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Summary

1. Quantifying and predicting microevolutionary responses to environmental change requires

unbiased estimation of quantitative genetic parameters in wild populations. ‘Animal models’,

which utilize pedigree data to separate genetic and environmental effects on phenotypes, pro-

vide powerful means to estimate key parameters and have revolutionized quantitative genetic

analyses of wild populations.

2. However, pedigrees collected in wild populations commonly contain many individuals with

unknown parents. When unknown parents are non-randomly associated with genetic values

for focal traits, animal model parameter estimates can be severely biased. Yet, such bias has

not previously been highlighted and statistical methods designed to minimize such biases have

not been implemented in evolutionary ecology.

3. We first illustrate how the occurrence of non-random unknown parents in population pedi-

grees can substantially bias animal model predictions of breeding values and estimates of

additive genetic variance, and create spurious temporal trends in predicted breeding values in

the absence of local selection. We then introduce ‘genetic group’ methods, which were devel-

oped in agricultural science, and explain how these methods can minimize bias in quantitative

genetic parameter estimates stemming from genetic heterogeneity among individuals with

unknown parents.

4. We summarize the conceptual foundations of genetic group animal models and provide

extensive, step-by-step tutorials that demonstrate how to fit such models in a variety of soft-

ware programs. Furthermore, we provide new functions in R that extend current software

capabilities and provide a standardized approach across software programs to implement

genetic group methods.

5. Beyond simply alleviating bias, genetic group animal models can directly estimate new

parameters pertaining to key biological processes. We discuss one such example, where

genetic group methods potentially allow the microevolutionary consequences of local selection

to be distinguished from effects of immigration and resulting gene flow.

6. We highlight some remaining limitations of genetic group models and discuss opportunities

for further development and application in evolutionary ecology. We suggest that genetic

group methods should no longer be overlooked by evolutionary ecologists, but should

become standard components of the toolkit for animal model analyses of wild population

data sets.
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Introduction

Adaptive evolution is a critical way by which populations

can respond to environmental change and persist. Quanti-

fying and predicting microevolutionary responses to envi-

ronmental change in wild populations is consequently a

major focus in biology (Nussey et al. 2005; Gienapp et al.

2008; Hoffmann & Sgr�o 2011). Empirical studies must

tease apart environmental and genetic contributions to

overall phenotypic variation and quantify selection acting

on each component (Postma 2006; Gienapp et al. 2008;

Hadfield et al. 2010). This in turn requires unbiased esti-

mation of key quantitative genetic parameters, such as

heritabilities and additive genetic (co)variances.

Application of ‘animal models’ (linear mixed models

that quantify genetic effects at the level of individuals)

has revolutionized quantitative genetic studies of wild

populations (Kruuk 2004; Wilson et al. 2010; Char-

mantier, Garant & Kruuk 2014). Animal models facilitate

estimation of additive genetic variance by (potentially)

separating phenotypic resemblance among individuals

arising from direct additive genetic effects, environmental

similarities (Kruuk & Hadfield 2007; Stopher et al. 2012),

indirect genetic effects (Moore, Brodie & Wolf 1997;

Kruuk & Hadfield 2007; Wilson et al. 2011), and inbreed-

ing and non-additive genetic effects (Kennedy, Schaeffer

& Sorensen 1988; Reid & Keller 2010; Wolak 2012;

Wolak & Keller 2014). Such analyses traditionally require

sufficient pedigree data to quantify ‘relatedness’ among

individuals, allowing additive genetic variance to be esti-

mated from a decomposition of the phenotypic similarity

among relatives. Critical requirements of such pedigree

data are that individuals are linked to their parents to

form individual pedigrees and that individual pedigrees

are linked across generations to form a population pedi-

gree. Animal models then estimate key parameters relative

to a defined ‘base population’, which in practice

comprises the ‘phantom parents’ of all individuals whose

true parents are unknown or not identified in the pedigree

(key terms are defined in the Glossary, Appendix S1, Sup-

porting Information; Quaas 1988; Westell, Quaas & Van

Vleck 1988).

It is clear that pedigree error, where individuals are

assigned the wrong parents, can bias quantitative genetic

parameter estimates to some degree (Charmantier & R�eale

2005; Morrissey et al. 2007; Morrissey & Wilson 2010;

Reid et al. 2014; Firth et al. 2015). Inadequate pedigree

depth, where individual pedigrees are not linked to multi-

ple generations of ancestor pedigrees, can also cause bias

by underestimating relatedness and impeding estimation

of inbreeding effects, parental genetic and environmental

effects, and microevolutionary change across generations

(Cassell, Adamec & Pearson 2003; Kruuk & Hadfield

2007; Pemberton 2008). However, it is less commonly

emphasized that missing pedigree information, where one

or both of an individual’s parents are unknown, might

also severely bias quantitative genetic parameter estimates.

Such biases surely need to be considered because some

degree of missing pedigree information afflicts almost all

wild population studies. Indeed, wild population pedigrees

underlying recently published analyses were missing

means of 37% of maternal identities (range = 3–87%)

and 49% of paternal identities (range = 6–88%; Fig. 1,

Appendix S2). Some analyses therefore relied on pedigrees

that had more unknown parents than known parents.

These counts include individuals from the ‘founder popu-

lation’ that, by definition, have unknown parents (Glos-

sary, Appendix S1). However, founders typically account

for small proportions of individuals with unknown par-

ents given overall pedigree sizes and maximum pedigree

depths (Table S2.1).

