
RESEARCH ARTICLE Open Access

Acute kidney injury as an independent risk
factor for unplanned 90-day hospital
readmissions
Simon Sawhney1,2,3*, Angharad Marks1,2,3, Nick Fluck2, David J. McLernon1, Gordon J. Prescott1 and Corri Black1,2,3

Abstract

Background: Reducing readmissions is an international priority in healthcare. Acute kidney injury (AKI) is common,
serious and also a global concern. This analysis evaluates AKI as a candidate risk factor for unplanned readmissions
and determines the reasons for readmissions.

Methods: GLOMMS-II is a large population cohort from one health authority in Scotland, combining hospital episode
data and complete serial biochemistry results through data-linkage. 16453 people (2623 with AKI and 13830
without AKI) from GLOMMS-II who survived an index hospital admission in 2003 were used to identify the
causes of and predict readmissions. The main outcome was “unplanned readmission or death” within 90 days
of discharge. In a secondary analysis, the outcome was limited to readmissions with acute pulmonary oedema.
26 candidate predictors during the index admission included AKI (defined and staged 1–3 using an automated e-alert
algorithm), prior AKI episodes, baseline kidney function, index admission circumstances and comorbidities. Prediction
models were developed and assessed using multivariable logistic regression (stepwise variable selection), C statistics,
bootstrap validation and decision curve analysis.

Results: Three thousand sixty-five (18.6%) patients had the main outcome (2702 readmitted, 363 died without
readmission). The outcome was strongly predicted by AKI. Multivariable odds ratios for AKI stage 3; 2 and 1
(vs no AKI) were 2.80 (2.22–3.53); 2.23 (1.85–2.68) and 1.50 (1.33–1.70). Acute pulmonary oedema was the reason for
readmission in 26.6% with AKI and eGFR < 60; and 4.0% with no AKI and eGFR≥ 60. The best stepwise model from all
candidate predictors had a C statistic of 0.698 for the main outcome. In a secondary analysis, a model for readmission
with acute pulmonary oedema had a C statistic of 0.853. In decision curve analysis, AKI improved clinical utility when
added to any model, although the incremental benefit was small when predicting the main outcome.

Conclusions: AKI is a strong, consistent and independent risk factor for unplanned readmissions – particularly
readmissions with acute pulmonary oedema. Pre-emptive planning at discharge should be considered to minimise
avoidable readmissions in this high risk group.
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Background
Reducing unplanned readmissions after hospital dis-
charge is an international priority for modern healthcare
systems [1–3]. Readmission rates are driven by a mixture
of health and social factors and some are potentially
avoidable [4, 5]. Globally, performance indicators, finan-
cial penalties, safety initiatives and prediction tools have
been developed to reduce unplanned readmissions [1, 2].
Clinical prediction tools combine available patient char-
acteristics to predict a diagnostic or prognostic outcome
[6]. Tools that predict whether patients leaving hospital
are at a high risk of unplanned readmission would be
helpful for the delivery of safe patient-centred care.
However, current tools are limited by the inclusion of
risk factors that are not widely accessible in routine clin-
ical practice [7–9] (e.g., critical care scores or subjective
social assessments). These limitations preclude a more
general use of risk prediction tools for unplanned read-
missions in clinical practice.
Acute kidney injury (AKI) is an abrupt change in kidney

function, usually measured by a rising serum creatinine.
As AKI is common across all hospital settings (1 in 7 hos-
pital admissions), serious [10], and objectively measurable
in a standardised fashion (using automated e-alerts) [11],
it is a promising novel candidate risk factor for readmis-
sion. Good practice in AKI frequently requires rehydration
with fluids and temporary discontinuation of cardiac med-
ications until a patient improves [12]. People with AKI
transition through multiple care providers and therefore
good communication and awareness is needed to ensure
that avoidable complications (e.g., overload, cardiovascular
complications) do not occur. For this reason, AKI is now
also the target of quality initiatives, including efforts to
improve handovers at hospital discharge [13].
Previous work suggests an association between hos-

pital AKI and increased hospital readmissions, but with
methodological limitations. In one U.S study, the au-
thors were unable to distinguish between planned and
unplanned admissions. Pre-hospital creatinine values
were also unavailable, which meant that only a minority
subset of AKI (those who deteriorated during admission)
could be analysed and AKI severity could not be staged
[14]. A second U.S. study also associated AKI with read-
missions, but was limited to survivors of AKI occurring
in intensive care [15]. A third recently reported study
from Canada showed a 1.5-fold increase in 30 day read-
missions among those with AKI in a propensity-
matched cohort, but only a subset comprising those with
more severe AKI recorded using ICD-10 codes were rep-
resented [16].
In this analysis, we evaluated the clinical utility of hos-

pital AKI of all severities as a candidate risk factor for
predicting and reducing unplanned hospital readmis-
sions. We assessed whether AKI was an independent

risk factor that could be used to guide decisions either
in isolation or as part of a parsimonious clinical risk pre-
diction tool. We also assessed whether the reasons for
readmission were different for those with and without
AKI, which would motivate the consideration of pre-
emptive care plans at hospital discharge after AKI.

