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a b s t r a c t

The success of any predictive model is largely dependent on the accuracy with which its parameters are
known. When characterising fracture networks in rocks, one of the main issues is accurately scaling the
parameters governing the distribution of fracture attributes. Optimal characterisation and analysis of
fracture lengths and apertures are fundamental to estimate bulk permeability and therefore fluid flow,
especially for rocks with low primary porosity where most of the flow takes place within fractures. We
collected outcrop data from a fractured upper Miocene biosiliceous mudstone formation (California,
USA), which exhibits seepage of bitumen-rich fluids through the fractures. The dataset was analysed
using Maximum Likelihood Estimators to extract the underlying scaling parameters, and we found a log-
normal distribution to be the best representative statistic for both fracture lengths and apertures in the
study area. By applying Maximum Likelihood Estimators on outcrop fracture data, we generate fracture
network models with the same statistical attributes to the ones observed on outcrop, fromwhich we can
achieve more robust predictions of bulk permeability.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The upper part of the Earth's crust is highly fractured at all
scales, ranging from microcracks to large-scale faults and joints,
from tens of micrometres to hundreds of metres. Fractures and
joints are well known for their effects on the mechanical properties
of rocks (e.g. bulk elastic constants and shear strength) but they
also control the transport properties, in particular the permeability
of crystalline and tight sedimentary rocks, such as shales and
mudstones (Brace, 1980). Fracture networks can make major con-
tributions to fluid flow in a number of contexts: (1) hydrocarbon
production from fractured reservoirs; (2) reservoir stimulation by
hydrofracturing; (3) geothermal energy extraction; (4) hazardous
waste isolation; (5) aquifer exploitation for water supply; (6)
mining and mineralisation processes; (7) deeper Earth systems,
such as earthquakes and ocean floor hydrothermal venting
(Berkowitz, 2002; Brown, 1987). Consequently, considerable effort
has been placed on characterisation (Dershowitz and Einstein,
1988; Aydin, 2000) and modelling (e.g. Brown and Bruhn, 1998;
Oda, 1982, 1986, 1988) of fractures and fracture networks. A wide
Ltd. This is an open access article
variety of different techniques and approaches has been applied to
the problem of modelling fracture networks (e.g. Berkowitz, 2002;
Long and Billaux, 1987; Taylor et al., 1999). Analyses are usually
derived from measurements of fractures at outcrops, core samples,
or borehole data. Laboratory measurements are often limited to
analysing single fractures, which can impede the extrapolation of
data at larger scales. On the other hand, borehole data can preclude
complete and detailed mapping and analysis, as they rely largely on
extrapolation and subjective considerations, e.g. interpretation of
geophysical data and image logging (Berkowitz, 2002). Outcrop
observations, therefore, can provide direct and less subjective
geological evidence. However, issues remain: in particular, those
related to the scaling of fracture attributes observed on outcrops
into reservoir scale permeability and fracture network models.

The main objective of this work is to demonstrate a more ac-
curate statistical approach to increase utility, meaningfulness, and
reliability of data from fractured outcrop analogues. Finding the
best statistical distribution governing a dataset is of critical
importance when predicting the tendency of fracture attributes
towards small and large scales. The most common way for statis-
tical inference on fracture attributes relies upon calculation of the
slope of a regression line, usually for data plotted on a bi-
logarithmic plot. This technique is applicable with the assump-
tion that for each fixed x (e.g. fracture lengths) the values lying on
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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the y-axis (the dependent variable) are normally distributed and
with a variance s2 (not depending on x) (Kreyszig, 1970). However,
this is not always the case, in particular, when data have a power-
law or exponential behaviour (Newman, 2005). Therefore, since
we do not know a priori the underlying distribution of our fracture
attributes, we need statistically reliable tools, which for our pur-
poses are the Maximum Likelihood Estimators (MLEs). In fact, the
goodness-of-fit of MLEs can be statistically quantified and they are
proven to give accurate parameter estimates (Clauset et al., 2007).

The unique fracture network cropping out around Santa Cruz
(California, USA) gave us the chance of measuring a recently-active
bitumen-bearing fractured top seal, as a natural example to build
and test a general model for bulk permeability prediction, and to
establish statistical models that can be inferred from measures
taken at local places and extrapolated for a larger two-dimensional
(2D) domain.

This paper is organised as follows. First, the MLE method is
introduced, and we compare its abilities against least-square
regression techniques to find the best distribution among the
most common statistics observed for fracture attributes, as well as
its capacity of accurately estimating the parameter underlying the
data set. Second, we present the fracture attribute acquisition
method, based on the circular estimator method (Mauldon et al.,
2001; Rohrbaugh et al., 2013). Third, we evaluate the statistical
distribution of the outcrop fracture attributes e namely mean
fracture trace length and fracture aperture e using Maximum
Likelihood Estimators. Last, we model the impact of this statistical
analysis on up-scaling two-dimensional (2D) fracture networks and
on permeability prediction of the fractured rock mass, using Oda's
model (Oda, 1985; Suzuki et al., 1998), which allows us tomaximise
the acquired data (mean fracture trace lengths and apertures).
Fig. 1. (a) CDFs of two small samples (n ¼ 100) drawn from different distributions: a
log-normal with known m ¼ 0:3 and s ¼ 2, a power-law with a ¼ 2:5: Visually both the
CDFs appear straight on the log-scale used, and can both be interpreted as power-law,
with different slopes. (b)e(c) When both distributions are fitted using a linear
regression with a power-law model, the values of the R2 do not help to reveal the real
nature of the distribution, giving high results in both cases. Moreover (c), the estimatedba ¼ 1:06 for the real power-law distribution is far from be accurate. NB: the y-axes on
these plots are values of cumulative frequency.
2. Methodology

2.1. Statistical tools for fracture attributes

Fractures are most frequently characterised geometrically in
terms of fracture trace length, intensity, density and aperture. In
particular, these geometrical features are often well described by
certain statistical distributions (Bonnet et al., 2001). The statistical
distributions used to describe fracture attributes commonly range
from the normal distribution (un-skewed) to increasingly skewed
distributions, such as log-normal, exponential and power-law
(Gillespie et al., 1999).