Analyses implemented in agricultural sciences show

that missing pedigree information stemming from

unknown parents can bias animal model estimates of
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Fig. 1. Percentages of pedigreed individu-

als that have unknown dams (black bars)

or sires (grey bars) in wild population

pedigrees. Further details are in

Appendix S2.
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additive genetic variance (e.g. Dong, Van Vleck & Wig-

gans 1988; Cantet et al. 2000). Such biases can arise

when parent identities are missing randomly with respect

to genetic value, because the resulting pedigree underesti-

mates relatedness and inbreeding. However, biases might

be even more severe when parent identities are missing

non-randomly with respect to phenotypic or genetic val-

ues, which is likely to be commonplace in wild popula-

tion studies (see Unknown parents in wild population

studies). Fortunately, agricultural science has also shown

how to account for missing pedigree information in the

animal model by assigning the unknown parents to dis-

tinct ‘genetic groups’ (Quaas 1988). Genetic group meth-

ods allow genetic effects to be assigned to multiple

groups within the base population with potentially differ-

ent group means, thereby modelling genetic effects of dif-

ferent groups of individuals with unknown parents.

However, genetic group animal models have not been

widely used in evolutionary ecology (so far Charmantier

et al. 2016 and Wolak & Reid 2016a have used the

method on empirical data and the concept of genetic

groups was used to illustrate challenges of breeding value

prediction by Hadfield et al. 2010). Evolutionary ecolo-

gists might therefore be needlessly ignoring bias in key

quantitative genetic parameter estimates when appropri-

ate analytical remedies already exist. Furthermore, along-

side statistical correction for non-random missing

pedigree information, genetic group methods enable

direct estimation of quantitative genetic parameters per-

taining to biological processes that cause individuals’

parents to be unknown (e.g. behaviour, reproductive

strategy, dispersal). For example, genetic differences

between a focal population and immigrants (which typi-

cally have unknown parents) can be estimated (e.g.

Wolak & Reid 2016a), thereby quantifying the relative

contributions of local selection and gene flow to pheno-

typic change. By failing to implement genetic group

methods, evolutionary ecologists are missing an opportu-

nity to directly quantify key processes that might drive

or impede microevolutionary change.

We introduce genetic group methods and explain how

they can be incorporated into animal models to analyse

wild population data. First, we highlight ways in which

unknown parents and corresponding missing pedigree

information can arise in wild population studies. Sec-

ondly, we summarize key attributes of animal models

that can cause problems when pedigrees contain

unknown parents and illustrate how missing pedigree

information can bias estimates of heritabilities and addi-

tive genetic variances. Thirdly, we summarize genetic

group methods, explain how such methods can both

reduce bias and answer biologically interesting questions

and demonstrate how they can be implemented in widely

used software programs. Finally, we discuss limitations

of current genetic group methods and highlight require-

ments and opportunities for future investigation into the

impacts of missing pedigree information and the

implementation of genetic group methodologies in evolu-

tionary ecology.

Unknown parents in wild population studies

The extent to which animal model parameter estimates

are biased by missing pedigree information depends on

how many non-founder individuals have unknown parents

and on the degree to which ‘breeding values’ of non-foun-

der ‘phantom parents’ differ from those of the true base

population. Non-founder individuals can have unknown

parents for numerous practical and biological reasons.

For example, field studies typically monitor finite subsets

of population members or breeding sites and consequently

do not observe parents of individuals born or hatched

outwith the focal subset that subsequently breed within it.

Further, the ability to observe or genotype an individual

for parentage assignment might depend on the individ-

ual’s own behavioural or life-history phenotype. For

example, individuals that differ in boldness or aggressive-

ness might differ in conspicuousness, approachability, or

trapability (Biro & Dingemanse 2009), making some indi-

viduals harder to tag or identify and excluding them as

known or candidate parents. Likewise, parents that breed

successfully might be more likely to be observed (e.g.

Kidd et al. 2015). Consequently, observation probability

might covary with factors influencing reproductive suc-

cess, such as age or breeding site choice (e.g. Forslund &

P€art 1995; €Ost & Steele 2010). Also, reproductive beha-

viour and habitat segregation commonly facilitate obser-

vation of one parental sex (Ruckstuhl & Neuhaus 2005);

hence, maternities are often more readily assigned than

paternities (e.g. Sardell et al. 2010; Walling et al. 2010).

Even if all or most population members can be

observed and genotyped, available genotypic data might

be insufficient to confidently assign parentage among clo-

sely related candidates. Heritable variation in fitness

might then cause non-random failure to assign parents to

their offspring. For example, paternity might not be confi-

dently assigned to males that have numerous brothers,

cousins, sons and nephews. Lineages with high reproduc-

tive success might then contribute disproportionately

more individuals with unknown sires to population

pedigrees.

However, even substantially increased fieldwork or

genotyping might leave parents of some individuals

unknown. Specifically, in many systems, immigrants with

unknown parents appear following relatively long-distance

dispersal. Immigrants may differ phenotypically from resi-

dent natives due to their current or previous environmen-

tal experiences (e.g. P€art 1995; Marr, Keller & Arcese

2002; Kidd et al. 2015). More pertinently, any form of

local adaptation, genetic divergence among populations

due to drift, or non-random dispersal might create differ-

ences in mean genetic values between immigrants and

natives within the recipient population. Such effects have

been widely documented and underpin the key roles of
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dispersal in shaping local adaptation (e.g. Postma & van

Noordwijk 2005; Garant, Forde & Hendry 2007; Visser

2008) and driving rapid evolution at range margins (e.g.

Phillips et al. 2008; Travis, Smith & Ranwala 2010). Thus,

immigration not only structures the distribution of

unknown parents in a pedigree (Gienapp, van Noordwijk

& Visser 2013), but may cause individuals with different

genetic values to be non-randomly associated with missing

pedigree information. Further, dispersal and hence immi-

gration is commonly sex-biased, causing different patterns

of unknown parents across observed females and males.

Overall, we should expect unknown parents, and corre-

sponding missing pedigree information, to be phenotypi-

cally and genetically non-random in wild population

studies. Importantly, this non-randomness will both result

from and drive key biological processes.

Animal models and unknown parents

Before explaining genetic group methods, we first summa-

rize how unknown parents, and consequent missing pedi-

gree information, can affect animal model estimates. We

assume basic knowledge of animal models and direct

readers elsewhere for introductory guides (Kruuk 2004;

Wilson et al. 2010) and for further technical details

(Lynch & Walsh 1998, ch. 26–27; Mrode 2005).