Methods
Population
This study includes all patients from the Grampian
Laboratory Outcomes Morbidity and Mortality Study-II
(GLOMMS-II) who were admitted to hospital in 2003 and
survived to discharge (n = 16453). GLOMMS-II is a popu-
lation cohort linking national and regional data sources
for a single UK health authority (1999–2009). It includes
routine hospital administrative data and the complete ser-
ial renal biochemistry profile for each patient [17–20].
Crucially for renal disease cohorts, all biochemistry is pro-
vided by a single biochemistry service, regardless of clin-
ical location (inpatient, outpatient, community). This
minimises any loss of baseline and follow up data and
avoids selection biases in patient recruitment [20, 21].
Linkage to hospital episode data and the Scottish Renal
Registry (SRR) provided mortality, admission episodes,
morbidity events and chronic renal replacement therapy
(RRT). Patients receiving chronic RRT prior to index hos-
pital admission were excluded. The study had Regional
Ethics Committee approval (14/NW/1371). Data were
hosted and managed by Grampian Data Safe Haven [22].

Outcomes – Unplanned readmission or death within
90 days
The main outcome of interest was unplanned readmission
or death within 90 days of discharge. We chose 90 days,
because current international AKI guidelines recommend
a reassessment at 3 months after AKI for the evaluation of
future risk [23]. A distinction between unplanned and
planned admissions is possible in Scotland because elect-
ive and emergency hospital episodes are specifically distin-
guished in the Scottish Morbidity Record (SMR01) by
trained coders [24]. As 1.1% died within 90 days without
first being readmitted, this more severe endpoint was
combined with readmission for the logistic regression. As
a sensitivity analysis, we also analysed readmission using a
multinomial approach (i.e., readmission vs alive and not
readmitted; and death without readmission vs alive and
not readmitted), which yielded similar results. As add-
itional sensitivity analyses, we also generated models for
the main outcome at 30 and 60 days. Finally, because we
identified a substantial increase in readmissions due to
acute pulmonary oedema (a potentially modifiable reason)
among those with AKI, we conducted a secondary analysis
of the outcome restricted to readmission with acute pul-
monary oedema.
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Follow up
Follow up was from the date of discharge from the ori-
ginal (index) admission until the next emergency re-
admission or death. The index admission, as previously
described, was the first admission with AKI, or last ad-
mission without AKI in 2003 [20]. 94.6% of the study
population had evidence of follow-up (e.g., linkage to
blood tests) up to or beyond the end of the study. Of the
remainder, as migration out of Grampian was negligible
for the period and age-mix of the cohort [25], those
without follow-up beyond the end of the study were as-
sumed to be alive without achieving the main outcome.

Covariates and candidate predictors
Based on previous studies [7, 9, 14], a combination of
renal measures, comorbidities, social measures and ad-
mission circumstances were included as candidate pre-
dictors. Renal measurements included AKI severity
(stages 0–3, 0 being no AKI) for an index episode in
2003, the presence of AKI episodes in the prior 91–1095
days (i.e., AKI in the 3 years prior to the baseline look-
back period), baseline estimated glomerular filtration
rate (eGFR) and the presence of a >20% worsening of
serum creatinine from baseline to hospital discharge
(i.e., non-recovery). AKI and baseline kidney function
were determined using the “Kidney Disease: Improving
Global Outcomes” (KDIGO) criteria [23, 26]. We used a
KDIGO-based AKI e-alert definition to identify all
discrete AKI episodes lasting up to 90 days from 2000
until the end of 2003 [20]. A summary of this AKI defin-
ition is also provided in Table 1 with more detail avail-
able elsewhere [20]. AKI severity was the highest stage
achieved (1–3) within each AKI episode period with re-
spect to the baseline identified at the point of identifica-
tion of each new AKI episode. The rolling lookback
period ensured that the baseline creatinine was updated
between AKI episodes so that further rises in creatinine
after an AKI episode could be distinguished either as re-
current AKI (further rapid rises above a prior AKI epi-
sode and meeting KDIGO cirteria) or CKD progression/
non-recovery (elevated creatinine following a prior AKI

episode but no actual acute rise meeting KDIGO cir-
teria). Baseline eGFR was reported using the Chronic
Kidney Disease Epidemiology Collaboration (CKD-EPI)
creatinine equation [27].
Comorbidities were the “international classification of

