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Abstract

This paper introduces a new approach to topology optimization where the
structural boundary is defined by the intersection of an implicit signed-distance
function and a cutting surface. The cutting surface is discretized using finite
element shape-function polynomials and the nodal values become the design
variables during optimization. Thus, the design parameterization is separated
from the analysis discretization, which enables a reduction in the number
of design variables, compared with methods that use element-wise variables.
The proposed method can obtain solutions with smooth boundaries and the
parameterization allows solution by standard optimization methods. Several
2D and 3D examples are used to demonstrate the effectiveness of the method,
including minimization of compliance and complaint mechanism problems. The
results show that the method can obtain good solutions to well-known problems
with smooth, clearly defined boundaries and that this can be achieved using
significantly fewer design variables compared with element-based methods.

Keywords: Topology optimization, implicit function, mathematical
programming.

1. Introduction

Structural topology optimization aims to simultaneously optimize the size,
shape and connectivity, or topology, of a structure. It can obtain more efficient
designs, compared with only size or shape optimization, because the optimizer
is not constrained by a predetermined layout, which is often a key factor
influencing structural performance.

Several approaches have been developed to solve topology optimization
problems, which have been successfully applied to many applications [1, 2]. The
two most popular approaches are those based on element-wise variables, such
as SIMP (Solid Isotropic Material with Penalization) and ESO (Evolutionary
Structural Optimization), and those that utilize an implicit function to represent
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the boundary, such as level-set and phase field methods. Both the element based
and implicit function based approaches normally require gradient or sensitivity
information to efficiently drive the solution towards an optimum. For most
element density-based methods, the derivative of the objective and constraint
functions with respect to element densities are required [1] and for some implicit
function approaches, shape and possibly topological derivatives are required
[3]. The use of gradient information allows for efficient solution using gradient
based optimization approaches. Therefore, most current topology optimization
methods are well suited to efficiently solve problems where gradient information
is easily and efficiently obtained. However, issues can arise when gradients are
either impossible to compute (due to a discontinuous or noisy design space),
difficult to compute (due to complex multidisciplinary interaction) or expensive
to compute (for example, due to time dependent functions).

Several techniques have been developed to overcome these difficulties.
One solution to handle a non-differentiable function is to replace it with a
smooth, differentiable approximation. A classic example is the maximum stress
function, which can be reformulated using a constraint aggregation approach
[4]. However, this technique is problem dependent and may not work for all
classes of problem, for example crash or impact scenarios involving contact and
plasticity [5]. For problems with difficult to obtain derivatives, finite differences
[6] or automatic differentiation [7] can be used. However, these approaches
can be computationally expensive because the number of design variables in
topology optimization is often high (typically in the order of 105 or 106 for
3D problems). A semi-analytical approach can be used for some problems,
where the derivative is analytically derived, but finite differences are used to
compute part of the derivative, such as the derivative of the system matrices
with respect to the design variables [8]. When derivatives are expensive to
compute, a simplification can be used that assumes the expensive part of the
derivative is zero. This approach is often used when the total derivative involves
one or more eigenvector derivatives, such as when eigenvector basis functions
are used to create a reduced order model in a flutter analysis [9]. The simplified
derivative is cheaper to compute, but is only an approximation, which may or
may not be accurate enough for good convergence.

The alternative approach to the techniques discussed above is to use an
optimizer that does not require gradients, such as a genetic algorithm or particle
swarm method. However, the required number of function evaluations for these
approaches often scales exponentially with the number of design variables,
resulting in an unacceptably large computational cost for current popular
topology optimization methods [10].

In summary, current techniques used to overcome difficulties in obtaining
derivatives in topology optimization are either problem dependent and may not
be effective for all classes of problem (e.g. smooth approximations), result in
approximate derivatives, or are expensive because the number of design variables
is often large (e.g. finite differencing, automatic differentiation and gradient-free
methods).

Therefore, one potential approach to address these difficulties is to formulate
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the topology optimization problem in a way that reduces the number of
design variables, compared with current popular methods. If the reduced
design space is then combined with techniques that reduce the analysis
computational cost (see for example [11, 12, 13]) the result may be a
computationally tractable approach for performing topology optimization using
finite differencing, automatic differentiation or even gradient-free optimization
methods. A recent demonstration of this idea was presented by Yoshimura et
al. [14] where topology optimization for a multi-objective thermal-fluid problem
was performed using a genetic algorithm, assisted by a Kriging surrogate model.
Another example was presented by Bujny et al [15], which used the beam
implicit function representation introduced by Guo et al [16] combined with
an evolutionary strategy to optimize a structure for an impact scenario. Both
these methods use a formulation based on a parameterized implicit function
to represent the structure. Reducing the number of design variables may also
benefit problems where gradients are easily obtained because faster convergence
and a better solution may be achieved by using an optimizer that uses second
order information [17].

The benefits of using a parameterized implicit function for topology
optimization are that the solutions have smooth boundaries, some numerical
artifacts associated with element based methods are avoided, such as
checkerboard patterns [3], problems can be solved using standard optimizers,
such as mathematical programming or gradient-free approaches, and finally
that the number of design variables can be reduced because the design
parameterization is decoupled from the analysis mesh. Some existing
implicit function parameterization methods include: radial basis functions [18],
geometric shapes [16], Fourier series [19] and finite element shape functions [20].
Also, projection methods offer similar features [21], as the solutions can have
smooth boundaries and the problem can be solved using standard optimizers.

