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Abstract 

  

 Species exhibiting colour-polymorphism are thought to have an ecological 

advantage at the landscape scale, because spatial segregation of alternatively-adapted 

ecotypes into diverse habitats can increase the total species’ niche breadth and thus 

confer greater geographic range size. However, morph frequencies are also influenced 

by intra-populational processes such as frequency- or density-dependent social 

interactions. To identify how social feedback may affect clinal variation in morph 

frequencies, we investigated reciprocal interactions between morph-specific thermal 

tolerance, local climatic conditions, and social environments, in the context of a colour-

morph frequency cline associated with a recent range expansion in blue-tailed 

damselflies (Ischnura elegans) in Sweden. Cold tolerances of gynochromes (female-like 

female morph) were positively correlated with local gynochrome frequencies, 

suggesting a positive frequency-dependent fitness benefit of being common. In contrast, 

androchrome (male-mimic female morph) cold tolerances were improved following 

recent exposure to cold weather, suggesting a beneficial environmental acclimation 

effect. Thus according to an environment-matching hypothesis for clinal variation, 

androchrome frequencies should therefore increase towards the (cooler) range limit. In 

contrast to this prediction, gynochrome frequencies increased at the expanding range 

limit, consistent with a positive frequency-dependent social feedback when invading 

novel climates. Our results suggest that when phenotypes or fitnesses are affected by 

interactions with conspecifics, beneficial social effects on environmental tolerances may 

i) facilitate range shifts and ii) reverse or counteract typical patterns of intraspecific 

interactions and environment-matching clines observed in stable populations observed 

over broader geographic scales.  

 

Keywords: thermal tolerance plasticity, group selection, frequency-dependent 

selection, indirect genetic effects, social feedback, climate change, insects, expansion 

front, clinal variation, local adpatation 
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Introduction 

Many species exhibit conspicuous colour polymorphisms, in which individuals within 

an interbreeding population exhibit alternative colours, which are often associated with 

alternative social, reproductive and ecological strategies (Sinervo & Lively, 1996; 

McKinnon & Pierotti, 2010; Svensson, 2017). These alternative types, segregating 

within populations, are often highly differentiated from each other along multiple trait 

axes, and thus represent alternatively co-adapted trait complexes within an 

interbreeding population (Sinervo & Svensson, 2002; Lancaster et al., 2007; Svensson, 

2017). Stable polymorphisms might be adaptive in reducing intraspecific competition, 

because alternative morphotypes (morphs) use differing tactics to access mates or 

avoid enemies, and alternative morphs may also specialize on different resources in the 

environment (Skulason & Smith, 1995; Lancaster et al., 2010; Berggren et al., 2012). 

Colour polymorphisms might result in broader niches at the population level, and could 

resolve generalist/specialist trade-offs, if a broad population niche is partitioned among 

multiple, more specialized individual strategies (Bolnick et al., 2003).  

 

Polymorphisms may also be beneficial to species at regional scales, if sorting of 

different morph frequencies among populations along a geographic cline allows the 

species to occupy a broader range of habitats across the landscape, resulting in a larger 

species range sizes (Galeotti & Rubolini, 2004; Forsman & Aberg, 2008; Berggren et al., 

2012). Spatial variation in population morph frequencies can also facilitate range shifts 

under changing environments, if some morphs are preadapted to novel habitats as they 

open up for colonization (West-Eberhard, 1986; Shine et al., 2011; Berthouly-Salazar et 

al., 2012). However, because expression of morph-specific traits and morph fitnesses 

commonly depend on local demographic factors (i.e., alternative morphs maintained 

under frequency- or density-dependent processes) as well as environmental selection 

regimes, geographic clines in colour-polymorphic species will not necessarily reflect a 

clear case of local morph-environment matching, as has commonly been portrayed. 

Indeed, clines in traits that are subject to selection from biotic interactions will not 

necessarily be similar to clines that simply reflect local adaptation to abiotic conditions 

or neutral spatial processes (Mallet & Barton, 1989; Nuismer et al., 2000; Gosden et al., 

2011; Takahashi et al., 2011; Antoniazza et al., 2014).  
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The evolutionary dynamics of colour-polymorphic species are often complex, 

because local morph frequencies and densities within a population can both determine 

the selective environment faced by individuals (i.e., under frequency-or density-

dependent selection, Sinervo et al. 2000; Svensson et al. 2005; Le Rouzic et al. 2015) 

and, due to altered social interactions, can also affect the expression of morph-specific 

traits via social plasticity (Johnson 1965; Lancaster et al. 2007). Feedback between 

selective and formative aspects of the social environment may be positive (i.e., the social 

environment influences trait expression in the direction of selection; Lancaster et al., 

2007) or antagonistic. Positive social feedback can enhance fitness differences between 

morphs, contributing to increasing clinal variation across the landscape, while negative 

feedback could instead constrain the potential for adaptive divergence in morph 

frequencies across environmental gradients. Thus positive social feedback may lead to 

steeper or different clines in morph frequencies than underlying geographic 

environmental variation or ecological adaptations would predict alone, and may 

increase the overall degree of clinal variation, facilitate range shifts, and select against 

migrants, thereby reducing gene flow across environmental gradients (cf. Mallet and 

Barton 1989). In contrast, negative social feedback could lead to lower among-site 

differentiation and an overall narrower species niche breadth than predicted by 

ecological differences among morphs alone, which in turn might constrain population 

divergence and the potential for future range shifts.  

