent with our findings in the TA muscle of the same strains (48).  Of these two 402 

identified candidate genes, transcripts of Alad are ~20 times more abundant in the mouse 403 

muscle than Hdhd3, regardless of strain.  In addition, Alad may play a role during 404 

myogenesis as its expression in C2C12 myogenic cells is 5-fold higher compared to 405 

differentiated muscle (79).   406 

Candidate genes.   407 

The support intervals of four most robust QTLs harbor 159 genes (Supplementary Table 2).  408 

These regions were scrutinized further for the genes fulfilling one of the following criteria: 409 

presence of the functional variants (i.e. non-synonymous SNPs predicted to alter function of 410 

encoded protein); abundance of transcript in muscle lineage, particularly in comparison to 411 

other tissues and cell types; differential expression in the soleus of the two strains; and by 412 

comparing genomic sequence between the LG/J and SM/J strains a list of 21 genes was 413 

highlighted (Supplementary Table 3) with the strain-specific functional variants.  Using 414 

bioinformatics, 4 genes abundantly and/or preferentially expressed in skeletal muscle 415 

compared to other types of tissues and cells were identified.  Our own analysis of gene 416 



expression in soleus muscle highlighted a set of 20 genes differentially expressed between 417 

the two strains (Table 2).  Intersection of all these lists permitted us to prioritise nine 418 

candidate genes which appeared on more than one of these lists and/or for which 419 

independent and accessible validation models were available (i.e. Chd6 and Alad).  Because 420 

neither the Chd6 (Figure 4) nor Alad genes were found to affect proportion of type I fibres in 421 

the way predicted by the QTL analyses, the list of prioritised candidates was reduced to 7 422 

genes annotated in Supplementary Table 5.  Three out of four QTLs contain one (Mfq6) or 423 

more candidate genes.  All candidates are abundantly transcribed in muscle lineage with 424 

Psme4, Acyp2 and Mafb showing the highest level of expression in skeletal muscle 425 

compared to other tissues and cells.  None of the seven candidates have been previously 426 

implicated to affect properties of skeletal muscle fibres although some of them have been 427 

implicated in cardiomyopathy or function as transcription factors (Supplementary Table 5).  428 

Thus, genomic and gene expression analyses permitted focusing on a limited number of 429 

positional candidates in the future validation studies for establishing the causative genes. 430 

Conclusion 431 

In conclusion, we have refined the genetic architecture affecting cross sectional area of 432 

soleus muscle fibers and proportion of type I fibers in the LG/J and SM/J derived lineage.  433 

Integrating QTL mapping, genomic and transcriptome data from homologous muscle 434 

highlighted several candidate genes that may underpin muscle phenotypes critical to health 435 

and disease and worthy of follow up analyses.  436 

 437 
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Figure legends 459 

Figure 1.  Individual variability in proportion of oxidative fibers.  Representative images 460 
of F34 female soleus cross-sections following myosin ATPase staining (acid pre-incubation).  461 
Dark fibers type I, pale fibers type IIA. 462 

 463 

Figure 2.  Type I fiber cross-sectional area QTL on chromosome 11.  Analyses were 464 
carried out in the F2intercross and in the combined F2 and F34populations.  X-axis indicates 465 
the relative position in the linkage map in centimorgan (cM).  The thresholds are at the level 466 
of 0.05 genome wise significance for the F2 output (dotted line) and combined output (solid 467 
line). 468 

 469 

Figure 3.  Sex specificity of Mfq3 locus on cross-sectional area (CSA) of soleus type I 470 
and IIA fibers in the F34 intercross.  Mean and SEM.  Genotype at the peak marker: LG, 471 
homozygous for LG/J allele; H, heterozygous; SM, homozygous for SM/J allele.   472 

 473 

 474 

Figure4.  Percentage of type I fibers in the soleus muscle of 4 month old Chd6 475 
knockout (KO), heterozygous (HET) and wild-type (WT) females.  There is no difference 476 
in percentage of type I muscle fibers in the soleus muscle between knockout, heterozygotes 477 
and wild-type groups (P=0.3041).  Each data point is from a single mouse, horizontal lines 478 
represent group mean. 479 

  480 



Table 1.  Characteristics of muscle fiber QTL in combined analyses of the F2 and F34 481 
intercrosses derived from the LG/J and SM/J strains. 482 