In brief, an individual’s phenotypic value for any poly-

genic trait is a sum of independent genetic and environ-

mental factors (the ‘infinitesimal model’; Lynch & Walsh

1998, p. 47). Most simply, an individual’s phenotypic

value deviates from the overall population mean depend-

ing on its breeding value (a) and residual deviation (e)

(i.e. y = l + a + e, model 1 in Wilson et al. 2010). The

animal model expresses the phenotype of every individual

(y) as:

y ¼ Xbþ Zaþ e eqn 1

Factor levels for ‘fixed effects’ are grouped with the over-

all population mean (or intercept) in vector b, where the

design matrix X maps levels in b to corresponding pheno-

types in vector y. The heart of the animal model is that

breeding values (a) for each individual included in y are

estimated as ‘random effects’, where the design matrix Z

maps each individual’s value in a to their phenotype in y.

Model predictions of a potentially allow ecologists to

quantify changes in population mean breeding value over

time, and hence test for microevolutionary change, and to

determine whether selection acts on genetic or environmen-

tal components of phenotypic variation (Postma 2006;

Gienapp et al. 2008; Hadfield et al. 2010). Furthermore,

animal models directly estimate the variance in true breed-

ing values in the base population (Lynch & Walsh 1998, pp.

78–79; Mrode 2005, ch. 2–3). Such estimates of additive

genetic variance can be used to calculate narrow-sense heri-

tability and predict a trait’s potential to evolve in response

to selection (Lynch & Walsh 1998, ch. 3; Bijma 2011).

To provide these estimates, animal models rely on the

additive genetic relatedness matrix A (Glossary,

Appendix S1), which quantifies the covariance in additive

genetic effects among individuals. In diploid organisms,

this covariance is proportional to twice the probability

that two individuals inherited homologous alleles ‘identi-

cal-by-descent’ from common ancestors. The A matrix

can be constructed from a pedigree following certain rules

and assumptions (Wright 1922; Henderson 1976). The

information contained in A and its structure underpin ani-

mal model parameter estimates. Therefore, missing or

inaccurate information in A, or a structure that does not

represent the true additive genetic covariances among

individuals in a population, can bias parameter estimates.

In general, relatedness is always defined relative to

some reference population (Lynch & Walsh 1998, p. 132;

Wang 2014). The animal model A matrix reference popu-

lation is the base population, composed of phantom par-

ents for all individuals in the pedigree that have unknown

parents. Phantom parents are assumed to be outbred and

unrelated. The covariance among breeding values is r2
AA,

where r2
A is the expected additive genetic variance in the

base population, which equals the variance in true breed-

ing values of base population individuals (Kruuk 2004;

Mrode 2005, ch. 2–3). Because A accounts for the proba-

bility of inheriting alleles identical-by-descent among all

pedigreed individuals, under the infinitesimal model A

also accounts for temporal changes in mean breeding

value and r2
A (and hence in the distribution of a). This

property makes animal models very appealing for wild

population studies, because A can prevent bias in esti-

mates of r2
A due to selection, drift, assortative mating and

inbreeding (Kennedy, Schaeffer & Sorensen 1988; Mrode

2005, ch. 3; Kruuk 2004; but see Hadfield 2008).

consequences of unknown parents

The desirable properties of animal models only hold if A

is constructed without error from an appropriate reference

population. In general, unknown parents can bias animal

model parameter estimates because missing pedigree infor-

mation causes estimates of pairwise relatedness between

phenotyped individuals to be biased downward. In the

most extreme case where all parents are unknown, the

only nonzero elements of A would be ones along the lead-

ing diagonal. All individuals would be considered unre-

lated to all others and phenotypic resemblance between

individuals that are in fact related could not be correctly

attributed to additive genetic effects. More generally,

unknown parents can cause additive genetic variance to

be underestimated to some degree (Dong, Van Vleck &

Wiggans 1988; Cantet et al. 2000; but see Morrissey et al.

2007). Unknown parents also decrease the ‘accuracy’, or

‘reliability’, of predicted breeding values. All else being

equal, accuracy is highest when individuals have numer-

ous close relatives with observed phenotypes (Mrode

2005, pp. 50–52; Postma 2006). Since individuals with

© 2016 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society., Journal of
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unknown parents cannot be associated with phenotypes

of parents, or grandparents, or potentially full- and half-

siblings, predicted breeding values can be biased such that

they more closely resemble an individual’s own observed

phenotype (plus phenotypes of any descendants;

Appendix S3) rather than the true breeding value, thereby

reflecting environmental effects on phenotype (Postma

2006). Furthermore, by decreasing the connectedness of

relatives across spatially or temporally varying environ-

ments, missing pedigree information might also cause

genetic effects to be misassigned as environmental effects

(Postma 2006). Missing pedigree information therefore

erodes the key information that enables animal models to

separate genetic and environmental effects.

However, further severe biases can arise when the indi-

viduals that are unknown parents are non-random with

respect to additive genetic values. Such biases arise

because animal models predict breeding values and esti-

mate additive genetic variances in a base population in

which breeding values are assumed to be normally dis-

tributed with a mean of zero (Kruuk 2004; Mrode 2005,

ch. 3). Meanwhile, the default base population comprises

the phantom parents that produced the observed founder

population plus the phantom parents of all subsequent

individuals in the pedigree with unknown parents. Animal

models using pedigrees with numerous unknown parents

therefore estimate key parameters based primarily on

phantom parents of non-founders instead of the true base

population (Postma 2006). Predictions and estimates from

an animal model can therefore be biased if genetic proper-

ties differ between the phantom parents of founders vs.

non-founders.