diseases” (ICD-10) codes for Charlson comorbidities
from the 5 years prior to admission as previously de-
scribed and validated [28]. Social and demographic mea-
sures included age, sex, residential care (long-term care
home or skilled nursing home), deprivation and rural
home location as previously described [20, 29]. Metrics
of admission circumstances were the number of hospital
admissions in the past year, length of hospital stay for
the index admission, emergency or elective admission,
and admission to a medical ward or intensive care. For
the causes of readmission, ICD-10 diagnoses for the re-
admission episode were also recorded. Based on previous
work and validation studies these were acute coronary
syndrome (with or without infarction) (I21-I22, I20)
[30, 31]; cerebrovascular disease (G45, I60-67) [32–34];
lower respiratory tract infection (pneumonia or bron-
chitis) (J10-18, J20-22) [35, 36]; and acute pulmonary
oedema in the context of heart failure (I50) [37, 38].

Statistical analyses
We plotted Kaplan-Meier curves for readmission-free
survival with risk tables showing numbers alive, readmit-
ted and dead up to 1 year after hospital discharge.
To compare the reasons for hospital readmission in

those with and without AKI, we recorded the readmission
ICD-10 codes for readmission diagnoses. Based on prior
research [14], and the recognised role of fluids and cardiac
medications in AKI [12], we reported four specific diagno-
ses: acute coronary syndrome, cerebrovascular event, lower
respiratory tract infection, acute pulmonary oedema.
We performed univariable and multivariable logistic re-

gression to assess the association of each candidate pre-
dictor with 90 day readmission or death. We performed
multivariable logistic regression using a full model con-
taining all candidate predictors. To determine a “best
stepwise model”, we then used all candidate predictors
with stepwise backwards elimination of predictors with a
p-value ≥0.01 [6, 39, 40]. This p-value threshold was
chosen to approximate to the Bayesian Information
Criterion (BIC) for the large sample size of the analysis
[41, 42]. We also developed models using the same step-
wise procedure but limiting candidate predictors to ad-
ministrative data only (including age); age and renal
biochemistry only; age alone; and AKI alone. Based on
prior knowledge and graphical inspection, we modelled
age and eGFR continuously using linear and quadratic
terms [43]. We repeated this modelling procedure for an
additional outcome limited to readmissions with acute
pulmonary oedema, and for outcomes at 30 and 60 days.

Table 1 KDIGO-based acute kidney injury criteria for this study
(as described in [20])

AKI criteria Definition

Index AKI episode (lasting
up to 90 days in duration)

Serum creatinine ≥1.5 times higher than
the median of all creatinine values 8-90
days ago; or 91–365 days ago if no tests
between 8 and 90 days;
or serum creatinine ≥1.5 times higher
than the lowest creatinine within 7 days;
or serum creatinine >26 μmol/L higher
than the lowest creatinine within 48 h

Prior AKI episode Any episode occurring 91-1095 days
prior to index episode
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Assessment of model performance
We assessed model performance by testing discrimin-
ation and calibration. Discrimination measures how well
a model distinguishes between those with and without
an outcome. We calculated the area under the receiver
operating characteristic curve (AUC), which can be con-
sidered equivalent to a C-statistic [44]. The value of a C
statistic lies between 0.5 and 1; 0.5 meaning that the
model is no better than a coin toss at discrimination and
1 meaning perfect discrimination. Pairwise comparison
of C statistics for different models was performed as pre-
viously outlined elsewhere [45, 46]. Calibration is a
measure of how well the predicted probabilities of an
outcome from a model agree with the observed prob-
abilities of the outcomes. We developed a calibration
plot of mean observed probability vs mean predicted
probability of outcomes within tenths of increasing pre-
dicted risk. All points lying on a calibration slope of 1
indicates perfect agreement, and a slope of less than 1
indicates over-fitting of the model [6]. We also per-
formed a Hosmer-Lemeshow goodness-of-fit test to as-
sess for a statistically significant difference between
observed and predicted values, standardised for sample
size using a method described elsewhere [47].
Validation of a model using the same data as used to de-

velop the model (known as apparent validation) usually
results in optimistic measures of performance. Therefore,
we performed internal validation of the best stepwise
model using bootstrap resampling. We generated 500
bootstrapped datasets with replacement from the original
dataset. For each bootstrapped sample we applied the
same backward selection modelling process used to derive
the original best stepwise model. The C statistic was cal-
culated for each of the 500 bootstrapped models both in
the bootstrap data set and the original data set. The differ-
ence between the two C statistics for each sample was
found and averaged over the 500 samples. This average
difference indicated the optimism of the C statistic in the
original model and is an estimate of internal validity. This
procedure enabled us to provide a C statistic and calibra-
tion slope corrected for model optimism [6]. As stepwise
procedures can lead to instability in variable selection we
also recorded the variable inclusion frequencies for each
of the bootstrap models using the backwards elimination
procedure with a p ≥ 0.01 threshold [42, 48].