Chr Thr** Level*** Start Mb† End Mb Size Mb Trait Locus¥ 

1 C 0.1  67.6   70.7   3.1  % Type I  
1 C 0.1  193.9   194.3   0.4  % Type I & CSA2A  
2 C 0.1  92.4   104.8   12.4  % Type I  
2 C 0.05  139.6   145.6   6.0  % Type I  
2 G 0.01  158.8   162.5  3.7 % Type I  Mfq4 (SM) 
3 G 0.05  33.6  40.0 6.4 CSA1 & CSA2A       Mfq5 (SM)
4 G 0.05  57.7  62.7 5.0 % Type I       Mfq6 (LG) 
4 C 0.05  103.9   106.1   2.2  % Type I  
6 C 0.05  81.9   84.1   2.2  CSAIIA  
6 C 0.01  110.8   116.0   5.2  CSA1 & CSA2A      Mfq2* (LG) 
7 C 0.05  138.4   140.0   1.6  % Type I  
8 C 0.1  7.4   12.4   5.0  % Type I  
8 C 0.05  89.0   92.4   3.4  TOTAL  
8 C 0.01  121.9   128.6   6.7  TOTAL  
10 G 0.1  120.7   121.3   0.6  % Type I  
11 C 0.1  12.4   17.2   4.8  CSAIIA  
11 C 0.1  19.1   23.1   4.0  CSAIIA  
11 G 0.01  28.0  31.5 3.5 CSA1 & CSA2A      Mfq3* (LG)
11 C 0.1  62.5   64.2   1.7  % Type I  
11 C 0.1  70.6   76.2   5.6  % Type I  
12 C 0.1  27.6   29.3   1.7  CSA1  
13 C 0.01  5.3   9.9   4.6  % Type I  
13 C 0.05  71.5   74.0   2.5  CSAIIA  
14 C 0.05  93.6   102.3   8.7  CSAIIA  
15 C 0.1  12.1  20.3 8.2 TOTAL  
16 C 0.05  68.9   75.1   6.2  CSA1 & CSA2A  
X C 0.01  11.8   52.5   40.7  TOTAL  

* refined previously identified QTL in the LG/J and SM/J F2 intercross (47). 483 

** C – chromosome-wide threshold, G- genome-wide threshold 484 

*** Level of significance 485 

¥ LG –increasing allele is LG/J, SM- increasing allele is SM/J 486 

† Genomic positions based on GRCm38.p3. 487 

 488 



Table 2.  Positional candidate genes differentially expressed between LG/J and SM/J soleus muscles. 489 

Chr QTL Probe set 
ID Gene p-value* Fold-Change** Gene name*** 

2 Mfq4 17393868 Mafb 0.033 -1.77 v-maf musculoaponeurotic fibrosarcoma oncogene family, 
protein B (avian) 

  17393910 Chd6 0.042724 -1.13 chromodomain helicase DNA binding protein 6 
  17404652 Gm24780 0.032914 -1.98 Predicted gene Gm24780, predicted protein is B4HDV3. 

3 Mfq5 17396801 Ttc14 0.033387 -1.14 tetratricopeptide repeat domain 14 

  17396876 ---- 0.0219376 -1.80 
There are no assigned mRNA sequences for this probe set.  
The probe set lies within lncRNA Sox2ot (Sox2 overlapping 
transcript, non-protein coding) 

  17425606 Gm12526 0.046791 -1.17 predicted gene 12526 

  17414380 Gm24277 0.00525644 -2.07 
Gm24277 a known snRNA.  The probeset also lies within 
an intronic region of RefSeq gene Pakap (PALM2-AKAP2),a 
read through transcript on chromosome 4 

  17425701 Mir3095 0.0298235 -1.78 Mir3095 (Entrez ID 100526502; EST 
ENSMUST00000175552).   

  17426097 Mup3 0.00304 -1.49 major urinary protein 3 
  17426126 Fkbp15 0.018038 -1.10 FK506 binding protein 15 

4 Mfq6 17414545 Slc31a1 0.049799 1.12 solute carrier family 31, member 1 
  17426166 Cdc26 0.021407 -1.29 cell division cycle 26 
  17426198 Hdhd3 0.000869 1.86 haloacid dehalogenase-like hydrolase domain containing 3 
  17426206 Alad 9.75E-05 1.91 aminolevulinate, delta-, dehydratase 
  17414600 Rgs3 0.023096 1.08 regulator of G-protein signaling 3 

 17248064 Mtif2 0.015517 -1.16 mitochondrial translational initiation factor 2 
  17261285 LOC102637613 0.00432682 1.68 linc RNA [AK084560 (EST)/ Gm12092 (predicted gene)]. 

  17248127 ---- 0.00187422 -1.46 There are no assigned mRNA sequences for this transcript.  
The probe set lies within an intron of Sptbn1. 

11 Mfq3 17261393 Acyp2 0.011777 1.26 acylphosphatase 2, muscle type 
 17248196 Asb3 0.014221 -1.15 ankyrin repeat and SOCS box-containing 3 

 490 



* ANOVA p-value for strain effect; ** Fold change uses SM/J as baseline (negative values indicate LG/J expression is down compared to SM/J, 491 
positive values LG/J expression up compared to SM/J); bold indicates that gene is predominantly and/ or strongly expressed in skeletal muscle 492 
tissue (79).  *** For probe sets not designed against an annotated gene, genes at the genomic loci of the Affymetrix probeset were identified in 493 
UCSC genome browser using mouse genome build GRCm38. 494 
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