To illustrate the problem, we simulated a hypothetical

trait for 6000 individuals across 15 generations in a focal

population that receives 40 immigrants per generation (de-

tails in Appendix S4). Breeding values and environmental

deviations, and thus phenotypes, of focal population

founders were simulated from normal distributions with

means of zero and variances of one. Mates were randomly

assigned and offspring breeding values were calculated as

the mean of their parents’ breeding values plus a Men-

delian sampling deviation. The population was not subject

to selection and is large enough to ensure that genetic

drift is negligible. No change in mean breeding value or

phenotype across generations is therefore expected. How-

ever, immigrants from a separate population were simu-

lated with a mean breeding value three units greater (as

might arise given local adaptation, drift, or non-random

dispersal), but the variance was also one (i.e. both focal

population founders and immigrants have an expected

additive genetic variance of one). Therefore, immigrants

have greater phenotypic values. Since natives and immi-

grants were paired with randomly assigned mates, the

mean phenotypic value of all individuals within the focal

population increased across generations solely due to gene

flow stemming from immigration (Fig. 2a).
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Fig. 2. Simulated (a) phenotypes and (b) breeding values across 15 generations, and (c) predicted breeding values from a basic animal

model using a pedigree where immigrants have unknown parents. Alternating dark and light grey points distinguish consecutive genera-

tions of founders and their descendants. In (a), immigrant phenotypes are plotted in the generation they arrive (black points). In (b) and

(c), immigrant simulated and predicted breeding values are plotted to the left of generation one to illustrate that their phantom parents

are assigned to the animal model base population. Black brackets demarcate the range and hence variance in breeding values in the (b)

founder population and (c) the offspring of the default animal model base population.
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Since all immigrants have unknown parents, their phan-

tom parents are by default assigned to an animal model

base population, along with the phantom parents of the

true focal population founders. This combined distribu-

tion of breeding values in the default base population is

consequently heterogeneous, because the phantom parents

of founders and immigrants have different mean values

(Fig. 2b,c). Two things happen in an animal model when

two or more genetically different groups of individuals

are combined into a single base population in this way.

First, a basic animal model predicts breeding values

assuming a mean of zero in the default base population

(Mrode 2005, p. 40). Consequently, predictions of breeding

values regress to the mean breeding value of the default

base population and are biased (Van Vleck 1990). In the

simulated example, predicted breeding values are biased

downwards across all individuals (Fig. 2c). Although pre-

dicted breeding values are highly correlated with the true

breeding values’ rank order, such bias decreases the accu-

racy of breeding value prediction, thereby decreasing the

ability to predict future phenotypic values.

Secondly, a basic animal model (eqn 1) returns biased

estimates of additive genetic variance compared with the

expected value in the true base population. The expected

additive genetic variance in the true base population can

be visualized as the range of true breeding values in the

founder population (Fig. 2b). However, an animal model

fitted to the simulated data overestimated the additive

genetic variance in the founder population by a factor of

approximately two. This can be visualized as the range of

breeding values across the combined (and hence geneti-

cally structured) base population, including immigrants

(Fig. 2c). Heritability estimates and predicted microevolu-

tionary responses to selection would consequently be

severely biased upwards.

In general, the extent of such bias is hard to predict a

priori as it depends on the mean and variance of true

breeding values in the true base population relative to the

means and variances of true breeding values for the differ-

ent groups in the default base population. However, our

simple simulation illustrates that breeding values defined

within the context of a single population (Lynch & Walsh

1998, p. 79) are no longer sufficient to represent ‘total

additive genetic effects’ when individuals’ genomes com-

prise mixtures of alleles originating from groups that dif-

fer in the mean of their allelic effects. Consequent biases

in key quantitative genetic parameter estimates from ani-

mal models, resulting from the occurrence of non-random

unknown parents in wild population studies, cannot be

ignored. One solution is to use genetic group methods to

account for genetic differences between the phantom

parents of different types of individuals with unknown

parents.

Genetic groups

When unknown parents occur non-randomly with

respect to their additive genetic values for any focal

trait, breeding values can differ between non-founder

phantom parents and the true base population. Foun-

ders and non-founders with unknown parents should

then be assigned phantom parents from distinct genetic

groups (e.g. Fig. 3a,b; Quaas & Pollak 1981; Schaeffer

1991). Animal models that allow mean additive genetic

values to differ among the defined groups can then be

fitted, thereby reducing bias and directly estimating

parameters describing key evolutionary processes such

as local adaptation or dispersal. There is no obvious

technical reason why genetic group animal models can-

not be implemented by evolutionary ecologists as

(a) (b)

(d) (e)

(c)

Fig. 3. Simple example pedigrees and

matrices illustrating (a) a pedigree con-

taining individuals with unknown parents

(NA), (b) phantom parents assigned to

two genetic groups (g1 and g2), (c) the

proportional contributions of each genetic

group to each individual’s genome, as is

used to explicitly model genetic groups as

fixed covariate regressions, (d) the inverse

relatedness matrix (A�1) for the pedigree

in (a), and (e) the augmented inverse relat-

edness matrix (A*), used to model genetic

group effects implicitly within the random

effects.
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appropriate methods are well established in agricultural

sciences (Appendix S5). Here, we explain the basic prin-

ciples of such models and in Appendix S6 we provide

extensive tutorials illustrating how genetic group animal

models can be fitted to data.

total addit ive genetic effects

Breeding values (a) quantify the average deviation from

the population mean genotype attributed to the additive

genetic effects of an individual’s genotype (Lynch &

Walsh 1998, pp. 72–73). In a basic animal model, the

default assumption that the base population has a mean

breeding value of zero implies the existence of a single

genetic group (no genetic structure; Van Vleck 1990).

Modelling more than one genetic group allows breeding

value predictions to account for genetic structure in the

base population.

In an animal model with genetic groups, the ‘total addi-

tive genetic effect’ (Appendix S1) of an individual’s geno-

type is separated into a genetic group effect and a

breeding value. The genetic group effect measures the

expected mean deviation from a reference attributed to a

group’s total additive genetic effects and the breeding

value measures the average deviation from the genetic

group mean caused by an individual’s genotype (Schaeffer

1991). For example, for phantom parent i in genetic

group j, the total additive genetic effect of its genotype

(ui) equals the expected average genetic effect in group j

(gj) plus a deviation from the group mean caused by i’s

genotype (its breeding value, ai). Because all breeding val-

ues are deviations from group means, all base population

breeding values have an expectation of zero. Conse-

quently, breeding values represent standardized measures

of additive genetic effects that allow direct comparison

across genetic groups of individuals’ additive genetic

effects distinct from the mean additive genetic differences

among groups.