The aim of this paper is to detail a new parameterized implicit function-
based topology optimization approach and investigate its numerical performance
with a particular focus on how much it can effectively reduce the number of
design variables. The new parameterization method was first introduced by the
author in a conference paper [22]. The idea is to combine a signed-distance
implicit function with a cutting surface. The cutting surface is parameterized
and the parameters become the design variables. In this paper, the new
method is presented, validated and investigated using problems where analytical
gradients are easily and cheaply computed and the problems are solved using an
efficient gradient based-optimizer. However, future work will address problems
where gradients are not so easily computed. The new method is introduced in
Section 2, numerical implementation issues are discussed in Section 3, numerical
investigations are presented in Section 4, followed by a discussion on the method
in Section 5 and conclusions in Section 6.
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2. Design representation and optimization

First, an initial design is chosen and mapped onto a design domain using an
implicit signed-distance function, where the boundary is the zero level-set and
a positive value indicates a point inside the structure, Figure 1. The structure
is then defined by the scalar value of an implicit function: φ(x) ≥ 0 x ∈ Ω,

φ(x) = 0 x ∈ Γ,
φ(x) < 0 x /∈ Ω,

(1)

where φ(x) is the implicit function, x is a point in the design domain (ΩD), Ω
and Γ are the structural domain and boundary, respectively.

(a) (b) 

(a) (b) 

(c) 

Figure 1: a) Original structure, b) Contours of the signed distance function.

Another way to interpret this representation of the structure is that
the boundary is the zero-level set of a higher dimensional implicit function.
Therefore, we can say that the boundary is the intersection of a plane (defined
by all points where φ = 0) and the implicit function surface in the higher
dimension. This is shown by the black line in Figure 2a for the 2D structure
in Figure 1. To change the position of the structural boundary we can fix the
position of the intersecting plane and change the implicit function, which is the
approach in most level-set topology optimization methods [3]. Alternatively, we
could change the position of the intersecting plane. This second approach is
demonstrated in Figure 2, where the intersecting plane has been moved (shown
in red), resulting in the structural boundary moving position, Figure 2b.

The aim of this paper is to create a topology optimization method that
exploits the moving intersecting plane mechanism for changing the position and
connectivity of the structural boundary. The position of a plane in 3D can
be described by 3 variables and we could proceed to develop an optimization
method for 2D structures that uses just 3 variables. However, the design space
would be very limited and therefore this approach is not practical.

To provide more design freedom, the intersecting plane is replaced by a
cutting surface that is defined in the higher dimension. Therefore, the method
introduced in this paper uses two scalar valued functions: the implicit signed-
distance function of the initial structure, α(x), and the cutting surface, β(x, b),
where b is a vector of design parameters that define the cutting surface. The
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(a) (b)

(a) (b)

Figure 2: a) Implicit function surface with zero level-set contour (black) and new position of
the intersecting plane (red), b) Resulting change in the structural boundary.

boundary of the structure is then defined by the set of points where the
value of the signed-distance function equals the value of the cutting surface.
Alternatively, the structural boundary is defined as the zero level-set of the
implicit scalar-valued function that is the sum of the signed-distance and cutting
surface functions.

Thus, the definition of φ(x) in Eq. (1) can be written as:

φ(x) = α(x)− β(x, b) (2)

There are several possible methods to parameterize the cutting surface, such
as radial basis functions, polynomials or spline functions. In this paper, the
cutting surface is parameterized using finite element shape functions, which is
detailed in Section 3.1.

During optimization, the signed-distance function remains fixed and the
structure boundary changes position (and possibly connectivity) as the
parameters of the cutting surface change. However, the design space is then
limited by the current signed-distance function. Therefore, once an optimal
cutting surface has been found for the current signed-distance function, a new
signed-distance function is generated from the boundary of the current structure.
The optimal cutting surface for the new signed-distance function is then found.
This leads to an optimization method with an inner and outer loop. The aim of
inner loop is to find the optimal cutting surface for the current signed-distance
function. The outer loop then generates a new signed-distance function from
the new structural boundary (as defined by the old signed-distance function and
optimal cutting surface). At the start of the inner loop, the cutting surface is
initialized as: β(x, b) = 0 (identical to the zero level-set), so that the structure
boundary is the same as the optimum found by the previous inner loop (or
initial structure). A convergence proof for this approach is not presented.
However, the results of the numerical examples (Section 4) demonstrate that
the reinitialization does not cause convergence problems.

The final aspect of this initial conceptual presentation of the proposed
method is to link the implicit structure description to a computational analysis
tool, so that the objective and constraint functions can be evaluated for a given
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set of design variables, b. There are several approaches in the literature to
generate finite element (FE) matrices from an implicit function, such as the
ersatz material (or density) method [23], smoothed Heaviside function [24],
eXtended finite element method [25] or re-meshing to generate a boundary fitted
mesh [26]. In this paper the inner-loop optimization problem is solved using
a mathematical programming method, thus it is desirable to use a method
that enables an explicit link between the design variables and objective and
constraint functions, so that analytical gradients can be computed. Therefore,
the smoothed Heaviside function approach proposed by Wang et al [24] is used
in this paper, although, in general, any method that can generate FE matrices
from an implicit function can be used with the cutting surface parameterization
introduced in this work. Further details on the numerical implementation are
discussed in Section 3.2.