As suggested by McCaffrey et al. (2003), the simplest qualitative
test to decide which of these distributions is appropriate for a given
set of data is to rank the values of a fracture attribute in descending
order (x-axis) and then plot the attribute against the cumulative
frequency (y-axis) on a bi-logarithmic plot (called a population plot)
(McCaffrey et al., 2003). Then the resulting function is fitted to the
linear form by least-squares regression. The slope to the fit is
interpreted as the estimate of the distribution parameter of the
related attribute (Fig. 1). The goodness-of-fit is judged based on the
value of the coefficient of determination (R2). This number in-
dicates the proportion of the variance in the dependent variable
that is predictable from the independent variable (Myung, 2003);
the closer it is to 1 the better the fit. Linear regression requires
minimal distributional assumptions and is useful for obtaining a
descriptive measure for the purpose of summarising observed data,
but it has no basis for quantitatively testing the hypothesis that the
chosen model is actually the best fit for the observed data (Myung,
2003; Clauset et al., 2007). Unfortunately, distributions can be
deceptive. On a bi-logarithmic plot for example, a log-normal dis-
tribution resembles a power-law with a different slope (Fig. 1a).
Fig. 1bec illustrate the issue, where two small (n ¼ 100) synthetic
sets of discrete data (Appendix A for details), a power-law
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distribution with known scaling parameter (a ¼ 2:5) and a log-
normal distribution with m ¼ 0:3 and s ¼ 2, are plotted on popu-
lation plots (data of interest on the x-axis and cumulative frequency
on the y-axis) and then fitted using linear regression models. Both
distributions, in their linear form, can be fitted with a power-law
model for many orders of magnitude. This results in high values
of R2 even for the distribution that has been fitted with the wrong
model; R2 values tell us very little about the hypothesis validation.

Moreover, Newman (2005) and Clauset et al. (2007) explained
that these procedures generate systematic errors under relatively
common conditions, and consequently the results they give cannot
be trusted. In fact, the formula for calculating the standard errors
and the value for R2 on the slope of a regression line is correct when
the assumptions of linear regression hold (Kreyszig, 1970; Clauset
et al., 2007). These include:

1. For each fixed x, the variable y (the dependent variable) is nor-
mally distributed with mean (aþ bx) and variance (s2) not
depending on x.

2. Independent Gaussian noise in the dependent variable at each
value of the independent variable.

When fitting to the logarithm of a Cumulative Density Function
(CDF), as in the analysis of power-law and exponential data in a
population plot, the noise, although independent, is not Gaussian.
The noise in the frequency estimates themselves is Gaussian, but
the noise in their logarithm is not (Clauset et al., 2007). Thus, the
formula for the error is inapplicable in this case. Furthermore,
Newman (2005) showed that for power-law distributions whose
scaling parameter range is a � 3 (which includes most of the
known power-law distributions for natural phenomena) there is no
meaningful variance. Hence, the first of the assumption for making
use of linear regression falls. Consequently, the calculation of the
fraction R2 of the variance accounted for the fitted line should not
be trusted in these cases.

In addition, the cumulative frequency axis (such as shown in
Fig. 1) must take the value 1 at xmin if the probability distribution
above the minimum value is properly normalised. Ordinary linear
regression, however, does not incorporate such constraints and
then, in general, the regression line does not respect them (Clauset
et al., 2007). Therefore, more appropriate statistical tools are
needed; following Newman (2005) and Clauset et al. (2007) sug-
gestion, the statistical distribution of the data collected for this
work has been estimated via Maximum Likelihood Estimators
(MLEs).

It must be stressed that finding the best statistical distribution
governing a set of data is of critical importance when we aim to
predict and model the tendency of fracture attributes towards the
small and large scale, especially when these attributes, collected
from outcrops, often suffer censoring and truncation biases, and
restrictions due to small sample sizes.
Table 1
Formulations for probability density functions, likelihood functions and parameter
functions of the statistical distributions used in this work.

Distribution Probability Density Function (PDF) Likelihood Function
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2.1.1. Maximum likelihood estimators for fracture attributes
The aim of our data analysis is to identify the population that is

most likely to have generated the sample. To demonstrate the
validity of theMLEs against linear regression, we test their ability to
extract the statistical parameters from the same synthetic data set
described in the previous section (Fig.1). This has been done using a
suite of custom MATLAB™ functions, integrated into FracPaQ
(Healy et al., 2016), which finds the best theoretical distribution
fitting the fracture attributes chosen among power-law, log-normal
and exponential distributions (Table 1).

After performing the MLE (Fig. 2), the estimates for the pa-
rameters governing the power-law function are found to be ba ¼ 2:6
and bxmin ¼ 15:2 (see Appendix A for details); conversely (Fig.1), the
linear regression method estimated an ba ¼ 1:06, without giving
any estimates of the minimum value of the observed data set
(Table 2).

To constrain the goodness-of-fit obtained via the Maximum
Likelihood Estimator we use the Kolmogorov-Smirnoff (K-S) test, a
standard approach in statistics. This test is based on the measure-
ment of the ‘distance’ between the observed distribution and the
hypothesised model (Clauset et al., 2007), which is simply the
maximum distance between the CDFs of the data and the fitted
model:

D ¼ max
x�xmin

jSðxÞ � PðxÞj (2.1)

where SðxÞ is the CDF of the data and PðxÞ is the CDF for the model.
For our purposes, we use the K-S statistic as follows:

1. We fit our observed data to a chosen model (log-normal,
exponential, or power-law), and calculate the K-S test for this fit.

2. Then, we generate a large number (2,500) of synthetic distri-
butions that follow one of the chosen distributions; we also set
the relative distribution parameters equal to those of the dis-
tribution that best fits the observed data set.