Each individual inherits the mean of its parents’ genetic

group effects plus the mean of its parents’ breeding val-

ues, where both are consistent with the probability of

inheriting alleles identical-by-descent (Appendix S5). The

expression for a quantitative trait phenotype yi can be

rewritten to include genetic group effects:

yi ¼ lþ ui þ ei; eqn 2a

which expands to:

yi ¼ lþ
Xr

j¼1

qijgj þ ai þ ei eqn 2b

Here, the total additive genetic effect of individual i’s

genotype ui ¼
Pr

j¼1qijgj þ ai replaces the breeding value

ai in a basic quantitative trait model without genetic

groups. The jth group effect (gj), out of r groups in the

base population, contributes to the total additive genetic

effects of i in proportion to the expected fraction of i’s

genome derived from group j (qij). Each gj constitutes an

element in the vector g containing all genetic group

effects. The fraction qij can be calculated from qdj and

qsj of i’s parents d and s (Fig. 3b,c; Appendix S6.2).

Therefore, qij across all individuals and groups can be

calculated from a pedigree, where each qij constitutes an

element in the matrix Q containing all individuals in the

pedigree (rows) and all genetic groups in the base popu-

lation (r columns). Each row of Q, which lists the con-

tributions of each genetic group to an individual, sums

to one.

The collection of eqn 2a for a population can be

expressed in vectors and matrices as:

y ¼ Xbþ Zuþ e eqn 3

The total additive genetic effects (u) are normally dis-

tributed with an expected covariance of r2
AA (assuming

groups have equal r2
A). However, the expected mean of u

is no longer zero, but Qg. Therefore, animal models that

account for the contribution of genetic group effects to

the total additive genetic effects of individuals do so by

modelling the mean of u.

Mean additive genetic values for each genetic group

cannot be uniquely estimated by an animal model, but

differences among group means (analogous to ANOVA con-

trasts) are estimable (Quaas 1988; Hadfield et al. 2010;

further discussion in Appendix S6.2). Below, we consider

the estimation of differences among genetic group means

where model estimated genetic group effects are devia-

tions from a reference. In practice, this is often accom-

plished by specifying an animal model that sets the true

founders as the reference group (i.e. assuming the refer-

ence group mean effect is zero). This is analogous to the

familiar animal model without genetic groups, where the

base population is considered a single genetic group (Van

Vleck 1990) with an expected breeding value of zero.

Genetic group effects are conceptually fixed effects (Glos-

sary, Appendix S1) because they measure the expected

mean deviation from the reference in a group’s total addi-

tive genetic effects (but see Appendices S5 and S6.3.2). In

practice, genetic group effects can be fitted and hence esti-

mated within an animal model either ‘explicitly’ as sepa-

rate fixed effects or ‘implicitly‘ as part of the individual

total additive genetic effects (i.e. within the random effects

structure, Appendix S5). Fitting genetic group effects in

either of these two ways will produce equivalent statistical

models that yield identical estimates of genetic group

effects (Quaas 1988). We fully explain both approaches

below.

explic it genetic group effects

Genetic group effects represent the differences between

the expected mean additive genetic values for each group

of phantom parents. Therefore, one obvious approach is

to treat genetic group effects as explicit fixed effects
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within an animal model, thereby estimating differences

among group means separately from the deviations from

the mean caused by additive genetic effects of individual

genotypes (i.e. breeding values). However, because indi-

viduals inherit genetic group effects, estimating genetic

group effects as separate fixed effects is more complicated

than simply fitting categorical fixed effects of discrete

group membership. An animal model that fits explicit

genetic group effects is:

y ¼ XbþQgþ Zaþ e eqn 4

Here, the random effects a are breeding values of

individuals with expected mean zero and covariance r2
AA

(assuming homogeneous r2
A across groups, see Limita-

tions). The standard A�1 matrix (i.e. matrix inverse of A)

is utilized as in a basic animal model without genetic

groups (e.g. Fig. 3d; Appendix S6.4). To estimate the

genetic group effects, the columns of Q (e.g. Fig. 3c) are

each fitted as separate fixed covariate regressions to

obtain estimates of g (Quaas 1988). Q is obtained directly

from the additive genetic relatedness matrix (A) as the

first r columns of the T matrix in Henderson’s (1976)

decomposition A = TDT0, where A includes r extra rows

and columns for the r genetic groups (Robinson 1986;

Appendix S6.2).

Solutions to the model in eqn 4 yield r regression coef-

ficient estimates in g that quantify differences between

mean breeding values of each group and the reference, as

well as predictions of the individual breeding values in a.

The total additive genetic effect for any individual (ui) is

the sum of the genetic group effects, weighted by the con-

tribution of each genetic group to that individual, plus

the individual’s breeding value (ai):

ui ¼
Xr

j¼1

qijgj þ ai eqn 5

impl ic it genetic group effects

As an alternative animal model to one explicitly estimat-

ing genetic group effects separately from individual

breeding values, the model in eqn 3 can be fitted to

directly predict each individual’s total additive genetic

effects (u) (Quaas & Pollak 1981; Appendix S5). This is

possible because genetic group effects (g) are inherited

the same way as breeding values (a), as quantified by the

A matrix. Therefore, the sum of their effects can be mod-

elled by augmenting A�1 to implicitly incorporate the

group effects into predictions of u (Fig. 3d,e;

Appendix S6.3). The augmented matrix A* is constructed

directly from a pedigree following the rules used to con-

struct A�1 (Quaas 1988; Westell, Quaas & Van Vleck

1988). The vector of random effects u contains each indi-

vidual’s total additive genetic effects and are assumed to

be normally distributed with mean equal to Qg and

variance r2
AA (assuming homogeneous r2

A across groups,

see Limitations).