3. Numerical implementation

3.1. Cutting surface parameterization

The proposed method uses two meshes that cover the design domain: one
to discretize the cutting surface (cutting surface mesh) and one to perform the
finite element analysis (analysis mesh), as shown in Figure 3.

(a) (b) (c) 

Figure 3: a) Analysis mesh using 200 Q4 elements, b) Cutting surface mesh using eight (2×4)
Q9 elements (45 design variables), c) Cutting surface mesh using two Q9 elements (15 design
variables).

The value of β(x, b) is defined at nodes in the cutting surface mesh and
interpolated using polynomial shape functions. The nodal values of β(x, b) are
then the design variables b. The implicit function, φ(x), and signed-distance
function, α(x) , are discretized on the analysis mesh. Values of φ(x) at analysis
element integration points are obtained by interpolation using the analysis
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element shape functions. Equation (2) can be written in terms of the discretized
variables:

φ(b) = α−A · b (3)

where φ and α are vectors of the discretized implicit and signed-distance
functions, respectively, and A is a coefficient matrix that maps the cutting
surface values to the nodes of the analysis mesh. The matrix A is constant
during optimization and is only computed once.

Typically, the analysis and cutting surface meshes are different, thus the
analysis discretization is decoupled from the design parameterization, which
enables a reduction in the number of design variables, compared with element-
based approaches. In developing the new method, three different element types
were investigated for the discretization of the cutting surface in 2D. These
were 4 node bilinear elements (Q4), 8 node quadratic serendipity elements
(Q8) and second order polynomial elements with 9 nodes (Q9). Several
benchmark problems were solved using each element type and the general
trend observed was that solutions obtained using Q9 elements achieve a better
objective function value in fewer iterations, compared with the other two element
types. Compared with the Q4 element, the Q9 element has more flexibility in
representing different shapes for the same number of design variables, due to the
extra polynomial terms. The Q8 element did not perform satisfactorily, because
the shape functions allow a non-monotonic link between the design variables, b
and implicit function φ, which disrupts and slows down convergence. This is
demonstrated by the example in Figure 4 where the problem failed to converge
in 400 iterations when using Q8 elements, whereas less than 200 iterations were
required for convergence when using Q4 or Q9 elements.

(a) (b)

(c) (d)

Shows*effect*of*cutting*surf*element*type*(Mich r9)

Q4 158 1158
Q8 400 1165
Q9 187 1141

Figure 4: Michell structure. a) Initial design, loading and boundary conditions. Solution
using: b) Q4 elements (158 iterations), c) Q8 elements (400 iterations) and d) Q9 elements
(187 iterations).

In this paper, all 2D examples use Q4 and Q9 elements to discretize the
analysis mesh and cutting surface, respectively, Figure 3. In 2D, if one cutting
surface Q9 element is used for every four Q4 analysis elements then the nodes
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of the two meshes will be coincident, A becomes the identity matrix and the
method resembles one using nodal design variables. This scenario should be
avoided, as it is known that using nodal implicit function values directly for
optimization results in an ill-conditioned problem [20].

Finally, the signed-distance function is computed before the start of each
inner loop using the fast marching method [27].

3.2. Smoothed Heaviside function

The smoothed Heaviside approach is used to generate FE matrices from
the nodal implicit function values. In practice this is achieved by multiplying
the material properties at each element integration point by the value of the
smoothed Heaviside function. For example the numerical integration of an
element stiffness matrix is:

Ke =

Ng∑
i=1

H(φ(xi))B
T
i EiBiwi (4)

where Ke is the element stiffness matrix, Ng is the number of integration points,
Bi, Ei and wi are the strain displacement matrix, material stiffness matrix and
integral weight at point i, respectively, and H(φ(xi)) is a smoothed Heaviside
function. In this work a polynomial form of H(φ) is used [24]:

H(φ) =


ρmin φ < −∆,
3(1−ρmin)

4 ( φ∆ −
φ3

3∆3 ) + (1+ρmin)
2 −∆ ≤ φ < ∆,

1 ∆ ≤ φ,
(5)

where ∆ is the smoothing length of the approximation and ρmin is a parameter
that defines the stiffness of the void region, in a similar way to the minimum
density value in an element-based topology optimization method.

One of the benefits of using an implicit function for topology optimization,
compared with element-based methods, is that the solution has smooth, well-
defined boundaries. However, this is partially lost when using a smoothed
Heaviside function, as the boundary becomes effectively blurred over the
smoothing length [3]. To counter this, two strategies are proposed. Firstly
a small smoothing length is used throughout the optimization, ideally smaller
than the element edge length in the analysis mesh. However, this strategy may
cause convergence problems with some examples, especially those that have a
small volume ratio. Thus, a second strategy is proposed where the optimization
starts with a large smoothing length that is then halved each time the outer
loop converges. The optimization continues until a converged solution using a
lower limit of the smoothing length is obtained. This strategy is similar to the
beta-continuation techniques used in Heaviside projection schemes [21, 28].

8



3.3. Inner loop optimization

The inner loop optimization problem can be stated as:

min
b

f(φ(b))

s.t. gi(φ(b)) ≤ 0 , i = 1 . . .m
bmin ≤ b ≤ bmax

(6)

where f(φ(b)) is the objective function, gi(φ(b)) the constraint functions, m the
total number of constraints, bmin and bmax are the side limits on the design
variables.

