data reports

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

OPEN 🗟 ACCESS

Crystal structure of 1-methanesulfonyl-1,2,3,4-tetrahydroquinoline

S. Jeyaseelan,^a S. L. Nagendra Babu,^b G. Venkateshappa,^c P. Raghavendra Kumar^c and B. S. Palakshamurthy^b*

^aDepartment of Physics, St Philomenas College (Autonomous), Mysore, Karnataka 570 015, India, ^bDepartment of Studies and Research in Physics, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India, and ^cDepartment of Chemistry, Tumkur University, Tumkur, Karnataka 572 103, India. *Correspondence e-mail: palaksha.bspm@gmail.com

Received 9 November 2014; accepted 19 November 2014

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

In the title compound, $C_{10}H_{13}NO_2S$, the heterocyclic ring adopts a half-chair conformation and the bond-angle sum at the N atom is 347.9°. In the crystal, inversion dimers linked by pairs of $C-H \cdots O$ hydrogen bonds generate $R_2^2(8)$ loops.

Keywords: crystal structure; 1,2,3,4-tetrahydroquinoline; physiological activities; photosensitizers.

CCDC reference: 1034951

1. Related literature

For background to tetrahydroquinolines, see: Chulakov *et al.* (2012); Kadutskii *et al.* (2012); Katritsky *et al.* (1996); Keith *et al.* (2001). For a related structure, see: Jeyaseelan *et al.* (2014).

2. Experimental

2.1. Crystal data

$M_r = 211.27$ Triclinic, $P\overline{1}$ a = 5.5865 (2) Å b = 9.2195 (4) Å c = 10.1924 (4) Å
Triclinic, $P\overline{1}$ a = 5.5865 (2) Å b = 9.2195 (4) Å c = 10.1924 (4) Å
a = 5.5865 (2) Å b = 9.2195 (4) Å c = 10.1924 (4) Å
b = 9.2195 (4) Å c = 10.1924 (4) Å
c = 10.1924 (4) Å
$\alpha = 85.798 \ (2)^{\circ}$
$\beta = 84.686 \ (2)^{\circ}$

 $\gamma = 77.166 (2)^{\circ}$ $V = 508.89 (4) \text{ Å}^{3}$ Z = 2Mo Ka radiation $\mu = 0.29 \text{ mm}^{-1}$ T = 294 K $0.24 \times 0.20 \times 0.16 \text{ mm}$ 2.2. Data collection

Bruker APEXII CCD diffractometer	7417 measured reflections 1973 independent reflections
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2013) $T_{min} = 0.933, T_{max} = 0.955$	1844 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.042$
2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.038$	128 parameters

 $wR(F^2) = 0.106$ H-atom parameters constrainedS = 1.07 $\Delta \rho_{max} = 0.24$ e Å $^{-3}$ 1973 reflections $\Delta \rho_{min} = -0.31$ e Å $^{-3}$

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C10-H10C\cdots O2^{i}$	0.96	2.50	3.431 (2)	164
~				

Symmetry code: (i) -x, -y + 1, -z + 2.

Data collection: *APEX2* (Bruker, 2013); cell refinement: *SAINT* (Bruker, 2013); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008);; program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL2014*.

Acknowledgements

SJ thanks Vision Group on Science and Technology, Government of Karnataka, for awarding a major project under CISE scheme (reference No. VGST/CISE/GRD-192/ 2013–14). BSP thanks Rajegowda, Department of Studies and Research in Physics, UCS, Tumkur University, Karnataka 572 103, India, for his support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7314).

References

- Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chulakov, E. N., Levit, G. L., Tumashov, A. A., Sadretdinova, L. Sh. & Krasnov, V. P. (2012). *Chem. Heterocycl. Compd*, **48**, 724–732.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Jeyaseelan, S., Asha, K. V., Venkateshappa, G., Raghavendrakumar, P. & Palakshamurthy, B. S. (2014). Acta Cryst. E70, o1176.
- Kadutskii, A. P., Kozlov, N. G., Frolova, L. L., Alekseev, I. N. & Kuchin, A. V. (2012). Chem. Nat. Compd, 48, 404–411.
- Katritsky, A. R., Rachwal, S. & Rachwal, B. (1996). *Tetrahedron*, **52**, 15031– 15070.
- Keith, J. M., Larrow, J. F. & Jacobsen, E. N. (2001). Adv. Synth. Catal. 343, 5–27.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2015). E71, o20 [doi:10.1107/S2056989014025353]