Solutions to the model in eqn 3 return predictions of u,

the predicted total additive genetic effects for each indi-

vidual (ui), and estimates of the r group effects g. In con-

trast to the approach where genetic group effects are

explicitly estimated as separate fixed regression coeffi-

cients, obtaining the predicted breeding value for an indi-

vidual (ai) requires subtracting the sum of the genetic

group effects, weighted by the contribution of each

genetic group to that individual, from the predicted total

genetic effects of the individual (ui) returned by the

model:

ai ¼ ui �
Xr

j¼1

qijgj eqn 6

fitt ing genetic groups: el iminating bias and
estimating new parameters

Armed with a conceptual understanding of genetic group

animal model methods, the benefit of fitting such models

can be illustrated by returning to the simple simulation

depicted in Fig. 2. Here, the default base population

includes phantom parents of both founders and immi-

grants and is consequently genetically structured (Fig. 2b).

Although only 15% of simulated individuals have

unknown parents, which is lower than in most wild popu-

lation studies (Fig. 1, Appendix S2), a basic animal model

returns substantially biased predictions of breeding values

and a biased estimate of additive genetic variance. The

biased breeding value prediction reflects a regression to

the mean breeding value in the combined base population,

while the additive genetic variance is overestimated

because the total additive genetic effects of immigrants

fall outside the range of true breeding values in the foun-

ders. To resolve these problems, instead of ignoring

genetic structure in the combined base population, we can

define two genetic groups and fit a genetic group animal

model to directly estimate differences between expected

group mean additive genetic effects in the base population

(g). The genetic group effects can be fitted either explicitly

by including fixed covariate regressions on columns of Q,

or implicitly by modelling total additive genetic effects

using A*. Both models provide equivalent unbiased pre-

dictions of breeding values and individual total additive

genetic effects as well as unbiased estimates of the addi-

tive genetic variance for the simulated data set (Fig. 4).

Furthermore, such models recover the simulated differ-

ence of three units between the mean total additive

genetic effects of the founders and immigrants (Fig. 4a,b),

therefore directly estimating the difference between the

two populations in additive genetic value for the hypo-

thetical trait.

Fitting genetic group models can also illuminate inter-

esting biology underlying apparent temporal trends in
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additive genetic values, by distinguishing trends in breed-

ing values from trends in total additive genetic effects.

For example, given an observed temporal trend in mean

phenotype (Fig. 2a), we might wish to test for an underly-

ing trend in mean breeding value (Hadfield et al. 2010).

An animal model without genetic groups would predict

breeding values that change over time (Fig. 2c). However,

there is no selection (or drift) in our simulation that could

produce such trends. Indeed, an animal model with

genetic groups predicts breeding values that do not show

any temporal trend (Fig. 4c). The predicted total additive

genetic effects (Fig. 4b) do increase over time, causing the

increasing phenotype (Fig. 2a). However, phenotypic

change reflects the increasing contribution of alleles origi-

nating from the genetically larger immigrant population.

The change in the population-wide proportion of alleles

derived from immigrants is quantified by Q. Figs 2a and

4b,c therefore demonstrate local evolution resulting from

gene flow, not from local selection. It is not yet clear how

such immigrant effects might alter interpretations of past

analyses of genetic trends in wild populations (e.g. Had-

field et al. 2010; Teplitsky et al. 2010). However, genetic

group animal models clearly offer exciting opportunities

to quantify microevolution occurring by both local selec-

tion and gene flow.

How to fit genetic group animal models

While the complexities of fitting genetic group animal

models might seem intimidating, in fact there is no

technical reason why such models cannot be fitted to

appropriate wild population data using either residual

maximum likelihood or Bayesian methods. Further,

genetic group methods can be applied to multivariate

and non-Gaussian response variables. In Appendix S6.4,

we provide extensive tutorials that demonstrate how to

fit genetic groups either explicitly as separate fixed

regressions or implicitly within the random effects struc-

tures that predict total additive genetic effects in animal

models implemented in MCMCglmm (Hadfield 2010)

and asreml in the R program (Butler et al. 2009; R

Core Team 2015) and the standalone programs WOM-

BAT (Meyer 2007) and ASReml (Gilmour et al. 2014).

Because there were previously either no or limited capa-

bilities to implement such models (Table S6.1), we have

written generic functions to calculate the Q and A*

matrices (available in the R package NADIV, version

≥2.14.2; Wolak 2012; http://github.com/matthew

wolak/nadiv), thereby extending and standardizing cur-

rent software capabilities. We comprehensively demon-

strate how to use these functions with MCMCglmm,

asreml, WOMBAT and ASReml (Appendix S6.4)

and model outputs have been deposited in the Dryad

Digital Repository: http://dx.doi.org/10.5061/dryad.jf7cr

(Wolak & Reid 2016b). The simulated data plotted in

Figs 2 and 4 are provided and underlie the tutorials. The

R code to generate such data is also provided and can

simulate populations with genetic groups and different

phenotypic, genetic and environmental trends, thereby

extending available simulation tools with which to
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Fig. 4. (a) Simulated total additive genetic effects and predicted (b) total additive genetic effects and (c) breeding values from an animal

model fitting genetic group effects. Alternating dark and light grey points distinguish consecutive generations of founders and their

descendants. Simulated data correspond to the phenotypes in Fig. 2a. Immigrant values (black points) are plotted to the left of genera-

tion one to illustrate that their phantom parents are assigned to the animal model base population.
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investigate the evolutionary ecology of quantitative traits

(Appendix S4).

However, as with any complex quantitative genetic

analyses of wild population data, key decisions need to be

carefully made before animal models with genetic groups

can be fitted. Further, limitations of and constraints on

the genetic group methods remain, meaning that

estimated effects will need to be interpreted with due cau-

tion. In the following sections, we summarize some key

decisions and suggest potential resolutions to current

limitations.

which approach: explicit or implic it?