3. We fit each synthetic data set individually to its own model and
calculate the K-S statistic for each one relative to the selected
model.

4. Finally, we count the fraction, expressed as a percentage, when
the resulting statistic is larger than the value for the empirical
data. This is the resulting p-value.

It is crucial to note that for each of the synthetic data set the K-S
statistic is computed relative to the best-fit model for that specific
set of data, not to the original distribution. In this way, we make
sure that the same calculation is performed for each synthetic data
set, as for the real data set.

After 2,500 tests, only 2% of the tests reject the null hypothesis,
in other words 2450 testswere successful (Fig. 2a). This implies that
MLE is successful in correctly estimating the required parameters of
the synthetic data distributed as a power-law; therefore, we can be
Parameters
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Fig. 2. Plots showing the results of fitting the same synthetic data set as Fig. 1, using
Maximum Likelihood Estimators: (a) Fit to a power-law distribution with a MLE
power-lawmodel; on the y-axes are plotted probability values, Pr(x � x), indicating the
probability that a value ‘x’ will take on a value greater or equal to x. The box on the top-
right of the plots shows the resulting goodness-of-fit obtained after performing 2,500
Kolmogorov-Smirnoff (KeS) tests. (b) Fit to a log-normal distribution with a MLE
power-law model. The resulting K-S test, performed 2,500, returned a low value of
probability (59%), so that almost 50% of the K-S tests failed the null hypothesis.

Table 2
Estimates of the scaling parameter a using two estimatormethods (MLE and LSE) for
the synthetic data set shown in Fig. 2. Accurate estimates are in italic.

Method Scaling Parameter Minimum Value

Known Parameter a ¼ 2.5 xmin ¼ 15
MLE aMLE ¼ 2.6 xmin ¼ 15.2
LSE aLSE ¼ 1.06 none
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more confident of having found the best distribution underlying
our data.

We also tested whether the MLE is able to correctly discern
deceptive distributions. Hence, we fitted a power-law model to the
same synthetic log-normal data set described in the previous sec-
tion. In this case, the K-S test returned a probability of the 59% that
our synthetic data are drawn from a power-law distribution; such a
result allows us to comfortably discard the hypothesis that the
analysed data set is distributed as a power-law (Fig. 2b).

We emphasise that in Figs. 1 and 2 different quantities are
plotted on the y-axes, hence a direct comparison of the angular
coefficient e the slope e is not appropriate.
Achieving an optimal and robust estimate for the parameters

governing a statistical distribution underlying fracture attribute
measurements guarantees that when we use them to build a
model, the latter will be a closer approximation to reality.

Similar results have been obtained by Clark et al. (1999) when
testing the abilities of MLE versus least-squares linear regression to
estimate the parameter governing the power-law distribution of
fault trace lengths. The results of their simulations showed that
Least-square Estimators (LSEs) are sensibly biased, although this
bias decreases as the sample size increases, and that least-squares
regression underestimates the true value of the scaling param-
eter. They also confirmed thatMLE results are unbiased and that the
95% confidence intervals in fact cover the true statistical parameter
about 95% of the time. It has also been verified (Clark and Cox,1996)
that Least-squares Estimators become less precise as the distribu-
tion becomes increasingly skewed. Similarly, Pickering et al. (1995),
analysing the issues related to sampling power-law distributions of
earthquakes and fault populations, concluded that MLE offers the
best method as an estimator.

2.2. Fracture attribute acquisition: the circular estimator method

We collected fracture attributes using the circular estimator
method, a combination of circular scan lines (simply represented by
circles drawn on the rock surface) and windows (the region
enclosed in the circular scan line). This is a time-saving sampling
tool, providing efficient estimates for fracture trace density, in-
tensity and mean trace length that eliminates orientation bias,
censoring, and length bias with respect to measurement in a plane
(Mauldon et al., 2001). It is called an estimator because instead of
directly sampling individual fractures and measuring their char-
acteristic, parameters are estimated using an underlying statistical
model (Lyman, 2003; Zeeb et al., 2013).

Fracture attributes are obtained by simply counting the number
(n) of fracture traces intersecting the circumference, and counting
the number (m) of fracture traces terminating within the circle
interior (Fig. 3d) (Rohrbaugh et al., 2013). For two-dimensional
fracture patterns, such as those analysed in this work, we define:
(1) Estimated Density (r) as the number of fracture per unit area;
(2) Estimated Size (l) as the mean fracture length; (3) Estimated
Intensity (i) as fracture length per unit area. However, this method
does not provide information on parameters such as fracture
orientation and aperture, which are fundamental inputs in the
calculation for the permeability tensor. Hence, we combined
measures of orientations and apertures of each fracture inside the
circular windows. A representative aperture for each window is
obtained averaging all the measured apertures within the window.

Rohrbaugh et al. (2013) found that 30 is the minimum number
ofm-points necessary to estimate the mean trace length accurately.
In our study, we have always reached the required minimum
number of m-points.

3. Data analysis

3.1. Site location and identification of the fracture sets

We collected fracture attributes in a highly fractured Upper
Miocene biosiliceous mudstone (Santa Cruz Mudstone) cropping
out along the coast to the north of Santa Cruz, California. In the
study area, the entire outcrop of the Santa Cruz Mudstone is
characterised by a pervasive dilatant fracture system (Fig. 3bec)
(Clark, 1981; Boehm and Moore, 2002; Scott et al., 2009). Fractures
form a joint set striking predominantly towards the northwest
(Fig. 3b), having all the features of tensile Mode I fractures, such as