Model application
Even if a risk factor improves model discrimination and
calibration, a model may not result in better decisions.
Decision curve analysis is a recent method of assessing
the clinical usefulness of different models at an appro-
priate threshold for clinical use [49]. We used decision
curve analysis to compare each model and also strategies
of “predict all” or “predict none”.

Decision curve analysis is a plot of the “net benefit”
against “threshold probabilities”. Such a plot identifies
the range of threshold probabilities for which the model
is of clinical value i.e., can be used to guide decisions.
The threshold probability indicates the cut-off for classi-
fying a prediction as positive or negative for an outcome
[50]. An acceptable threshold may differ for clinicians
and patients making decisions in different clinical con-
texts. A threshold of close to zero would imply that
false-positive predictions are acceptable to ensure that
no patients are missed. A higher threshold would involve
targeting only higher risk patients with fewer false-
positives. Net benefit measures the trade-off between
true-positives and false-positives in a prediction model at
different threshold probabilities. It is a sum of true-positive
minus false-positive predictions weighted by the threshold
probability as described in the equation below [49].

Net benefit ¼ true positive
total sample size

� �
−
h false positive

total sample size

� �

� threshold probability
1−threshold probability

� �i

The model with the highest net benefit at a given
threshold, has the greatest clinical value. At a threshold
probability of zero a policy of targeting all patients
would be of greatest value as there would be no penalty
from false-positives. At higher thresholds, an alternative
approach guided by a prediction model may provide
greater benefit. In this study, if a clinician wished to
identify patients with higher than average risk of re-
admission, this would correspond to a threshold prob-
ability of 0.2–0.4 and a prediction model would need to
show greater net benefit over this pre-specified range.
Decision curve analysis comprehensively compares

models across all thresholds, however we also calculated
the integrated discrimination improvement (IDI) and
categorical net reclassification improvement (NRI) with
categories of low, medium and high risk using a thresh-
olds of 0.1 and 0.3 for the main outcome and 0.01 and
0.1 for the outcome limited to readmissions with pul-
monary oedema for those familiar with these alternative
metrics [51, 52].
Statistical analysis was performed in Stata SE version

13 using “dca”, “incrisk” and “roccomp” packages for the
assessments of model performance [45, 53–55]. We also
developed a web-based application to illustrate how risk
predictions changed in the presence of AKI. This was
performed in R using the package “shiny” and “persono-
graph”[56–58].

Results
Cohort characteristics
Cohort formation and characteristics of 16453 patients
surviving an index hospital admission (2623 with AKI
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and 13830 without AKI), with and without readmission
or death by 90 days, are described in Fig. 1 and Table 2.
Univariable odds ratios are provided in the final column
of Table 2. Three thousand sixty five of 16453 patients
(18.6%) were readmitted or died within 90 days of hospital
discharge (including 363 deaths occurring without re-
admission and 269 readmissions with pulmonary oedema).
Those with readmission or death were older, more fre-
quently in residential care, had more previous hospital ad-
missions, longer hospital stay at index admission and
more comorbidities. They also experienced more AKI
during index admission, more prior AKI episodes, and
had worse kidney function at baseline and at discharge.

Reasons for readmission after AKI
Reasons for readmission grouped by AKI and baseline
eGFR are summarised in Fig. 2. There was little difference
in readmissions due to cerebrovascular episodes, and a
modest increase in readmissions due to lower respiratory
tract infection or acute coronary episodes among those
with eGFR < 60 ml/min/1.73 m2. However, there was a
substantial increase in readmissions due to acute pulmon-
ary oedema in those with AKI and eGFR < 60 ml/min/
1.73 m2 (respectively 26.6%; 13.1%; 7.0 and 4.0% for AKI
and eGFR < 60; no AKI and eGFR < 60; AKI and eGFR ≥
60; no AKI and eGFR ≥ 60 ml/min/1.73 m2). This trend
was the same whether acute pulmonary oedema was used

in any diagnostic position (as above) or restricted to the
main diagnosis.

Relationship between AKI and unplanned readmission or
death
Figure 1 describes the status of patients over the first
90 days after discharge from index admission. There
were 16453 patients who survived an index hospital ad-
mission. Patients with AKI (vs no AKI) and baseline
eGFR < 60 (vs eGFR ≥ 60 ml/min/1.73 m2) had poorer
outcomes, with greater occurrence of unplanned re-
admission or death. Figure 3 is a Kaplan-Meier plot of
readmission-free survival stratified by AKI and baseline
eGFR. At all time-points up to 1 year, patients with AKI
had poorer outcomes than those without AKI and pa-
tients with baseline eGFR < 60 had poorer outcomes
than those with baseline eGFR ≥ 60 ml/min/1.73 m2.