The solution to the inner loop problem is affected by the choice of optimizer,
design variable side limits and convergence criteria. In this paper the inner loop
problem is solved using the method of moving asymptotes, as implemented in
the package NLOPT [29]. This optimizer was chosen as it has worked well with
other topology optimization methods [1, 18, 21]. The side limits are defined from
the maximum and minimum signed-distance values of the current structure,
with considerations for the boundary of the design domain, ΓD , and fixed,
non-designable regions within the design domain, Ωfixed. First, a parameter is
obtained from the discrete values of the signed-distance function:

α̂ = max{0.5×min{max{α},−min{α}}, 2h} (7)

where h is the analysis mesh grid spacing.
The side limits for a design variable are then defined as:

bi,min =

{
0 if bi ∈ Ωfixed
−α̂ else

bi,max =

{
−αi if bi ∈ ΓD
α̂ else

(8)

Three convergence criteria, as defined by the NLOPT package, are used
for the inner loop: the maximum number of iterations, the relative change of
the objective function and relative change of the design variables. The relative
change criteria are both set to 10−3 and the maximum number of iterations to
10. The inner loop stops when any of these criteria are met. The criteria are
intentionally slack, as this reduces the number of inner loop iterations spent
fine tuning the structure, whereas quicker progress is often made by obtaining
an approximate solution and generating a new signed-distance function for the
next inner loop.

4. Numerical investigations

Four classic benchmark problems are used for the initial numerical
investigation of the method introduced in this paper. These are shown in Figure
5, where the objective is to minimize compliance, with an upper limit on the
total material volume. The grey areas for the Michell structures show fixed
regions within the design domain. The volume constraint for all problems is set
to 40% of the design domain, except for cantilever 2:1, where the constraint is
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50%. For all examples, the material properties are Young’s modulus 1.0 and
Poisson’s ratio 0.3, and the load magnitude is 10. Unless otherwise stated,
the parameters for the smoothed Heaviside, Eq. (5), are: ∆ = 0.5h and
ρmin = 10−6.

Cantilever*1.6*:*1
Analysis*mesh:*128*x*80

(a) (b)

(c)

Michell – clamped*each*end
Analysis*mesh:*160*x*80

Cantilever*2*:*1
Analysis*mesh:*160*x*80

(d)

Michell = simply*supported
Analysis*mesh:*160*x*80

Figure 5: 2D examples. a) Cantilever 1.6:1, b) Cantilever 2:1, c) Clamped Michell structure,
d) Simply supported Michell structure.

4.1. Parameterization approach

In this section an example is used to demonstrate the effect of using (or
not using) the signed-distance function in the parameterization and the effect
of the full-resolution parameterization (i.e. one design variable per analysis
mesh node). The signed-distance function can easily be eliminated from the
parameterization by setting α = 0 in Eq.(2) throughout the optimization. In
this case the algorithm terminates at the first inner loop convergence, as no
signed-distance function reinitialization is required, and the maximum number
of inner loop iterations is increased to 300. The clamped Michell problem,
Figure 5c, is solved four times using different parameterizations of the implicit
function: α = 0 with full-resolution, α = 0 with a 16 × 8 cutting surface mesh
discretization, α = signed distance with full-resolution and α = signed distance
with a 16× 8 cutting surface mesh discretization. The initial design is the same
as Figure 4a.

The results are shown in Figure 6, which demonstrate that unsatisfactory
solutions are obtained when the signed-distance function is omitted from the
parameterization, as a significant amount of intermediate ”grey” material is
present. This occurs for both the full and reduced-resolution parameterizations.
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Therefore, some penalization or regularization is required to obtain discrete 0-1
solutions. From the results we can see that the inclusion of the signed-distance
function in the parameterization provides some regularization, as discrete 0-1
solutions are obtained without grey areas. This demonstrates the important
role that the signed-distance function has in the direct parameterization of
the implicit function presented in this paper. Furthermore, when using the
full-resolution parameterization (with signed-distance function), a significant
amount of checkerboard type numerical artifacts appear in the solution. This is
due to the ill-conditioning of this full-resolution parameterization, which was
also observed in [20]. Therefore, the full-resolution solution is not suitable
to use as a benchmark to compare with solutions using a reduced-resolution
parameterization.

(a) (b)

(c) (d)

Shows*effect*of*cutting*surf*param (Mich r9)

(e) (f)

0.5

-0.5

0.0

!

Figure 6: Effect of parameterization approach. a-b) α = 0, full-resolution, c-d) α = 0, 16× 8
cutting surface mesh, e) α = signed distance, full-resolution, f) α = signed distance, 16 × 8
cutting surface mesh.

4.2. Mesh dependency

The effect of changing the analysis mesh discretization, for a fixed cutting
surface mesh, is now investigated. The cantilever 2:1 problem, Figure 5b, is
solved with a cutting surface mesh of 16×8 elements and three different analysis
meshes: 80 × 40, 160 × 80 and 320 × 160 elements. All problems use the same
smoothing length for the Heaviside, calculated as half an element edge length
for the 160× 80 analysis mesh. The initial design is the same as Figure 4a.