Fig. 3. Overview of the geological framework and characteristic features observed in the study area. (a) Simplified geological map north of Santa Cruz County (modified after Boehm
and Moore, 2002); the black stars indicate the studied areas. (b) Examples of the fracture system cutting the Santa Cruz Mudstone in the outcrop area. Stereoplot (equal area contour
plots of poles to the fracture planes) showing that the fracture network forms a joint set striking predominantly towards the NW (the contouring method is 1% of the net area, with
intervals set at 2%) (c) Close-up photograph showing a bitumen-filling fracture (locality: Panther Beach). (d) Example of the circular window method (Mauldon et al., 2001) applied
to collect fracture attribute data. The squares indicate the ‘n-points’, where a fracture crosses the edges of the sampling window, while the triangles indicate the ‘m-points’ where a
fracture terminates inside the sampling window.
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plumose structures, hackles and hackle fringes (en-echelon frac-
tures). The latter structures are interpreted as the results of stress
oscillations and local heterogeneities at the tip of the major frac-
tures, which caused bifurcations and off-plane micro-cracks
(fringes) (Fossen, 2010). Many fractures in the area show infills and
stains of bitumen (Fig. 3c). Therefore, dilatant fractures in the area
represent major pathways for hydrocarbon migration, from the
organic-rich mudstone source rock of the Monterey Formation
positioned stratigraphically below the Santa Cruz Mudstone units
to the surface (Phillips, 1990).

Two sampling sites were selected for collecting fracture attri-
bute data because they represent two different structural settings. 4
Mile Beach (Fig. 3a) is representative of the average fracturing
condition of the area, while Panther Beach (Fig. 3a) shows a more
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complex scenario characterised by a fault zone. These differences
are well captured in the plots of estimated fracture intensity and
estimated fracture density versus distance along transects (Fig. 4)
for the two localities.

Fracture attribute acquisitions, based on the mentioned circular
estimator method (Mauldon et al., 2001), have been collected every
metre along two scan line transects of 22 m at Panther Beach, and
23 m at 4 Mile Beach, respectively, for a total of 45 sample sites
(Fig. 3aed). A circle of known radius (14.2 cm) was placed onto the
bedding surface and then used to count the number of fracture
intersections with the edge of the window (n-points) and the
number of fracture terminations inside the window (m-points)
(Watkins et al., 2015). Based on the ratio between the n- and m-
points, we calculated for each window an estimated mean fracture
length (l), estimated fracture intensity (i), and estimated fracture
density (r). This method has been combined with acquisitions of
fracture apertures and orientations of each fracture inside the
windows.

From the measured orientations, two or possibly three, fracture
sets are observed. These are defined by plotting the poles to the
fracture orientations on lower-hemisphere Schmidt's equal area
net (Fig. 3b), from which it can also be shown that most of the
fractures have steep dips (sub-vertical). Therefore, the 2D model-
ling approach employed in this work is a reasonable first
approximation.
3.2. Fracture trace lengths

We infer that the estimations of mean fracture lengths are
reliable, as we always reached the minimum value of 30 m-points
(Rohrbaugh et al., 2013) per scan line circle. For the two location
sites, values of the scaling parameters for the mean trace lengths
Fig. 4. Plots of the estimated intensity and estimated density attributes for the two sample s
circle placed along the scan-lines. The sudden increase in the intensity values is consiste
fluctuations in the 4 Mile Beach plot indicate a clustering in the areal distribution of fractures
the reader is referred to the web version of this article.)
have been computed using the suite of MATLAB™ functions, inte-
grated into FracPaQ (Healy et al., 2016) (Appendix B).

In the case of 4 Mile Beach (Fig. 5), the fitting of distributions
using the MLEs reveals that the log-normal distribution is the most
likely distribution with a probability of 99.5% for fracture trace
lengths, while the power-law is possible albeit less likely (82.4% of
probability; with an estimated scaling parameter ba ¼ 2:4 andbxmin ¼ 0:07 m). The exponential distribution is the least likely
distribution underlying this data set (3.5% of probability). The
estimated parameters for the log-normal distribution arebm ¼ �2:01 and bs ¼ 0:41. These values, called the scaling parame-
ters, are the logarithmic mean and logarithmic standard deviation,
respectively. The estimated log-mean corresponds to an arithmetic
mean length of 0.14m. The latter value is obtained from the formula
of the arithmetic mean of a log-normally distributed variable,

mean ¼ emþ1
2s

2
. A similar behaviour has been found for the data

measured in Panther Beach (Fig. 6), where the log-normal distri-
bution is the most likely distribution for the mean fracture trace
lengths, with 99.4% of probability. In this case, the estimated pa-
rameters are bm ¼ �1:62 and bs ¼ 0:37, corresponding to 0.2 m for
the arithmetic mean length. Also for Panther Beach, a probability
for a power-law distribution still exists (88.8%; with an estimated
scaling parameter ba ¼ 2:7 and bxmin ¼ 0:12 m), although is less
likely.

3.3. Fracture apertures

Values of fracture apertures have been collected from fractures
inside the circular window. The measures have been taken using a
ruler; therefore, the precision of these values is in the order of
1mm. TheMLEmethod reveals that the best distribution of fracture
apertures for both the studied localities is a log-normal distribution
ites; the blue dots are the value of the calculated fracture intensity and density for each
nt with the Panther Beach area lying in the proximity of a fault zone. The intensity
(fracture corridors). (For interpretation of the references to colour in this figure legend,



Fig. 5. Plot of the measured (‘observed data’) mean trace lengths (on the left) and apertures (on the right) relative to 4 Mile Beach area. The same sample is plotted according to (a)
Log-normal, (b) Power-law, (e) Truncated Power-law. The broken black lines are the estimated (theoretical) CDF computed for the different distribution via the Maximum Like-
lihood. The boxes at the bottom left show the probability (tested through 2500 K-S tests) that the observed data are distributed according to the relative theoretical distribution law.
The log-normal distribution is the best fit for both length and aperture parameter. The estimated log-means are �2.013 and �5.62, corresponding to a mean length of 0.14 m and a
mean aperture of 0.004 m, respectively. Note that the y-axes on these plots are probability values, which indicate the probability that a value ‘x’ will take on a value greater or equal
to x.
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(Figs. 5c and 6c). For 4 Mile Beach the K-S test yields a 99.36%
probability that apertures are log-normally distributed; the relative
scaling parameters are bm ¼ �5:62 and bs ¼ 0:42, which corresponds
to an arithmetic mean aperture of 0.004m. Similarly, with 99.16% of
probability, fracture apertures in Panther Beach are best repre-
sented by a log-normal distribution, and the respective scaling
parameters are bm ¼ �6:89 and bs ¼ 0:41, corresponding to 0.001 m
for the arithmetic mean. Again, the probability for a power-law
distribution of fracture apertures is still possible, although less
likely compared with the log-normal distribution; the estimated
parameters result ba ¼ 2:38 with bxmin ¼ 0:0018 m for 4 Mile Beach
apertures, and ba ¼ 2:46 with bxmin ¼ 5� 10�4 m for the aperture
collected at Panther Beach (Figs. 5d and 6d).