AKI as an independent predictor of unplanned
readmission or death
Table 3 summarises multivariable logistic regression
using all candidate predictors (full model), and using a
stepwise regression (best stepwise model). AKI (staged
0–3) independently predicted readmission. Four comor-
bidities (cancer, cardiac failure, diabetes and chronic pul-
monary disease) were also present in the best model. AKI
was one of the most consistently selected variables,
present in 100% of 500 bootstrapped models. Age,

Fig. 1 Description of the cohort developed for this study from those surviving to hospital discharge, and the overall 90 day outcomes broken
down by AKI status and baseline eGFR
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Table 2 Cohort characteristics

90 day readmission
or death (%)

90 day readmission free survival
(%) baseline impairment

Univariable odds ratio (95% CI)

N 3065 13388

Age (median, IQR) 74 (62–83) 69 (55–79) 1.20 (/10 years) (1.17–1.23)

Male sex 1372 (44.8) 5770 (43.1) ()) 1.07 (0.99–1.16)

Residential care 277 (9.0) 471 (3.5) 2.72 (2.34–3.18)

Deprived (highest quintile) 298 (9.7) 1088 (8.1) 1.22 (1.06–1.39)

Rural (settlement <3000) 735 (24.0) 3720 (27.8) 0.82 (0.75–0.90)

Admission context

No admissions past yeara 1896 (61.9) 10461 (78.1) 1.38 (/admission) (1.34–1.43)

1 admission past year 593 (19.3) 1872 (14.0)

2 admissions past year 244 (8.0) 620 (4.6)

3+ admissions past year 332 (10.8) 435 (3.2)

Length of stay (median, IQR) 7 (2–16) 3 (1–9) 1.05 (/7 days) (1.04–1.06)

Emergency admission 2326 (75.9) 7760 (58.0) 2.28 (2.09–2.50)

Medical ward admission 1889 (61.6) 6570 (49.1) 1.67 (1.54–1.81)

Intensive care admission 98 (3.2) 366 (2.7) 1.18 (0.94–1.47)

Renal function

No AKI 2154 (70.3) 11676 (87.2) (reference group)

AKI stage 1 528 (17.2) 1190 (8.9) 2.41 (2.15–2.69)

AKI stage 2 233 (7.6) 341 (2.5) 3.70 (3.12–4.40)

AKI stage 3 150 (4.9) 181 (1.4) 4.49 (3.60–5.60)

No prior AKI episodesa 2526 (82.4) 12188 (91.0) 1.71 (/episode) (1.58–1.85)

1 prior AKI episode 414 (13.5) 1000 (7.5)

2+ prior AKI episodes 125 (4.1) 200 (1.5)

Baseline eGFR (median, IQR)a 63 (48–83) 66 (52–87) 0.94 (/10 ml/min/1.73 m2) (0.93–0.96)

Baseline eGFR 0–29 213 (6.9) 502 (3.7)

Baseline eGFR 30–44 423 (13.8) 1461 (10.9)

Baseline eGFR 45–59 713 (23.3) 3309 (24.7)

Baseline eGFR ≥60 1716 (56.0) 8116 (60.6)

Discharge creatinine 20% > baseline 520 (17.0) 1167 (8.7) 2.14 (1.91–2.39)

Comorbidity

Cancer 410 (13.4) 973 (7.3) 1.97 (1.74–2.23)

Cardiac failure 317 (10.3) 592 (4.4) 2.49 (2.16–2.88)

Cerebrovascular disease 231 (7.5) 580 (4.3) 1.80 (1.54–2.11)

Dementia 96 (3.1) 163 (1.2) 2.62 (2.03–3.39)

Diabetes 336 (11.0) 776 (5.8) 2.00 (1.75–2.29)

Hemiplegia 28 (0.9) 71 (0.5) 1.73 (1.11–2.68)

Liver disease 59 (1.9) 156 (1.2) 1.66 (1.23–2.25)

Myocardial infarction 257 (8.4) 638 (4.8) 1.83 (1.57–2.13)

Peptic ulcer disease 81 (2.6) 278 (2.1) 1.28 (1.00–1.64)

Peripheral vascular disease 162 (5.3) 452 (3.4) 1.60 (1.33–1.92)

Pulmonary disease 346 (11.3) 704 (5.3) 2.29 (2.00–2.62)

Rheumatic disease 82 (2.7) 289 (2.2) 1.25 (0.97–1.60)

Abbreviations: AKI acute kidney injury, CI confidence interval, eGFR estimated glomerular filtration rate, IQR inter-quartile range
aModelled here linearly per 10 ml/min/1.73 m2 increase and reported in categories for clarity
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residential care, number of previous admissions, emer-
gency admission and cancer were also selected in 100% of
bootstrapped models. In sensitivity analysis, this did not
change if those who died without readmission were not
included in the outcome. Models for 60 and 30 day out-
comes were also similar (Additional file 1: Table S1).
When the outcome for analysis was restricted to readmis-
sions with pulmonary oedema, age, AKI and history of

previous cardiac failure were the most consistently se-
lected variables (Additional file 1: Table S2).