Crystal structure of 1-methanesulfonyl-1,2,3,4-tetrahydroquinoline

S. Jeyaseelan, S. L. Nagendra Babu, G. Venkateshappa, P. Raghavendra Kumar and B. S. Palakshamurthy

S1. Chemical context

Derivatives of tetrahydroquinolines display a wide range of physiological activities, they been found to be pesticides, antioxidants, photosensitizers, and dyes (Katritsky *et al.*, 1996). Heterocyclic compounds of 1,2,3,4-tetrahydroquinoline derivatives play important role in synthesize efficient kinetic resolution with predominant (S,S)-(R,R)-diastereoisomers (Chulakov *et al.*, 2012), optically active camphor moieties (Kadutskii *et al.*, 2012), and biologically active compounds, synthetic intermediates (Keith *et al.*, 2001).

In due course of our study, we have synthised a series of 1,2,3,4-tetrahydroquinoline with derivatives of suloponyl chlorides they exhibit a few pharmacological activities (our unpublished data). As a part of our study we have undertaken crystal structure determination of the title compound and the results are compared with crystal structure of 1-tosyl-1,2,3,4-tetrahydroquinoline(II) (Jeyaseelan *et al.*, 2014).

S2. Structural commentary

The molecular structure of the title compound(I) is shown in Fig. 1. In both the compounds (I) and (II), the C1/C6-C9/N1 rings are in a half-chair conformation, with the methylene C9 atom as the flap, but the bond-angle sum at the N atom in the compound (I) and (II) are 347.9° and 350.2°, respectively.

S3. Supramolecular features

In the crystal, inversion dimers linked by pairs of C10—H10C···O2 hydrogen bonds generate $R_2^2(8)$ ring motifs.

S4. Synthesis and crystallization

To a stirred solution of 1,2,3,4-tetrahydroquinoline (10 mmol) in 30 ml dry methylene dichloride, triethylamine (15 mmol) was added at 0 - 5°C. To this reaction mixture methanesulfonyl chloride (12 mmol) in 10 ml dry dichloromethane was added drop wise. After 2h of stirring at 15 - 20°C, the reaction mixture was washed with 5% Na₂CO₃ and brine. The organic phase was dried over Na₂SO₄ and then it was concentrated on vacuum to yield titled compound as colourless solid. The crude product was recrystallized from a slovent mixture of ethyl acetate and hexane(1:2) to yield colourless prisms of (I).

S5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 1. The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93-0.99 Å. All H-atoms were refined with isotropic displacement parameters (set to 1.2-1.5 times of the U eq of the parent atom).

Figure 1

The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.

Figure 2

The molecular packing of the title compound, dashed lines indicates the inversion dimers linked by pairs of C—H···O hydrogen bonds with $R_2^2(8)$ ring motifs.