When fitting the aperture distributions using the least-squares



Fig. 6. Plot of the measured (‘observed data’) mean trace lengths (on the left) and apertures (on the right) relative to Panther Beach area. The same sample is plotted according to (a)
Lognormal, (b) Power-law, and (e) Truncated Power-law, respectively. The broken black lines are the estimated (theoretical) CDF computed for the different distribution via the
Maximum Likelihood. In the boxes on the bottom left of each plot is indicated the probability (tested through 2500 K-S tests) that the observed data are distributed according to the
relative theoretical distribution law. The lognormal distribution results the best fit for both length and aperture parameter. The estimated log-means are �1.62 and �6.89, cor-
responding to a mean length of 0.2 m and a mean aperture of 0.001 m, respectively. Note that the y-axes on these plots are probability values, which indicate the probability that a
value ‘x’ will take on a value greater or equal to x.
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linear regression, the estimated arithmetic mean apertures are
0.024 m and 1.2 � 10̂ �5 m, for the fracture seen in 4 Mile Beach
and Panther Beach, respectively. The resulting estimated parame-
ters are evidently far from reality and they also lack consistency; in
one case (4 Mile Beach) the linear regression gives a relative
overestimation of the mean of the apertures (2.4 cm), while for
Panther Beach the method returns a mean value probably too small
(1.2 mm) (Fig. 7).
4. Fracture network simulations and permeability
predictions

If we assume that the analysed rock mass has low primary
(matrix) porosity, then most, if not all, the fluid flow takes places
entirely within the fractures. Real fractures have complex surfaces
and irregular apertures (e.g. natural fractures can be opened in their
central part but sealed at tips) with variable degree of cementation;



Fig. 7. Results for lognormal fit to the measured lengths and apertures in the two studied areas, using a least-squares linear regression; the boxes on the bottom left show the
goodness-of-fit obtained via LSE. The estimated log-means are for 4 Mile Beach �1.04 and �3.79, corresponding to a mean length of 0.37 m and a mean aperture of 0.024 m,
respectively. For Panther Beach the estimated log-means are �0.78 and �13.79, corresponding to a mean length of 0.49 m and a mean aperture of 1.2 � 10�5 m. NB: the y-axes on
these plots are values of cumulative frequency.
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however, for the purposes of this study, the geometric description is
simplified. The assumptionswemade are that: (1) fractures arewell
represented by a parallel plate model (i.e. individual fractures lie in
a single plane and have a constant hydraulic aperture (Long et al.,
1982)); (2) the fractured rock mass is assumed to be, and there-
fore treated as, a homogenous, anisotropic porous medium; and (3)
permeability is approximated by a 2nd rank tensor as formulated by
Oda (1985; see also Brown and Bruhn, 1998; Suzuki et al., 1998).

4.1. Simulation of the fractured rock mass

Using the statistical parameters estimated via the MLEs for the
best statistical distribution representing the fracture attributes
collected on outcrops (in this case a log-normal distribution,
Table 1), we can create 2D fracture maps, called fracture meshes,
made of a network which is an optimum replica of the fracture
networks observed at outcrop.

Compared with maps of natural rock exposures, which can be
subjected to incomplete observations and measurements at all
relevant scales, fracture meshes can be configured with variable
sizes and resolutions. These numerical models are useful to simu-
late the influences of the distribution of fractures in the spatial
domain on statistically variable phenomena (e.g. permeability) and
can provide valuable information for understanding possible in-
teractions between fractures (e.g. connectivity), which would
otherwise be difficult to study analytically.

The 2D mesh is a sample which, admittedly, is not identical to
the real fractured rock mass, but will approach it if the number of
samples approaches infinity, according to the principle of the
Monte Carlo (MC) method (Zhang et al., 2004).
The steps needed before running the simulation are: (1) estab-
lishing the simulated space, (2) determining the fracture position,
(3) simulating the fracture sizes and attitudes, (4) determining the
fracture density. Fracture centres have been randomly positioned,
while their orientation has been assigned in a manner proportional
to the number of fractures with that specific orientation observed
in the field (Fig. 3b). The length of a fracture is simulated inde-
pendently for each object in the mesh with a Monte Carlo process,
which samples from a log-normal distribution (Table 1) produced
using as inputs the scaling parameters (m and s) estimated through
MLE for 4 Mile Beach (Section 3.2). Fracture abundance is organised
according to the mean density value obtained from the circular
window survey on the outcrop (Fig. 4), 277 fractures/m2. The
population of fractures is enclosed in a two-dimensional rectan-
gular space, which for congruity to the sizes of the scan-lines used
on the outcrops, has its longest side set to 21 m. An example of one
of the 1000 MC simulations carried out using these specifications is
illustrated in Fig. 8a. We have produced a smaller (7 � 4 m) 2D
mesh, keeping constant all the described specifications, to aid the
visualisation of the fracture spatial organisation into the simulated
fracture network (Fig. 8a-1).

For comparison, we have also generated a model of the fracture
network using the scaling parameters obtained from the least-
squares linear regression, while all the other characteristics (den-
sity, orientations, positioning, simulated area) have been kept
identical (Fig. 9c). This change in scaling parameters (Fig. 9c-1)
introduces in the resulting 2D mesh longer fractures on average,
but with a reduced range of lengths compared with the simulated
network obtained using the MLEs parameters (confront the
respective histograms on Figs. 8 and 9).