Performance of prediction models
Table 4 reports the predictors that were significant in
stepwise regression when the procedure was limited to
groups of candidate predictors. Based on model discrim-
ination (C statistic), performance of the best stepwise

Fig. 2 Reasons for unplanned hospital readmission among those people in the cohort readmitted within 90 days of hospital discharge

Fig. 3 Unadjusted curves of readmission-free survival with risk table of death and readmission by AKI status and baseline eGFR
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model (0.698) was no different to a full model contain-
ing all predictors (0.699), and showed statistically signifi-
cant incremental improvement over models limited to
administrative data only; renal biochemistry and age; age
alone; and AKI alone. The C statistic for the best step-
wise model (0.698) was 0.695 after bootstrap correction

for optimism. The bootstrap calibration slope was 0.97
(0.89–1.06), showing excellent agreement at all but the
very highest levels of predicted risk on a calibration plot
(Additional file 2: Figure S1). For the model limited to
readmissions with acute pulmonary oedema, the C stat-
istic was substantially larger (0.853; 0.845 after bootstrap

Table 3 Stepwise model of unplanned 90 day readmission or death after hospital discharge

Full model Best stepwise model

OR 95% CI p-value OR 95% CI p-value Variable Inclusion %b

Characteristics

Age (per 10 years) 1.19 (1.14–1.24) <0.001 1.17 (1.13–1.21) <0.001 100

Age term squared 1.00 (0.99–1.02) 0.388 12.4

Male sex 1.08 (1.00–1.18) 0.061 26.4

Residential care 1.63 (1.36–1.94) <0.001 1.37 (1.42–1.98) <0.001 100

Deprived (highest vs all other quintiles) 1.11 (0.96–1.29) 0.150 15.4

Rural (settlement <3000) 0.88 (0.80–0.97) 0.008 0.86 (0.78–0.94) 0.001 65.2

Admission context

Admissions in prior 1 year (per admission) 1.21 (1.17–1.25) <0.001 1.23 (1.18–1.27) <0.001 100

Length of stay (per week) 0.99 (0.98–1.00) 0.242 7.0

Emergency admission 1.81 (1.64–2.01) <0.001 1.89 (1.72–2.08) <0.001 100

Medical ward admission 1.09 (0.99–1.19) 0.066 24.6

Intensive care admission 0.88 (0.68–1.13) 0.308 5.2

Renal function

No AKI (reference group)

AKI stage 1 1.57 (1.36–1.80) <0.001 1.50 (1.33–1.70) <0.001 100

AKI stage 2 2.35 (1.92–2.88) <0.001 2.23 (1.85–2.68) <0.001 100

AKI stage 3 2.95 (2.29–3.80) <0.001 2.80 (2.22–3.53) <0.001 100

Prior AKI count (per episode) 1.11 (1.02–1.22) 0.020 47.4

Baseline eGFR linear terma 0.89 (0.82–0.96) 0.005 0.87 (0.80–0.94) <0.001

Baseline eGFR squared terma 1.01 (1.00–1.02) 0.001 1.01 (1.01–1.02) <0.001 91.0

Discharge creatinine 20% > baseline 0.93 (0.80–1.08) 0.317 6.0

Comorbidity

Cancer 1.59 (1.38–1.82) <0.001 1.59 (1.37–1.82) <0.001 100

Cardiac failure 1.32 (1.12–1.55) 0.001 1.42 (1.21–1.66) <0.001 88.8

Cerebrovascular disease 1.07 (0.89–1.27) 0.471 6.0

Dementia 1.21 (0.92–1.60) 0.174 13.2

Diabetes 1.33 (1.15–1.54) <0.001 1.38 (1.19–1.60) <0.001 92.0

Hemiplegia 0.91 (0.56–1.47) 0.691 0.4

Liver disease 1.19 (0.86–1.66) 0.299 11.2

Myocardial infarction 1.13 (0.95–1.33) 0.170 13.6

Peptic ulcer disease 0.90 (0.69–1.18) 0.464 2.0

Peripheral vascular disease 1.00 (0.82–1.22) 0.994 0.6

Pulmonary 1.44 (1.24–1.67) <0.001 1.47 (1.27–1.70) <0.001 99.2

Rheumatic disease 0.92 (0.70–1.20) 0.525 2.4

Abbreviations: AKI acute kidney injury, CI confidence interval, eGFR estimated glomerular filtration rate, OR odds ratio
aModelled per 10 ml/min/1.73 m2 increase with a combination of linear and quadratic terms. Variable inclusion % applies to the baseline eGFR variable overall
bIn 500 bootstrapped datasets
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correction for optimism), with more substantial incre-
mental improvements over other models (Additional
file 1: Table S3). Again, the bootstrap calibration slope
was not significantly different from 1 (0.90, 0.70–1.14).
Further details of the calibration of both models is pro-
vided in Additional file 2: Figure S1, Additional file 3:
Figure S2, Additional file 4: Figure S3 and Additional
file 5: Figure S4.