Fitting genetic groups explicitly as separate fixed regres-

sions or implicitly through random effects of individual

total additive genetic value yields equivalent models. These

two approaches, therefore, yield identical estimates of

genetic group effects (Quaas 1988). Although the predicted

values associated with the random variable identifying the

additive genetic effects will differ between the two

approaches (i.e. a vs. u), values are easily transformed from

one to the other through simple mathematical formulae

(eqns 5 and 6). However, there are subtle differences that

may render either the explicit or implicit approach more

suitable for any particular analysis or data set.

Modelling genetic group effects implicitly within the

total additive genetic effects (u) means that the uncer-

tainty in genetic group effects is included in the prediction

of u, which can increase the prediction error variance of

u. Unless uncertainty is incorporated into calculations

transforming values from u and a, the accuracy of calcu-

lated breeding values (via eqn 6) is lower than predicted

breeding values from the explicit genetic group approach

(Kennedy 1981). Conversely, uncertainty in estimated

genetic group effects fitted explicitly as separate fixed

regressions is not directly included in the prediction of the

individual breeding values (but see Appendix S6.4.2.2).

However, frequentist statistical hypothesis tests for differ-

ences among genetic group effects are perhaps most

straightforward using the explicit fixed regression method

and Wald tests (e.g. Wilson et al. 2010). Indeed, the expli-

cit fixed regression approach might generally prove easiest

to implement, particularly in multivariate models where

different groups are defined for different traits (e.g. Misz-

tal et al. 2013). However, the ease of implementation only

occurs if the genetic group covariates are not confounded

with other modelled fixed effects. Conversely, fitting

genetic group effects implicitly within the random effects

may actually reduce computational requirements, particu-

larly when many groups are defined. This occurs when

the sections of A* pertaining to genetic groups contain

more zero elements than the columns of Q used in the

alternative fixed regressions, thus capitalizing on efficient

sparse matrix algorithms. Further, implicit genetic group

models can be extended to account for among group

structure in maternal genetic effects, since direct and

maternal additive genetic effects can be assigned to differ-

ent genetic groups (Van Vleck 1990; Cantet et al. 1992).

However, the implicit approach cannot currently be rec-

ommended in all software programs (Table S6.1), because

of issues arising within the linear algebra operations,

although these issues can sometimes be mitigated (Appen-

dices S6.3.1 and S6.3.2).

The best approach may also depend on the chosen

method of statistical inference. With Bayesian inference,

appropriate prior distributions need to be specified. Appro-

priate priors for genetic group effects fitted explicitly as

separate fixed regressions can be specified, and prior sensi-

tivity assessed, in a relatively straightforward manner

(Appendix S6.4.2.2). However, it is less clear how priors

specified for additive genetic variances affect posterior

inference on genetic group effects fitted implicitly

(Appendix S6.4.2.3), particularly when variance compo-

nent estimation is the aim of the analysis. Consequently,

fitting genetic groups explicitly as separate fixed regressions

may be the most straightforward approach when using

Bayesian inference (but see Gara, Rekik & Bouall�egue

2006). Overall, the most practical approach to fitting

genetic group effects will depend on a combination of ques-

tion, data set, model structure and statistical paradigm.

how many groups?

Obvious key decisions concern how many genetic groups

to define and which phantom parents to include in each.

Since clear general rules for defining genetic groups do

not exist, a sensible approach is to define biologically

motivated groups and test sensitivity by fitting models

with different groupings. The maximum number of

genetic groups that can be fitted will be constrained, since

model complexity will rapidly increase and fitting numer-

ous groups might cause model terms to be confounded.

For example, genetic groups defined to comprise individu-

als with unknown parents in single years may become

confounded with year effects modelled to capture environ-

mental variation. Modelling too many groups can also

generate non-unique solutions for group effects (Schaeffer

1991) and cause model convergence failure (Appendices

S6.3.1 and S6.3.2). Sex-specific selection, age at sexual

maturity and/or dispersal may necessitate defining sepa-

rate genetic groups for phantom dams and sires to cor-

rectly model sex-specific breeding value distributions

(Westell, Quaas & Van Vleck 1988) resulting from sex-

specific genetic structure in the base population (Wolak,

Roff & Fairbairn 2015). However, purely sex-specific

genetic group effects might be confounded with standard

fixed effects of sex. In general, the degree to which genetic

group effects and other terms are confounded will depend

on the connectedness of the pedigree across levels of other

model terms (Kennedy & Trus 1993).

Adding unnecessary genetic groups increases the error

variance of predicted total additive genetic values, but

does not itself bias predictions (Famula 1981). However,
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it is not yet clear how modelling numerous genetic groups

might affect variance component estimation, especially in

the context of wild population pedigree structures. More-

over, in multivariate analyses different genetic group

structures might ideally need to be modelled for different

traits (Misztal et al. 2013). Considerable care is therefore

warranted, while simulation studies and transparently

reporting the sensitivity of analyses to grouping strategies

are necessary to generate useful rules of thumb.

Concerns over how best to define genetic groups may

be alleviated by fuzzy classification (Fikse 2009), where

phantom parents are assigned to multiple genetic groups

with accompanying probabilities of group membership.

Fuzzy classification can reduce the number of groups that

need to be modelled, thereby improving accuracy and

reducing confounding (Fikse 2009). This approach might

be particularly useful for defining genetic groups when

temporal trends in breeding values are hypothesized,

although fuzzy classification does not by itself quantify

temporal trends. Appendix S7 discusses strategies for

fuzzy classification and demonstrates how to incorporate

such classifications into the Q and A* matrices con-

structed using the NADIV package.

Alternatively, Schaeffer (1991) proposed creating a

unique phantom parent identity for each unknown parent

and for each phantom ancestor (e.g. each phantom indi-

vidual’s own parents) spanning every generation back to

the founder population. A modified A* is then con-

structed which includes variation among individuals in the

number of generations from the base population. This

method could provide an alternative to defining genetic

groups when individuals with unknown parents occur at

different times in longitudinal studies. However, the age

of individuals with unknown parents and the generation

time need to be known. Although the algorithm to con-

struct such a modified A* is available (Schaeffer 1991), no

implementations or methodological assessments have been

published.