The results are shown in Figure 7. The solutions using the 160 × 80 and
320 × 160 element analysis meshes are almost identical, which demonstrates a
degree of mesh independency. However, the solution using the 80× 40 analysis
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mesh has a simpler topology. This is because the φ field is discretized on the
nodes of the analysis mesh. Thus, as the analysis mesh becomes coarser, the
minimum length of member that can be represented increases and thin members
disappear from the solution. Also, there are more numerical artifacts in the
80×40 elements solutions. Both mesh independency and occurrence of numerical
artifacts could be improved by adding some rigorous length scale control to the
proposed method.

(a) (b) (c)

Shows*effect*of*mesh*dependency*(cant*r9,*16*x*8)

Figure 7: Mesh dependency. Cantilever 2:1 solutions using a cutting surface mesh of 16 × 8
elements and an analysis mesh of: a) 80 × 40, b) 160 × 80 and 320 × 160 elements.

4.3. Initial design

In this section the effect of the initial design is investigated using the
cantilever 1.6:1 problem. The results for four different initial designs are shown
in Figure 8, which shows that the initial design does effect the solution. The
results also show that this method can sometimes create new holes during
optimization, as the solutions with one and three initial internal holes end up
with three and five internal holes respectively. However, for 2D problems, it was
observed that generally the best solutions were found using an initial design that
contained many internal holes. This approach is also used in several other level-
set methods [20, 23, 24].

4.4. Reducing the number of design variables.

The effect of reducing the number of design variables is now investigated by
solving all four benchmark problems with different discretizations of the cutting
surface. The initial design for all examples is the same as in Figure 4a, except
for the cantilever 1.6:1 problem, where the initial design with the most holes
from Figure 8 is used. The results are summarized in Table 1 and the optimized
designs are shown in Figures 9 to 12. In general, the shapes and topologies of the
solutions agree well with the known analytical solutions and solutions obtained
using other methods [1, 3]. Table 1 shows that, for all examples, compliance
increases as the number of design variables decreases. Thus, the reduction in
design space results in a worse value of the objective function. However, for
most of these examples, the reduction is relatively small compared with the
reduction in the number of design variables. For the two cantilever examples,
reducing the number of design variables by a factor of four results in an increase
in compliance of between 1% and 4%. For the two Michell structure examples,
this is also true when comparing solutions using 2145 and 561 variables, but a
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Shows*effect*of*initial*design*(scant*np5)

Initial design Solution Compliance Iterations

4993 222

4429 203

4348 131

4331 85

Figure 8: Effect of initial design on the solution of the cantilever 1.6:1 problem, using a
cutting surface mesh of 25 × 16 elements.
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larger increase of between 9% and 13% is observed comparing solutions using
561 and 153 variables.

In this paper the derivatives are computed analytically and the most
expensive computational procedure in each iteration is the FE analysis. Thus,
in this case, the number of iterations is approximately linearly proportional to
computational time. From the results in Table 1 it is observed that, generally,
when the number of design variables is reduced, more iterations are required
to reach convergence. The exceptions are the cantilever 2:1 and clamped
boundary Michell problems that use the least number of design variables, which
take fewer iterations. This is caused by early termination due to an over-
reduction of the design space. However, the result of the simply supported
Michell problem for the least number of design variables demonstrates that
convergence failure can also occur when the design space is reduced too much.
Excluding this failed convergence result, the maximum increase in iterations is
approximately 50% when reducing the number of design variables by a quarter.
When derivatives are cheap to compute (as they are here), this represents an
increase in the computational time with a reduction in the number of design
variables. However, if finite differences were used to compute derivatives, then
computational time would reduce. For example, if finite differences were used
for the cantilever 2:1 problem, 160,950 FE analyses would be required when
using 2145 design variables, but only 62,382 are required when using 561 design
variables (a reduction of 61%).

Table 1: Summary of results for 2D minimization of compliance examples.

Example Cutting surface No. variables Compliance Iterations
discretization

25× 16 1683 4331 85
Cantilever 1.6:1 12× 8 425 4462 110

6× 4 117 4614 122
32× 16 2145 5969 75

Cantilever 2:1 16× 8 561 6049 111
8× 4 153 6136 79

Clamped 32× 16 2145 1109 178
boundary 16× 8 561 1141 187
Michell 8× 4 153 1291 69
Simply 32× 16 2145 1618 155

supported 16× 8 561 1675 189
Michell 8× 4 153 1829 400

Convergence histories for the Cantilever 2:1 problem are given in Figure
13. This shows that convergence is reasonably smooth, with only a few minor
oscillations. The evolution of α, β and the structure (φ ≥ 0) using 16×8 cutting
surface elements is shown in Figure 14. This illustrates that, for this problem,
the topology of the solution is reached in around 30 iterations and the remaining
iterations are mainly used to optimize the shape of the structure.
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(a) (b) (c)

(a) (b) (c)

Figure 9: Cantilever 1.6:1 compliance solutions, with cutting surface discretizations: a) 25×16,
b) 12 × 8, and c) 6 × 4 elements.

(a) (b) (c)

(a) (b) (c)

Figure 10: Cantilever 2:1 compliance solutions, with cutting surface discretizations: a) 32×16,
b) 16 × 8, and c) 8 × 4 elements.

(a) (b) (c)

(a) (b) (c)
Figure 11: Clamped Michell compliance solutions, with cutting surface discretizations: a)
32 × 16, b) 16 × 8, and c) 8 × 4 elements.