1-Methanesulfonyl-1,2,3,4-tetrahydroquinoline

Crystal data	
$\begin{array}{l} C_{10}H_{13}NO_{2}S\\ M_{r}=211.27\\ Triclinic, PI\\ Hall symbol: -P 1\\ a=5.5865 (2) Å\\ b=9.2195 (4) Å\\ c=10.1924 (4) Å\\ a=85.798 (2)^{\circ}\\ \beta=84.686 (2)^{\circ}\\ \gamma=77.166 (2)^{\circ}\\ V=508.89 (4) Å^{3}\\ Z=2 \end{array}$	F(000) = 224 Prism $D_x = 1.379 \text{ Mg m}^{-3}$ Melting point: 414 K Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1844 reflections $\theta = 2.0-26.0^{\circ}$ $\mu = 0.29 \text{ mm}^{-1}$ T = 294 K Prism, colourless $0.24 \times 0.20 \times 0.16 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 1.09 pixels mm ⁻¹ phi and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2013) $T_{min} = 0.933, T_{max} = 0.955$	7417 measured reflections 1973 independent reflections 1844 reflections with $I > 2\sigma(I)$ $R_{int} = 0.042$ $\theta_{max} = 26.0^{\circ}, \theta_{min} = 2.0^{\circ}$ $h = -6 \rightarrow 6$ $k = -11 \rightarrow 11$ $l = -12 \rightarrow 12$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from
$wR(F^2) = 0.106$	neighbouring sites
S = 1.07	H-atom parameters constrained
1973 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0543P)^2 + 0.1542P]$
128 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
0 constraints	$\Delta \rho_{\rm max} = 0.24 \ {\rm e} \ {\rm \AA}^{-3}$
Primary atom site location: difference Fourier	$\Delta \rho_{\rm min} = -0.31 \text{ e} \text{ Å}^{-3}$
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	-0.0188 (3)	0.52244 (15)	0.71208 (15)	0.0682 (4)	
C1	0.3459 (3)	0.12140 (16)	0.73875 (15)	0.0323 (3)	
C2	0.2249 (4)	0.0388 (2)	0.83231 (18)	0.0478 (4)	
H2	0.0635	0.0778	0.8639	0.057*	
C3	0.3448 (4)	-0.1007(2)	0.8780 (2)	0.0620 (6)	
H3	0.2647	-0.1549	0.9413	0.074*	
C4	0.5827 (4)	-0.1601 (2)	0.8300 (2)	0.0593 (5)	
H4	0.6643	-0.2534	0.8619	0.071*	
C5	0.6980 (3)	-0.0810 (2)	0.73512 (18)	0.0480 (4)	
H5	0.8574	-0.1227	0.7022	0.058*	
C6	0.5840 (3)	0.06025 (17)	0.68628 (15)	0.0359 (4)	
C7	0.7133 (3)	0.1364 (2)	0.57329 (19)	0.0489 (4)	
H7A	0.8788	0.1355	0.5955	0.059*	
H7B	0.7273	0.0797	0.4954	0.059*	
C8	0.5850 (4)	0.2949 (2)	0.54063 (19)	0.0537 (5)	
H8A	0.6378	0.3244	0.4512	0.064*	
H8B	0.6293	0.3604	0.6001	0.064*	
C9	0.3091 (4)	0.3101 (2)	0.55315 (16)	0.0461 (4)	
H9A	0.2296	0.4127	0.5318	0.055*	
H9B	0.2648	0.2483	0.4903	0.055*	
N1	0.2186 (2)	0.26547 (14)	0.68785 (12)	0.0343 (3)	
C10	0.3540 (4)	0.4495 (2)	0.8543 (2)	0.0548 (5)	
H10A	0.4427	0.4978	0.7856	0.082*	
H10B	0.4619	0.3619	0.8890	0.082*	
H10C	0.2931	0.5165	0.9235	0.082*	
O2	-0.0312 (3)	0.33906 (15)	0.89749 (14)	0.0592 (4)	
S 1	0.10556 (7)	0.39877 (4)	0.78957 (4)	0.03662 (17)	

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0777 (10)	0.0463 (8)	0.0683 (9)	0.0213 (7)	-0.0239 (8)	-0.0061 (7)
C1	0.0337 (7)	0.0307 (7)	0.0331 (7)	-0.0068 (6)	-0.0033 (6)	-0.0056 (6)
C2	0.0479 (10)	0.0421 (9)	0.0499 (10)	-0.0084 (8)	0.0107 (8)	-0.0023 (7)
C3	0.0783 (15)	0.0417 (10)	0.0591 (12)	-0.0096 (10)	0.0141 (10)	0.0071 (9)
C4	0.0768 (14)	0.0358 (9)	0.0578 (11)	0.0021 (9)	-0.0054 (10)	0.0022 (8)
C5	0.0419 (9)	0.0425 (9)	0.0553 (10)	0.0027 (7)	-0.0041 (8)	-0.0117 (8)
C6	0.0336 (8)	0.0364 (8)	0.0390 (8)	-0.0080 (6)	-0.0024 (6)	-0.0093 (6)
C7	0.0381 (9)	0.0537 (10)	0.0543 (10)	-0.0125 (8)	0.0100 (8)	-0.0084 (8)
C8	0.0626 (12)	0.0528 (11)	0.0455 (10)	-0.0200 (9)	0.0140 (9)	-0.0013 (8)
C9	0.0606 (11)	0.0445 (9)	0.0308 (8)	-0.0067 (8)	-0.0049 (7)	0.0003 (7)
N1	0.0350 (7)	0.0333 (7)	0.0336 (7)	-0.0043 (5)	-0.0030 (5)	-0.0042 (5)
C10	0.0488 (10)	0.0674 (12)	0.0529 (11)	-0.0158 (9)	-0.0023 (8)	-0.0261 (9)
02	0.0526 (8)	0.0569 (8)	0.0645 (9)	-0.0122 (6)	0.0261 (7)	-0.0179 (7)
S1	0.0304 (2)	0.0346 (3)	0.0418 (3)	0.00108 (16)	-0.00305 (16)	-0.00688 (17)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