Defining genetic groups to balance the number of

groups vs. the number of phantom parents assigned to

each group is not likely to greatly affect an animal mod-

el’s ability to estimate genetic group effects with accept-

able precision. This is because estimating deviations

among mean genetic group additive genetic effects

requires less data than estimating the variance of random

effects. Further, all descendants of individuals with phan-

tom parents contribute to the estimated genetic group

effects, not just the base individuals assigned to each

group. Although a given genetic group’s contribution to

an individual’s total additive genetic effects decreases with

mating outside the group by 1/2n, over n generations,

mating between individuals with ancestors from the same

group will increase that group’s contribution to the popu-

lation. Consequently, genetic groups defined in a base

population may contribute substantial proportions of

total additive genetic effects even after many generations

(e.g. Wolak & Reid 2016a). Therefore, the number of base

population individuals assigned to any one genetic group

does not have to be large as long as those individuals

contribute descendants to the pedigree.

l imitations

Despite their potential utility, current genetic group meth-

ods have limitations. One key limitation is that the magni-

tude of additive genetic variance is assumed to be

homogeneous across groups. This assumption allows the

covariance among relatives to be modelled with a single

additive genetic variance for the entire population (as in

our simulations, Appendix S4). However, evolutionary

dynamics can cause the variance in true total additive

genetic values within genetic groups to differ among

groups, violating the assumption of homogeneous vari-

ances (Alfonso & Estany 1999). How this assumption will

impact breeding value prediction and variance component

estimation using wild population data sets is currently

unknown. However, it means that current models cannot

explicitly quantify spatial and temporal variation in addi-

tive genetic variance within and among populations,

which is itself of major biological interest. Garc�ıa-Cort�es

& Toro (2006) proposed a method to estimate heteroge-

neous additive genetic variances across genetic groups by

incorporating into the covariances among relatives the

change in additive genetic variance due to segregational

variance arising when alleles originating from different

groups are mixed. However, estimating separate additive

genetic variances for just two genetic groups approxi-

mately triples the number of equations to be solved

(Garc�ıa-Cort�es & Toro 2006). Such models may therefore

impose unrealistic demands on wild population data sets.

Traditional genetic group models (Appendix S5) assume

that phantom parents are unrelated within and across

groups and that no drift or inbreeding occurs within the

base population (Legarra et al. 2015). However, some

phantom parents will commonly be related, particularly

when the cause of unknown parentage is incomplete sam-

pling (Misztal et al. 2013). Legarra et al. (2015) proposed

a general framework for constructing relatedness matrices

that allows base population individuals to be inbred and

related and allows for heterogeneous additive genetic vari-

ances across groups. This method provides a particularly

promising avenue as it can incorporate both pedigree and

genomic information and future work should examine its

suitability for estimating additive genetic variances in wild

populations.

Conclusion

Wild population pedigrees almost always contain incom-

plete individual pedigrees, and the unknown parents are

likely to be non-random with respect to additive genetic

values for traits of interest. We highlight that, in popula-

tions where the mean additive genetic values of founder

individuals differ from those of other individuals with
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unknown parents, animal model parameter estimates can

be substantially biased. Fortunately, available genetic

group methods can serve to minimize such bias (given

appropriate data sets and implementation). We propose

that such methods should be applied in animal model

analyses of wild population data and provide R functions,

examples and tutorials to facilitate implementation

(Appendices S4, S6, and S7). Since the consequences of

missing pedigree information are likely to differ from the

consequences of missing phenotypic information (Hadfield

2008; Nakagawa & Freckleton 2008), it remains an open

question as to what degree missing pedigree information

biases quantitative genetic parameter estimates generated

by basic animal models fitted to wild population data

(but see Morrissey et al. 2007). To answer this question,

researchers with diverse data sets will need to fit appropri-

ate genetic group models such that we can collectively

quantify such biases, identify when the greatest problems

occur and devise protocols for resolving emerging issues.

Genetic group methods are not a panacea; they cannot

be expected to completely rescue analyses based on poor

population pedigrees or fix all resulting problems. Missing

pedigree information may still bias animal model parame-

ter estimates even when genetic groups are modelled.

Unknown parents decrease pedigree connectedness, poten-

tially causing phenotypic variation to be attributed to

environmental rather than genetic effects. Likewise, miss-

ing parent information can affect estimates of inbreeding

and hence inbreeding depression (Pemberton 2008). Such

biases might be minimized by using ‘pedigree-free’ animal

models which use realized relatedness estimated directly

from high-density genetic marker data instead of expected

relatedness derived from a pedigree (Garant & Kruuk

2005; Pemberton 2008; Speed & Balding 2015). However,

unknown parents still fundamentally alter relationships

(in addition to relatedness) and might consequently bias

estimated environmental and social effects. For example,

if sire identities are consistently hard to observe, then full-

siblings are defined as maternal half-siblings, and paternal

half-siblings are defined as unrelated. Any paternal envi-

ronmental effects might then confound estimates of

genetic effects. Bias might be reduced by reconstructing

relationships from marker data (Wang 2004), or observing

intact broods, clutches or litters (Coltman 2005; Husby

et al. 2010; Kim et al. 2013), demonstrating that some

degree of individual pedigree data may still be required.

It is equally important to realize the opportunities for

conceptual advances that genetic group animal models

afford, rather than solely viewing them as technical means

to minimize bias. Genetic group methods can reveal the

relative additive genetic values of natives and immigrants

for any quantitative trait of interest, and thereby distin-

guish microevolutionary changes in population mean phe-

notypes arising through direct responses to local selection

from changes caused by immigration and resulting gene

flow. We can thereby quantify the degree to which immi-

grants introduce genetic effects that are congruent or

counter to the direction of local selection, which is an

essential step towards predicting adaptive responses to

environmental change and explaining microevolutionary

stasis (Meril€a, Sheldon & Kruuk 2001; Garant, Forde &

Hendry 2007; Visser 2008).
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