(a) (b) (c)

(a) (b) (c)

Figure 12: Simply supported Michell compliance solutions, with cutting surface
discretizations: a) 32 × 16, b) 16 × 8, and c) 8 × 4 elements.
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(a)

(b)

(c)

Figure 13: Cantilever 2:1 convergence history for: a) 32 × 16, b) 16 × 8, and c) 8 × 4 cutting
surface elements.
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Figure 14: Evolution of Cantilever 2:1 using 16 × 8 cutting surface elements.

These examples demonstrate that generally the objective will increase (get
worse) as the number of variables decreases and that there is a limit to how
much the design space can be reduced until the objective value increases
significantly. Finally, good solutions were obtained for all examples using a
number of design variables approximately 23 times fewer than the number of
analysis mesh elements. This represents a significant reduction in the number
of design variables compared with methods using element-wise design variables.

The four benchmark examples were also solved for the complementary
problem: minimization of volume, subject to an upper limit on compliance. The
proposed method yielded feasible solutions for each problem and similar trends
are observed: the objective value increases as the number of design variables
decreases and there is a limit to how far the design space can be reduced until the
objective value increases significantly. Thus, the results for volume minimization
are omitted for brevity.

4.5. 3D example

It is now demonstrated that the proposed method is easily extended to 3D.
In 3D, the cutting surface visual analogy cannot be made, but the mathematical
description is identical to the 2D case, as Eqs. (2) and (3) remain valid. Second
order elements with 27 nodes are used to discretize the ”cutting surface” in 3D.
All other numerical implementation details and parameters remain the same.
The new method in 3D is demonstrated using an example from [30], shown in
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Figure 15. The grey zones show areas fixed in the vertical direction and, due to
symmetry, only one quarter of the design domain is modeled using 24× 24× 48
eight-node trilinear elements for the analysis mesh. The application of the
symmetry conditions is sufficient to prevent a singular stiffness matrix. The
material properties are Young’s modulus 1.0 and Poisson’s ratio 0.3, and the
total load magnitude on the whole model is 256.0. The initial design is the
domain completely filled with material.

For this 3D problem it was not found necessary to start with internal holes
to obtain a good optimal solution. This is because the behavior of level-set
methods is different in 2D and 3D. In 3D, new holes, or non-simply connected
shapes can easily be created even when the initial design has no internal holes
[23].

The parameters for the smoothed Heaviside are the same as for the 2D
examples above.

The example is solved for the minimization of compliance problem, with a
volume constraint of 20%. Again, the effect of changing the number of design
variables is investigated by solving the problem with different discretization of
the ”cutting surface”. The results are summarized in Table 1 and the optimized
designs are shown in Figure 16. This shows that again the objective value
increases as the number of design variables decreases and that there is a limit
to how much the design space can be reduced until the objective increases
significantly. For this example, compliance increases by 5.3% from using 4225
to 225 design variables. However, the compliance increase is 37% when going
from 225 to 27 design variables. It is also observed that the optimized designs for
the three solutions using the most design variables are similar to the solution
obtained using an element density-based method [30]. However, the solution
using just 27 variables does not have the central lower plate that is important
for increasing the stiffness of the stool.

In this paper derivatives are cheap to compute and again an increase in
iterations equals a proportional increase in the computational time. However,
if finite differences were used to compute derivatives then computational time
would reduce with a reduction in the number of design variables, as the required
number of FE analyses for convergence would be: 587,414 (4225 variables),
158,862 (637 variables) and 53,110 (225 variables).

Table 2: Summary of results for 3D stool example.

Cutting surface discretization No. variables Compliance Iterations
on the quarter model

6× 6× 12 4225 1855 139
3× 3× 6 637 1892 249
2× 2× 4 225 1954 235
1× 1× 1 27 3089 131
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Figure 15: 3D stool example.

(a) (b)

(c) (d)

Figure 16: 3D stool compliance solutions, with cutting surface discretizations on the quarter
model of: a) 6 × 6 × 12, b) 3 × 3 × 6, c) 2 × 2 × 4, and d) 1 × 1 × 1 elements.
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4.6. Compliant mechanism examples

The new method is now used to solve two compliant mechanism problems
taken from [17]. The examples are an inverter, Figure 17a, and an amplifier
Figure 17b. The objective is to maximize the output displacement, subject
to a volume constraint equal to 20% of the design domain. For the inverter,
output displacement is defined positive in the opposite direction to the input
force and for the amplifier it is defined positive downward, for an input force
acting in the left direction. Symmetry is exploited for both examples and only
the lower half is modeled. The input force for both examples is 10, material
properties are Young’s modulus 1.0 and Poisson’s ratio 0.3 and other parameters
are summarized in Table 3. A continuation strategy is used to solve the
compliant mechanism problems, where the smoothing length is adapted during
optimization (as discussed in Section 3.2). The initial value is ∆ = 2h and the
lower limit is ∆ = 0.5h. A value of ρmin = 10−2 is chosen.

Table 3: Parameters for compliant mechanism examples.

Example kin kout h Analysis mesh
Inverter 0.001 1.0 0.5 160× 160

Amplifier 0.005 1.0 1.0 160× 80

Both problems are solved using two cutting surface mesh discretizations and
the results are shown in Figure 18, Figure 19 and Table 4. These solutions are
similar to those obtained by other methods [18, 31]. The two solutions obtained
for the inverter with different numbers of design variables are similar (with the
same topology), although the objective decreases by 10.3% when going from
4225 to 1089 design variables. However, the objective increase for the 4225
variable solution is partly obtained by exploiting the numerical discretization,
where a compliant hinge is created around one node in the analysis mesh [32].
It would be interesting to add minimum length scale control to the proposed
method to avoid this issue.