01—\$1	1.4227 (13)	C7—H7B	0.9700	
C1—C2	1.396 (2)	C8—C9	1.511 (3)	
C1—C6	1.398 (2)	C8—H8A	0.9700	
C1—N1	1.4446 (18)	C8—H8B	0.9700	
С2—С3	1.381 (3)	C9—N1	1.480 (2)	
С2—Н2	0.9300	С9—Н9А	0.9700	
C3—C4	1.379 (3)	С9—Н9В	0.9700	
С3—Н3	0.9300	N1—S1	1.6446 (13)	
C4—C5	1.369 (3)	C10—S1	1.7555 (18)	
C4—H4	0.9300	C10—H10A	0.9600	
C5—C6	1.394 (2)	C10—H10B	0.9600	
С5—Н5	0.9300	C10—H10C	0.9600	
С6—С7	1.515 (2)	O2—S1	1.4279 (13)	
С7—С8	1.505 (3)	S1—O1	1.4227 (13)	
С7—Н7А	0.9700			
C2—C1—C6	120.12 (15)	C9—C8—H8A	109.6	
C2-C1-N1	120.16 (14)	C7—C8—H8B	109.6	
C6—C1—N1	119.53 (13)	C9—C8—H8B	109.6	
C3—C2—C1	120.02 (17)	H8A—C8—H8B	108.1	
С3—С2—Н2	120.0	N1—C9—C8	111.80 (14)	
C1—C2—H2	120.0	N1—C9—H9A	109.3	
C4—C3—C2	120.28 (18)	С8—С9—Н9А	109.3	
С4—С3—Н3	119.9	N1—C9—H9B	109.3	
С2—С3—Н3	119.9	С8—С9—Н9В	109.3	
C5—C4—C3	119.56 (18)	H9A—C9—H9B	107.9	
C5—C4—H4	120.2	C1—N1—C9	114.89 (12)	
C3—C4—H4	120.2	C1—N1—S1	119.76 (10)	

C4—C5—C6	122.06 (16)	C9—N1—S1	117.41 (10)
С4—С5—Н5	119.0	S1-C10-H10A	109.5
С6—С5—Н5	119.0	S1-C10-H10B	109.5
C5—C6—C1	117.87 (15)	H10A-C10-H10B	109.5
C5—C6—C7	119.39 (15)	S1-C10-H10C	109.5
C1—C6—C7	122.61 (15)	H10A—C10—H10C	109.5
C8—C7—C6	114.00 (14)	H10B-C10-H10C	109.5
С8—С7—Н7А	108.8	O1—S1—O2	118.38 (10)
С6—С7—Н7А	108.8	O1—S1—N1	106.54 (8)
С8—С7—Н7В	108.8	O2—S1—N1	108.22 (7)
С6—С7—Н7В	108.8	O1—S1—C10	108.39 (10)
H7A—C7—H7B	107.6	O2—S1—C10	107.06 (9)
С7—С8—С9	110.45 (15)	N1—S1—C10	107.85 (8)
С7—С8—Н8А	109.6		
C6—C1—C2—C3	3.1 (3)	C6-C1-N1-C9	22.44 (19)
N1—C1—C2—C3	178.13 (17)	C2-C1-N1-S1	59.22 (18)
C1—C2—C3—C4	-1.0 (3)	C6-C1-N1-S1	-125.77 (13)
C2—C3—C4—C5	-1.1 (3)	C8—C9—N1—C1	-51.15 (19)
C3—C4—C5—C6	1.2 (3)	C8—C9—N1—S1	97.83 (15)
C4—C5—C6—C1	0.9 (3)	C1-N1-S1-01	-176.90 (12)
C4—C5—C6—C7	-174.89 (18)	C9—N1—S1—O1	35.68 (15)
C2-C1-C6-C5	-3.1 (2)	C1-N1-S1-01	-176.90 (12)
N1—C1—C6—C5	-178.07 (13)	C9—N1—S1—O1	35.68 (15)
C2-C1-C6-C7	172.62 (15)	C1—N1—S1—O2	-48.59 (13)
N1—C1—C6—C7	-2.4 (2)	C9—N1—S1—O2	163.98 (12)
C5—C6—C7—C8	-173.18 (16)	C1—N1—S1—O2	-48.59 (13)
C1—C6—C7—C8	11.2 (2)	C9—N1—S1—O2	163.98 (12)
C6—C7—C8—C9	-38.3 (2)	C1—N1—S1—C10	66.91 (14)
C7—C8—C9—N1	58.9 (2)	C9—N1—S1—C10	-80.52 (14)
C2-C1-N1-C9	-152.58 (15)		
	· ·		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C10—H10C····O2 ⁱ	0.96	2.50	3.431 (2)	164

Symmetry code: (i) -x, -y+1, -z+2.