Model application
Figure 4 shows decision curve analysis plots contrasting
the net benefit of the different prediction models for the
main outcome of death or readmission within 90 days
(4A) and for the secondary analysis of readmission with
acute pulmonary oedema (4B). At the a priori specified
threshold of 0.2–0.4 for the main analysis, all models
performed better than predicting readmission in all or

Table 4 Comparison of prediction models and model discrimination

Full model Best stepwise
model

Administrative
data only model

Biochemistry
+ age model

Age alone model AKI alone

Characteristics

Age * * * * *

Age term quadratic term * * *

Male sex *

Residential care * * *

Deprived (highest quintile) *

Rural (settlement <3000) * * *

Admission context

Admissions in prior 1 year (per admission) * * *

Length of stay (per week) *

Emergency admission * * *

Medical ward admission * *

Intensive care admission *

Renal function

AKI stages 0–3 * * * *

Prior AKI count (per episode) * *

Baseline eGFR (linear and quadratic) * * *

Discharge creatinine 20% > baseline *

Comorbidity

Cancer * * *

Cardiac failure * * *

Cerebrovascular disease *

Dementia *

Diabetes * * *

Hemiplegia *

Liver disease *

Myocardial infarction *

Peptic ulcer disease *

Peripheral vascular disease *

Pulmonary * * *

Rheumatic disease *

Model C statistic 0.699 0.698 0.685 0.655 0.594 0.587

95% confidence interval (0.688–0.709) (0.688–0.709) (0.675–0.696) (0.644–0.666) (0.582–0.605) (0.578–0.596)

P-value for AUC comparison with the next
most complex model

- 0.536 <0.001 <0.001 <0.001 0.344

Abbreviations: AKI acute kidney injury, eGFR estimated glomerular filtration rate
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no patients. Age provided modest net benefit, with small
incremental improvement from adding biochemistry or ad-
ministrative data to the model and best performance from
the best stepwise model from all candidate predictors. For
the acute pulmonary oedema model the best stepwise
model was again superior to all other models, with larger
incremental improvement across all thresholds.
For the main analysis best stepwise model (vs adminis-

trative data) the categorical NRI[0.1, 0.3] was +4.6% (+2.7
to +7.0) (event NRI[0.1, 0.3] +2.0% [+0.6 to +3.7]; non-
event NRI[0.1, 0.3] +2.7% [+0.6 to +4.2]) and IDI was
+0.012 (+0.009 to +0.017) with positive values indicating
overall improvement in the prediction probabilities. For
the acute pulmonary oedema best stepwise model (vs
administrative data) the categorical NRI[0.01, 0.1] was
+11.8% (+0.1 to +19.6) (event NRI[0.01, 0.1] +1.5% [−1.9
to +5.4]; non-event NRI[0.01, 0.1] +10.3% [+0.0 to +16.3])
and IDI was +0.009 (+0.001 to +0.024).
Additional file 6: Figure S5 illustrates how predictions

change in the presence of AKI, and the accessibility of
the data required to generate predictions. This calculator

is available on request by contacting the authors. Using
the best stepwise model, a 70 year old man with diabetes
who is admitted urgently with severe AKI requiring dia-
lysis would have a predicted 90 day risk of readmission
or death of 42%. The same man without AKI would have
a predicted risk of 21%. In contrast, using the adminis-
trative data model (which includes no measure of AKI)
the predicted risk would be the same for those with and
without AKI (26%).

Discussion
AKI is common, objectively assessable using serial serum
biochemistry (or e-alerts), and associated with increased
mortality. Our analysis shows that AKI is also a strong
independent predictor of 90 day unplanned readmission
or death. Furthermore, there were striking differences in
the cause of readmissions between those with and without
AKI. Up to 1 in 4 readmissions after AKI were related to
acute pulmonary oedema – a potentially modifiable rea-
son for readmission.
Despite being a strong predictor, the incremental im-