The solutions for the amplifier are also similar, although slightly more detail
and numerical artifacts are present near the output point for the design using
32 × 16 cutting surface elements. For this example, the objective decreases by
only 2.7% when reducing the number of design variables. These two compliant
mechanism examples demonstrate that the proposed method can be used to
solve problems beyond those involving just compliance and volume. Also, the
same trend of the objective function getting worse (decreasing in this case) with
a reduction in the number of design variables is observed.

Once again, we can calculate the required number of FE analyses if finite
differences were used to compute derivatives. This gives an estimate on the
reduction in computational cost when the design space is reduced and finite
differences are used. For the inverter, the number of FE analyses would reduce
from 798,714 to 184,210 (a 77% reduction). For the amplifier the reduction is
from 178,118 to 56,762, giving a potential 68% reduction in computational cost.

20



(a)

kin kout

(b)

kin

kout

Figure 17: Compliant mechanism examples: a) inverter, b) amplifier.

(b)(a)

Figure 18: Inverter solutions with cutting surface discretizations: a) 32 × 32 and b) 16 × 16
elements.

(b)(a)

Figure 19: Amplifier solutions with cutting surface discretizations: a) 32 × 16 and b) 16 × 8
elements.

Table 4: Summary of results for compliant mechanism examples.

Example Cutting surface No. variables Output Iterations
discretization displacement

Inverter 32× 32 4225 2.91 189
16× 16 1089 2.61 169

Amplifier 32× 16 2145 5.94 83
16× 8 561 5.78 101
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5. Discussion

The potential computational cost saving when using finite differences is
discussed for the examples shown in the previous section. It is demonstrated
that when the number of design variables is decreased a time saving of at least
60% can be expected. For problems solved using gradient-free methods, we
will assume that the number of function evaluations (FE analyses) required
for convergence follows an exponential growth function: m = a(1 + r)n, where
m is the number of evaluations, n is the number of design variables, r is the
growth rate and a is a constant. The ratio of function evaluations using two
different design parameterizations is then: m1/m2 = (1+r)(n1−n2). If r < 10−2

then m1/m2 ≈ exp[n1r(1 − n2/n1))]. Thus, if we know the growth rate, r,
(determined by the optimizer performance), and the number of design variables
in the original problem, n1, (e.g. the number of finite elements or nodes), then
we can calculate the ratio of function evaluations, m1/m2, for a given reduction
in the number of design variables, n1/n2. Figure 20 plots m1/m2 against r×n1

for different levels of design space reduction (n1/n2). Although the potential
computational cost reduction is dependent on the optimizer, it can be seen that
significant reductions are possible with the order of magnitude reduction in
design space reported in this paper. To illustrate this, lets assume the optimizer
has a growth rate of r = 10−5 and the original problem has n1 = 4× 105 design
variables, so r × n1 = 4. If we can reduce the number of variables by a similar
amount demonstrated by the method proposed in this paper, i.e. n1/n2 = 20,
then m1/m2 ≈ 45, representing about a 45 times reduction in the computational
cost. The values of r and n1 are arbitrarily chosen for illustration and will
depend on the optimizer and original problem design space. Also, the actual
computational time will still depend on the time for each function evaluation
and further reduction can be gained by combining design space reduction with
methods to improve analysis efficiency (see for example [11, 12, 13]).
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Figure 20: Potential computational cost reduction when using a gradient-free optimizer.
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It is observed that some solutions still contain a small amount of numerical
artifacts, such as small holes (e.g. Figure 11a) and single node hinges (Figure
18a). These occur due to the use of the smoothed Heaviside function to create
the FE matrices from the implicit function. The smoothing length creates small
areas of intermediate stiffness material, which the optimizer exploits to create
small areas of intermediate stiffness (seen as holes when φ ≥ 0 is plotted) and the
apparent single node hinge. These types of numerical artifacts can be eliminated
using methods for minimum and maximum length scale control. Thus, future
research will focus on developing a length scale control technique for the method
proposed in this paper.

It was noted in the introduction that there are other methods that can
potentially be used to reduce the number of design variables and produce
solutions with smooth boundaries. The spectral level-set method can produce
good solutions with very few design variables [19]. However, the global
nature of the parameterization means that local features cannot be easily
represented with a coarse design description [3]. The use of the signed-distance
function in the proposed method allows locals features to be included in the
parameterization, even with a coarse design space. When using a radial basis
function parameterization to solve a pipe bend fluid flow problem, Kreissl et
al. [33] obtained a reasonable solution using about 7.5 times fewer design
variables than nodes in the fluid analysis mesh. Results using fewer design
variables were not reported and the author is unaware of similar studies using
radial basis functions. Thus, no further comment or comparison is made.
The parameterization method using moving morphable geometric shapes (or
components) can produce good solutions using very few design variables [16].
However, the solution is dependent on the number and type of components used
for the parameterization, which has to be determined a priori.