Fig. 8. Monte Carlo simulation of the natural fracture network and its properties. (a) Example of one of the 1000 up-scaled fracture meshes (21 � 12 m2) run to simulate the natural
fracture system. The mesh contains a fracture network with the same statistical parameter of those measured on outcrop, estimated via MLE. (a1) Close-up (7 � 4 m) of the
simulated mesh, showing in a larger scale the organisation of fractures. (b) The histogram shows the distribution of the simulated fracture trace lengths, according to a log-normal
distribution (bmMLE ¼ �2:01 and bsMLE ¼ 0:37). (c) Average directional anisotropic bulk permeability obtained from the 1000 21 � 12 m2 fracture meshes. Values of permeability are
expressed in m2 and obtained using a constant fracture aperture equal to the mean aperture estimated through the MLE for a Log-normal distribution (¼ 0.004 m).
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4.2. Permeability tensor of the fracture network

Prediction of the bulk anisotropic permeability as 2nd rank
tensor (Oda, 1985) for the modelled 2D meshes have been carried
out inputting the simulated fracture network into FracPaQ (Healy
et al., 2016; Appendix B), which bases the permeability estima-
tion on the crack tensor equation of Suzuki et al. (1998):

Pij ¼
p

4
rr2t3Nij (4.1)

This formulation includes the density (r), the mean of the
squared length (r2), the mean of the cubed aperture (t3), and the
orientation cosines matrix (Nij) of the fractures. From equation
(4.1), Suzuki et al. (1998) derived the permeability tensor as:

kij ¼ l
�
Pkkdij � Pij

�
(4.2)

where l is a pre-multiplying dimensionless coefficient satisfying
the inequality 0 � l � 1 =12; dij is the Kronecker delta; and
Pkk ¼ P11 þ P22 þ P33.

It follows that the key parameters in this expression of the
permeability are the scaling parameters of the statistical distribu-
tion (particularly the mean) of fracture trace lengths and apertures,
and their orientations.
For the 1000 2D meshes generated using the MLEs scaling pa-
rameters (Fig. 8), the average anisotropic permeability tensor re-
sults as follows:

Mesh 21x12 kii ¼ f1:5; 1:33g*10�9 m2 (4.3)

The relative directional permeability ellipse in the direction of
flow (Long et al., 1982; Healy et al., 2016) is shown in Fig. 8c and is
obtained using a constant fracture aperture equal to the mean
aperture estimated through the MLE for a log-normal distribution
(¼ 0.004 m).

We have also attempted to compute anisotropic permeability
related to the fracture network built using the least-squares linear
regression estimates (Fig. 7). When using the parameters estimated
for the fracture attribute distributions of Panther Beach, the
permeability values (Fig. 9) result in unlikely estimates
(kiiy10�16 m2), even for impervious fracture networks (Bear,1972).
5. Discussion

5.1. Mean of squares or squared means

The use of fracture network observables from outcrops as ana-
logues for subsurface fracture system has several advantages,



Fig. 9. Directional anisotropic bulk permeability calculated for synthetic meshes, built using as inputs the values of fracture length and aperture estimated with the least-square
regression (labeled as LSE, Least-Squares Estimates). (a) Mesh permeability (values in m2) obtained using the LSE estimates for 4 Mile Beach (Estimated mean length ¼ 0.4 m, and
estimated mean aperture ¼ 0.024 m). (b) Mesh permeability (values in m2) obtained using the LSE estimates for Panther Beach (Estimated arithmetic mean length ¼ 0.5 m, and
estimated arithmetic mean aperture ¼ 0.0000012 m). (c) Example of a fracture mesh obtained using the Least-squares estimates. (c1) Histogram showing the distribution of the
simulated fracture trace lengths (bmLSE ¼ �1:04 and bsLSE ¼ 0:79). (c2) Close-up (7 � 4 m) of the simulated mesh, showing in a larger scale the arrangement of fractures.
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because key fracture attributes such as spatial arrangement and
length can be effectively measured only on outcrops (Gale et al.,
2014). Using the circular window estimator (Mauldon et al.,
2001), a time-saving sampling tool, it has been possible to effi-
ciently collect these fracture attributes. However, when using the
mean fracture trace lengths obtained through the circular window
estimator in the calculation of the permeability tensor, some issues
can arise. In equation (4.1), the term r2 indicates the second mo-
ments of the recorded fracture lengths; in practice, equation (4.1)
requires us to take the square of each value of the trace length
and then compute their mean. In our study, we have not measured
single fracture trace lengths, instead we have estimated the means
of the fracture trace length for each window drawn along a refer-
ence line.

Mauldon et al. (2001) stated that “Circular scanlinese and indeed
any other linear or area measurement devices e sample an exposed
rock surface, which itself is a sample of the fracture trace population”.
Therefore, fractures counted in eachwindow are small sub-samples
of the total sample e corresponding to the outcrop exposure e of
the real population; the mean value of each single window is not a
mean representative of the whole population, and in theory can be
treated as a single value in the equation for permeability. None-
theless, we tested the validity of this statement comparing the
resulting second moment values obtained using two different sub-
sampling methods from a synthetic array of fracture trace lengths:
(a) classical linear scan-line, which contemplates measuring the
length of each fracture crossing the sampling line; and (b) circular
window method.

This process is implemented using Monte Carlo simulations
(100 iterations) of an array of synthetic trace lengths representing
the whole population; each iteration depends on three variables:

1 The first variable is xTRUE , which includes the second moments
calculated over the whole number of synthetic fracture lengths.
The length value can be distributed accordingly to four statistics
e random, log-normal, power-law, or exponential. This variable
(xTRUE) is used as the true measure of the second moment to
verify possible discrepancies in the sub-sampling techniques.