provement in overall predictions after adding AKI to the
best alternative model was small, both based on decision
curve analysis and on categorical NRI. This is often the
case in saturated prediction models [59], but may sug-
gest limited added value of combining renal biochemis-
try and hospital episode data for general population risk
predictions. Nevertheless, our study shows that AKI is
still an attractive risk factor in clinical practice because
it is common, strongly associated with readmission, and
associated with a complication (pulmonary oedema) that
could be targeted as part of a pre-emptive discharge
plan. This is reinforced by our secondary analysis, which
showed that when the outcome was limited to readmis-
sions with acute pulmonary oedema, the absolute perform-
ance of the model (C statistic 0.853) and the incremental
improvement with the addition of AKI were both greater.
Our analysis is consistent with and extends previous

research. Previous work in the U.S. and Canada has as-
sociated AKI with readmission, but only studied either a
subset of AKI that could be identified using only in-
patient biochemistry data without distinguishing be-
tween planned and unplanned readmissions [14], or the
subset of AKI treated in intensive care [15], or the sub-
set of AKI recognised in ICD-10 coding [16]. We extend
previous work using a U.K. cohort by capturing all hos-
pital AKI using all biochemistry (inpatient and out-
patient), by focusing on unplanned admissions, by using
AKI severity and prior AKI episodes as novel predictors
and by assessing the incremental benefit of AKI in risk
prediction. The bootstrapped C statistic presented in our
study (0.695) is consistent with previous UK-based studies
predicting 12 month (apparent C statistic 0.685) [8] and
30 day (bootstrapped C statistic 0.699) [9] readmissions.
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The strongest predictors (age, admission circumstances,
cancer, cardiac failure, diabetes and pulmonary disease) also
agree with those consistently reported in the literature [7].
Strengths of this analysis include the use of a large un-

selected population with complete biochemistry and ad-
ministrative data capture, minimising misclassification
due to missing baseline renal data. The linkage of serial
renal biochemistry to administrative data demonstrates
AKI as a novel and objective predictor that could be
reproduced in future research and updated with each ad-
mission in real-time clinical practice. The role of AKI
and baseline eGFR in readmissions with acute pulmon-
ary oedema was particularly striking. We note previous
work has identified heart failure as a common reason for
30 day hospital readmissions [16], and shown that
among patients with heart failure, those who develop
AKI have more readmissions [60]. This analysis provides
the complementary finding that among all hospitalised
patients, those with AKI have substantially more emer-
gency readmissions due to acute pulmonary oedema – a
potentially preventable reason for readmission [5]. Col-
lectively, these results provide a motivation for improving
handovers and medication plans when discharging pa-
tients with AKI [13], and for an AKI follow-up clinic [61].
A particular population to focus on could be those with a
history of CKD or heart failure, and interventions to
evaluate in this group could include volume reassess-
ments, diuretic algorithms and medication reconciliation.
In this study we demonstrated that the use of serial renal

laboratory measurements can lead to incremental improve-
ments in clinical risk prediction models. While not the
focus of this study, we recognise that a number of other re-
peatedly measured laboratory parameters (such as dis-
charge sodium, albumin and C-reactive protein) may lead
to further incremental improvements. These were not
available in this analysis, nor used in previous UK-based re-
admission prediction tools, and would be an appropriate
next step for future research [8, 9]. We also recognise that
the role of AKI in our health care system in Scotland may
not be generalisable to other regions and health care sys-
tems. This may also be the case for other predictors that
may differ for health care systems in other countries (e.g.,
residential care and intensive care). Additional validation
would be valuable, because any variation in other regions
would also improve our understanding of the circum-
stances that lead to poorer outcomes after AKI. ICD-10
coding is also subject to variation and misclassification.
While sensitive for the clinical diagnosis of heart failure,
previous work has shown that the specificity of ICD-10
coding of heart failure can vary depending on whether only
the main diagnosis or all diagnoses are included [37, 38].
Nevertheless, we found the trend was the same in both sit-
uations. Similarly, because our cohort was originally con-
structed to observe long-term outcomes in those with

kidney disease, the cohort inception was in 2003. We ana-
lysed from the cohort inception date because analysis of
any later period would have introduced a survivorship
bias. While our objective biochemical AKI criteria will not
be affected by the cohort dates, recent initiatives to im-
prove the recognition and care of AKI may alter the rates
of early readmission. This would be important to reassess,
but would be unlikely to materially change the message of
our study. Finally, AKI is a clinical diagnosis incorporating
the clinical context changes in serum creatinine and urine
output. Our identification of AKI involved an algorithm
for changes in creatinine in routine data. A problem com-
mon to all AKI studies involving large populations is the
potential for misclassification bias when blood testing is
sometimes infrequent and context is not available to en-
sure AKI and CKD are classified appropriately.

Conclusions
Overall, this study indicates that AKI is a strong pre-
dictor of unplanned readmissions. Acute pulmonary
oedema is a potential driver of the increased readmis-
sions in AKI patients. This raises the possibility that
some readmissions after AKI may be avoidable by care-
ful pre-emptive planning after AKI to prevent the devel-
opment of pulmonary oedema.
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