The Heaviside projection method was investigated for potential design space
reduction by Guest and Smith Genut [28]. They compared two approaches:
static reduction, using a fixed number of design variables (which is the approach
in this paper) and an adaptive scheme that starts with a small number of
design variables that can increase or decrease during optimization. Some similar
results to those presented in this paper were found when using the static
scheme in that reducing the number of design variables usually leads to a worse
objective function and that there is a limit to how far the design space can be
reduced before the objective function becomes significantly worse. From the
2D compliance results presented in [28] this limit is approximately 10 times
fewer design variables than the number of analysis mesh elements or nodes.
The results using the adaptive scheme show a similar computational time to the
static scheme using 10 times fewer design variables. For similar 2D compliance
examples, the method proposed in this paper demonstrated a 23 times reduction
in the number of design variables and therefore performs better in this respect
than the Heaviside projection method. However, the potential computational
cost savings for problems with analytical derivatives are not significant. Thus,
it is important to discuss the potential performance of the method when using
a gradient-free optimizer.
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Guest and Smith Genut [28] also investigated the effect of reducing the
number of design variables when using a genetic algorithm. They found that,
for a fixed number of FE analyses, the Heaviside projection scheme with an
adaptive design variable field consistently produced better solutions compared
with element-based and full-resolution Heaviside projection parameterizations.
This is attributed to faster convergence when fewer design variables are used
and that the Heaviside projection produces more feasible solutions, compared
with the element-based parameterization. The proposed method in this paper
has similar qualities, in that the number of design variables can be significantly
reduced without significant loss in objective function and that the number of
infeasible solutions found (due to disconnected structure) may be small because
the underlying structure in the signed-distance function can promote a fully
connected, feasible structure. Thus, the proposed method is promising for use
with genetic algorithms and other gradient-free methods. However, this will be
investigated in detail in future work.

6. Conclusions

A new topology optimization method is proposed that uses an implicit
signed-distance function and cutting surface, where the structure boundary is
defined by their intersection. During optimization, the implicit function is fixed
and the cutting surface is modified to change the position and connectivity of
the boundary. The cutting surface is parameterized using finite element shape
functions and the nodal values become the design variables during optimization.
The analysis and cutting surface meshes are decoupled and the cutting surface
mesh uses fewer elements than the analysis mesh, thus reducing the number of
design variables compared with methods that use element-wise design variables.
In this paper, problems are solved using a gradient based optimizer, facilitated
by the use of a smoothed Heaviside function to generate finite element matrices
from the implicit function, although any method that can achieve this can also
be used with the cutting surface parameterization.

The performance of the method was investigated and it was found that
using serendipity type elements (Q8) for the cutting surface discretization was
unsatisfactory due to poor convergence and that using quadratic Q9 elements
generally gave better results than using linear Q4 elements. It was also observed
that the use of the signed-distance function in the parameterization provided
some regularization, as it eliminated large areas of intermediate stiffness material
and afforded a degree of mesh independency. The investigation also highlighted
that the full-resolution parameterizatation (one design variable per analysis
mesh node) produced solutions with a significant amount of checkerboard-type
numerical artifacts. Finally, it was shown that solutions are affected by the
initial design and it was recommended that an initial design with many holes is
used.

The effect of reducing the number of design variables was extensively
investigated using 2D and 3D minimization of compliance and 2D complaint
mechanism problems taken from the literature. In each case, feasible, solutions

24



with smooth boundaries were obtained that agree well with solutions obtained
using other methods. However, the reduction in design space could result
in rougher boundaries and some solutions still contained a small amount of
numerical artifacts, which could be eliminated by introducing length scale
control. It was observed that there is a limit to how far the number of design
variables can be reduced before the objective value becomes significantly worse.
Despite this, good solutions to all problems are obtained using significantly
fewer design variables compared with the number of analysis mesh elements,
which can provide a significant reduction in computational cost when using
finite differences or gradient-free methods.

Appendix A. Sensitivity calculation

This appendix details the sensitivity calculation for compliance. A
similar procedure can be used to calculate the sensitivity for other functions.
Compliance, C, can be written as:

C = uTKsu (A.1)

where u is the displacement vector and Ks is the global stiffness matrix:

Ks =

Ne∑
j=1

Ke,j (A.2)

where Ke,j is the jth element stiffness matrix, as defined by Eq. (4) and Ne
is the number of analysis mesh elements. It is well-known that compliance is
self-adjoint and the derivative with respect to a design variable bk is:

dC/dbk = uT
dKs

dbk
u = uT

( Ne∑
j=1

dKe,j

dbk

)
u (A.3)

where the derivative of the element stiffness matrix is:

dKe

dbk
=

Ng∑
i=1

(Bi
TEiBiwi)

dH

dφ(xi)

dφ(xi)

dbk
(A.4)

Using Eq. (3):
φ(xi) = N iφ = N i(α−A · b) (A.5)

where N i is the shape function interpolation vector that defines the value of φ
at integration point i from the nodal φ values. The derivative is:

dφ(xi)/dbk = −N i · ak (A.6)

where ak is the kth column in A. The derivative of the Heaviside function with
respect to φ(xi) is:

dH(φ)

dφ(xi)
=

{
3(1−ρmin)

4 ( 1
∆ −

φ(xi)
2

∆3 ) −∆ ≤ φ < ∆,
0 else

(A.7)
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Equations (A.6) and (A.7) are then substituted into Eq. (A.4), which is then
substituted into Eq. (A.3) to complete the calculation. Note that most of
the components of the sensitivity calculation remain constant throughout the
optimization and only Eq. (A.7) needs to be computed each iteration before
the substitutions into Eqs. (A.4) and (A.3).
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