2 The second variable, xTL, contains the second moments
computed using the linear scan-line, so that it includes sub-
samples from the whole fracture set. The number of trace
lengths theoretically scanned and included in the computation
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of xTL varies, including increasing proportions of the sub-sample
with respect to the whole set e namely 1%, 5%, 10%, 25%, 50%,
and 75% of the entire population, so that xTL < xTRUE .

3 The third variable, xCMT , accounts for the circular window
method and is obtained by creating n sub-samples that
randomly select a small number of length values from the
population, with the condition that for each i ¼ 1, …n,
xCMT
i ≪xTRUE and that xCMT ¼ P

xCMT
i . Then the values of each

xCMT
i are averaged to obtain a total of n mean values corre-
sponding to the mean values obtained from the circular window
estimator. All sub-samples contain at least 30 length values to
ensure that all mean values are significant.

For simplicity, we have not taken into account possible orien-
tation biases; moreover, in our implementation both sub-sampling
techniques capture the same amount of fractures (xCMT ¼ xTL for all
iterations).

Results for this test (Fig. 10) show that the true secondmoments
are always underestimated when using the mean trace lengths, as
in the case of the circular window method. At the same time, the
linear scan-line method, in general, better approaches the true
values of second moments, particularly as the sampling sizes in-
crease. However, there are also many cases where this technique
overestimates the true value and it is not possible to predict when
the scan-line method will over- or under-estimate the true value.
This is clearly reflected when plotting the average errors e as ab-
solute values e between the model (i.e. if we were able to measure
all the fracture in a specific area) and the used sub-sampling
techniques e linear scan-line and circular window, respectively
(Fig. 11). Over the range of sub-sampling percentages, the linear
scan-line technique shows a greater variability with bigger error for
small sub-samples, while the average errors for the circular
Fig. 10. Plots showing the results of second moments calculated using as inputs (1) synt
‘TraceLength’), and (2) mean trace-lengths calculated from small sub-sets (¼ circular windo
simulation (100 repetitions), and sub-sampling consequently increasing proportion of an arr
are labeled as ‘Model’). The plots from (a) to (d) show the result for increasing sub-sampling
example shows the simulation using log-normally distributed fracture trace lengths.
window method are constant for all percentages of sub-sampling.
Considering that in the real case scenario a geologist does not

know a priori which is the relative percentage of fracture popula-
tion forming a sub-sample the circular window strategy applied in
this study is the only one which is invariant relative to the un-
certainties related to the sub-sampling proportions.
5.2. Truncation, censoring

Directly linked to the previous discussion there follows another
limitationwhen dealing with data collected directly from outcrops;
the sparseness of natural data, in turn due to the intrinsic size limits
of outcrops. These common issues result in attribute datasets that
rarely extend over the range of two orders of magnitude. Such
limited intervals of values may produce inaccurate representations
of the properties of a fracture network, especially if there is an
interest in building mechanical or flow models related to it.
Although previous efforts have been made for treating the data
statistically to extrapolate and extend the range of fracture attri-
butes, until now data fitting has mostly relied on graphical tools or
regression methods, rather than using formal mathematical tools,
yielding non-accurate parameter estimations.

In this work, we have shown that it is possible to overcome this
limitation by applying Maximum Likelihood Estimators to outcrop
fracture datasets. MLEs are shown to be more powerful and reliable
tools, because they suffer neither subjective biases, as is the case of
graphical tools, nor biases related to the precision of the parameter
estimation, as verified for least-squares linear regression method
(Clark et al., 1999). The application of MLEs can have important
consequences especially when we aim to predict the tendency of
fracture attributes towards smaller and larger scales than the
observed, in order to build better e i.e. more consistent e models
hetic fracture trace-length single values e representing an ideal scan-line (labeled as
ws) of the length array (labeled as ‘CMeanTrace’). This is done through a Monte Carlo
ay of synthetic trace lengths, representing the true population (whose second moments
percentage, from 5% up to 75% of the original population, respectively. In particular, this



Fig. 11. Plot of the resulting second moment average errors - as absolute values -, between the model (if we were able to measure all the fracture in a certain area) and the used sub-
sampling techniques e linear scan-line and circular window, respectively. Each plot shows the variability for different sub-sampling percentages, from 1% to 75% of the total fracture
population, for different distributions of fracture trace lengths.
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based on outcrop observations. As discussed by Gale et al. (2014),
the importance of inferring and correctly extrapolating the pres-
ence of microfracture networks (fractures which can extend below
the resolution of 30 mm and which are unlikely to be captured even
in thin sections) can have crucial repercussions; they can influence
values of seismic anisotropy and also be responsible for changes in
fluid production from low-permeability rock masses, such as shale
(Gale et al., 2014). As shown in Figs. 1e2 and Table 2, both the
precision and the reliability of MLEs are undoubtedly higher
compared to LSEs.

In the cases presented, the outcropping network of fractures
shows a log-normal distribution of trace lengths and apertures
(Figs. 5 and 6). In particular, trace lengths are distributed about a
central value that lies at the lower limit of the distribution; in other
words, we have observed high frequencies for short fractures and
relatively few long fractures. This implies that the fracture system
in the study area is scale-limited (Odling et al., 1999). Such systems
are typical for rock sequences with strongly developed layers, as for
the biosiliceous mudstones cropping out in the studied area.

The distribution of fracture apertures also tends to be log-
normal, which is consistent with other studies (Oda, 1985;
Bonnet et al., 2001 and references therein). If a log-normal distri-
bution of fracture apertures exists, then it can be related to me-
chanical and stratigraphic layering which influence the
propagation and thickening of fractures.

When fitting a power-law function to the dataset, our MAT-
LAB™ functions (Healy et al., 2016) can explicitly take into account
the existence of a lower limit, xmin, that represents the minimum
value until which a power-law behaviour applies. Specifically, for
fracture attribute analysis, this minimumvalue should be chosen as
the threshold above which the data might have been affected by
censoring; in such a case, only the ‘tail’ of the distribution is ana-
lysed (truncated power-law). If we apply a threshold to the fracture
length data, the probability of an underlying power-law
distribution increases to 94.6% (with estimated parameters ba ¼ 3:0
and bxmin ¼ 0:10 m) and 92.2% (with estimated parameters ba ¼ 2:7
and bxmin ¼ 0:13 m), respectively for 4 Mile Beach and Panther
Beach area, when 20% of the small lengths measures are excluded
(Figs. 5e and 6e). However, for our case study, we are rather
confident in using the whole dataset as it is based on the mean
fracture length as estimated with the Circular Estimator Method
(Rohrbaugh et al., 2013), and not on measurements of single frac-
ture lengths. In the case of apertures, we observe that if an upper
cut-off is applied (in this case 20%) excluding some of the smaller
values, the probability of a power-law distribution is increased to
99.3% for 4 Mile Beach aperture dataset (Fig. 5f), and to 94.5% for
the Panther Beach apertures (Fig. 6f); respectively with ba ¼ 3:2
and bxmin ¼ 0:0027, and ba ¼ 3:0 and bxmin ¼ 7� 10�4 m.

Excluding the case of apertures in 4 Mile Beach (Fig. 5f), even
applying a cut-off to our data the K-S tests always return smaller
probability values for power-law distributions compared with log-
normal distributions (unless we increase the cut-off to higher
percentages, e.g. 40%). Log-normal remains the best fitting proba-
bility distribution even for cut data. We also note that when cutting
the data, the power-law fit returns a value of ba � 3:0, which is
almost never observed in power-law distribution for natural phe-
nomena (Newman, 2005). Therefore, we prefer not to apply any
cut-off to our datasets.
5.3. Other limitations

A comprehensive overview of all the anisotropic permeability
values obtained is shown in Table 3. These permeability predictions
assume that fracturing generates all permeability and that the rock
between the fractures is impermeable. The permeability estimates
reported here do not consider the possible in-situ stresses, as well
any effect that can be induced by depth. Therefore, they refer to



Table 3
Summary of the directional permeability values for the 2D meshes built using the parameters estimated using the MLEs and LSEs.

Method Mean Length (m) Mean Aperture (m) Mesh kii (m2)

MLE 4 Mile Beach 0:14m 4:0� 10�3m ½1:5 1:3� � 10�9

LSE 4 Mile Beach 0:37m 2:4� 10�2m ½7:9 4:2� � 10�6

MLE Panther Beach 0:2m 1:0� 10�3m ½1:6 1:1� � 10�9

LSE Panther Beach 0:5m 1:2� 10�5m ½9:4 6:8� � 10�16
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possible fluid flow at surface levels.
Although we improved the statistical models by using MLEs, a

lack of agreement between natural fracture networks and 2D
meshes exists. The reasons for these limitations have been clearly
explained by Manzocchi (2002) and are related to computational
limitations in reproducing the natural fracture spatial organisation.
For synthetically generated fractures, most of the connectivity is
achieved through fracture trace intersections (an ‘X’ connection
geometry), and the two ends of each line usually terminate as
isolated (‘I’) fracture trace tips. Differently, for opening-mode
fracture systems, many fractures terminate as abutments against
other fractures to form connections with a ‘Y’ (or ‘T’) geometry.
Connectivity in natural fracture systems is therefore achieved
through a combination of fracture intersections (‘X’-nodes) and
abutments or splays (‘Y’-nodes); and a high incidence of ‘Y’-nodes
results in a low incidence of isolated ‘I’ fracture tips. A ‘Y’-node is
highly unlikely to form by chance in a random continuum system
such as a fracture mesh, so only ‘I’-nodes and ‘X’-nodes are present
in the network. So far, we have not reproduced clustering of frac-
tures to form fracture corridors. It is possible to overcome this issue,
for example, using non-linear (non-random) Poisson distributions
for positioning fracture centroids in the simulated space. Further
work is planned to address these issues.
6. Summary and conclusions

The combination ofMaximum Likelihood Estimators (MLEs) and
Kolmogorov-Smirnoff test (K-S) provides a powerful and reliable
statistical tool for estimating the parameters governing the distri-
bution of fracture attribute populations. We have implemented the
analysis with a set of MATLAB™ functions which are integrated into
FracPaQ (Healy et al., 2016).

We have provided examples of MLE performance by analysing
the statistical distribution of fracture attributes collected on two
outcrops in the Santa Cruz area (USA). Using the best statistical
distribution for the fracture attributes we generated 2D fracture
meshes, containing a fracture network with the same statistical
parameters of those measured on outcrop. Finally, we estimated
the principal values of the permeability tensor of the simulated
fracture networks, following Oda's tensorial approach. Our results
were compared to those obtained using the least-squares regres-
sion method, demonstrating the validity and robustness of our
analytical method.

The application of Maximum Likelihood Estimators allowed us
to:

1 Individuate the best statistical distribution for fracture attri-
butes measured on outcrop e specifically, length and aperture;

2 Use the calculated scaling parameter to generate synthetic
fracture networks, which by design are more likely to resemble
the distribution and spatial organisation observed on outcrop;

3 Employ the derived distributions for a basic 2D estimation of the
bulk permeability tensor, yielding consistent values of aniso-
tropic permeability for highly fractured rock masses, such as the
studied areas.
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Appendix A

Generating synthetic data set

We created the two synthetic data sets using the equations
given in Table 1 for a log-normal distribution with m ¼ 0:3 and s ¼
2 and a power-law distribution with a ¼ 2:5. One hundred values
were randomly generatedwith the condition x � xmin, where xmin is
the minimum value for which power-law behaviour applies to the
data. We use the same minimum value for the log-normal only for
illustration purposes.

Appendix B

The MATLAB™ functions using the Maximum Likelihood Esti-
mator described in this work, together with the whole suite of
FracPaQ scripts are available and free to download from the
following links:

https://uk.mathworks.com/matlabcentral/fileexchange/58860-
davehealy-aberdeen-fracpaq.

http://davehealy-aberdeen.github.io/FracPaQ/
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