 

Our aim in this study was to investigate the relative roles of social (i.e. frequency 

and density-dependent) and environmental factors for their effects on thermal 

tolerances of alternative morphotypes, and in turn the consequences of these effects for 

clinal variation in colour morph frequencies following a recent range expansion. We 

address these issues in the context of a  ~500km geographic cline in morph frequencies 

at the northern range limit in Sweden of a range-expanding, colour-polymorphic 

damselfly, Ischnura elegans (Hickling et al. 2005; Svensson and Abbott 2005; Gosden et 

al. 2011; Sánchez-Guillén et al. 2015). This species has been well-investigated in the 

past in terms of negative frequency-dependent social selection that maintains a female-

limited colour polymorphism (Svensson et al., 2005; Gosden & Svensson, 2009; 

Takahashi et al., 2014; Le Rouzic et al., 2015). We previously identified that recent 

colonization of higher latitudes in Sweden by I. elegans occurred under strong selection 
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on cold tolerances, imposed by greater climatic variability at recently-colonized, higher 

latitude sites (Lancaster et al., 2015). Heat tolerance, in contrast, was not under 

selection during the range expansion (Lancaster et al., 2015). Transcriptomic analysis of 

heat- and cold-stressed individuals from across this ~500km geographic range 

confirmed that heat tolerance mechanisms are largely conserved with latitude in this 

species, while gene expression associated with cold stress is more latitudinally variable 

(Lancaster et al., 2016).  

 

Here we suggest that changing population morph frequencies at the expanding 

range margin reflects the joint influence of selection from abiotic environmental 

conditions in tension against social feedback effects on cold tolerance phenotypes. To 

investigate this, we assessed thermal tolerances of alternative female morphs from 

multiple populations in the south of Sweden and near the species’ range limit in central 

Sweden, and identified how these thermal tolerances varied in response to population 

level social characteristics (population density, observed adult sex ratio, and morph 

frequencies) and local weather and climates. Here we examine whether any social 

effects on thermal tolerance exhibited positive feedback or negative feedback with the 

direction of selection on thermal tolerances (greater strength of selection on cold 

tolerances in the north; Lancaster et al. 2015), which could contribute to clinal variation 

in morph frequency near the range limit. 

 

 

Methods 

Study system 

Ischnura elegans (Vander Linden, 1820; Odonata: Zygoptera: Coenagrionidae) is 

a widespread and common species throughout Eurasia, and exhibits a female-limited 

colour polymorphism throughout its range (Askew, 2004; Sánchez-Guillén et al., 2011). 

Female morphs are distinguishable primarily on the basis of thorax colouration, which 

can be blue-green (androchrome morph), olive green (infuscans morph), or brown 

(infuscans-obsoleta morph). The thorax colours themselves primarily serve as social 

signals (Stoks et al., 2001; Hammers & Hans Van Gossum, 2008) and are unlikely to 

contribute to different thermoregulatory strategies (i.e., there is no ‘melanic morph’ in 

this species). Males are uniformly blue or green, and thus the androchrome morph may 
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represent a male-mimic strategy (Rivera & Sánchez-Guillén, 2007; Abbott & Svensson, 

2010), while the other two morphs are distinct from males, exhibit similar mate-

avoidance strategies (Stoks et al., 2001), and are collectively called gynochromes.  

Energetic and fitness costs of male mating harassment can be quite high in this 

system, and the polymorphism is thought to be maintained by males targeting common 

female morphs for mating attempts, thus providing a rare-morph advantage (Fincke, 

2004; Gosden & Svensson, 2009; Takahashi et al., 2014). Due to potential behavioral 

and reproductive differences among morphs reflecting alternative harassment-avoiding 

tactics (Rivera & Sánchez-Guillén, 2007), or along orthogonal axes of morphic 

differentiation (Abbott & Svensson, 2010), females also likely exhibit divergent mating, 

reproductive, and ecological strategies (Stoks et al., 2001; Takahashi & Kawata, 2013). 

Morph frequencies vary clinally across their geographic range, and previous studies, 

which did not consider populations near the species’ range limits, have reported higher 

frequencies of androchromes at higher latitudes (Hammers & Hans Van Gossum, 2008; 

Gosden et al., 2011; Takahashi et al., 2011). Indirect evidence of ecological differences 

among morphs from population-level data suggests that androchrome frequencies are 

higher in cooler sites within the core of the species range (Hammers & Hans Van 

Gossum, 2008) and androchrome frequencies are also higher when populations are at 

higher densities (Hinnekint, 1987). These data and observations suggest that the 

different morphs are alternatively adapted to different climate and population density 

regimes (Hammers & Hans Van Gossum, 2008; Gosden et al., 2011; Takahashi et al., 

2011). However, studies addressing putative alternative thermal response phenotypes 

among the different morphs have been equivocal. Abbott (2013) found that cold 

temperatures during larval development result in larger sizes of androchromes (but not 

gynochromes, which are already larger than androchromes in Sweden). In contrast, 

Bouton et al. (2011) found no difference between female morphs in developmental 

responses to different temperatures experienced during the egg and hatching phase. 

The fitness consequences of any morphotypic variation in thermally-dependent larval 

growth rates remains unknown.  Here, we examined alternative thermal tolerances of 

adult individuals, which is the life stage at which the colour polymorphism becomes 

evident and can therefore contribute to social feedback on others’ thermal tolerances. 
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Like many other insect species, I. elegans has been found to be expanding its 

range northwards in Europe under the current global warming regime. In the UK, I. 

elegans has expanded its range by 143 km in the past 50 years, and has concomitantly 

increased in population density in the northern part of its range (Hickling et al., 2005). 

Our sampling of the northern range limit of I. elegans in 2013 resulted in discovery of 

new sites beyond the published range limit and north of all previously reported 

sightings, suggesting to us that the range expansion is still underway (see also Sánchez-

Guillén et al. 2015 for projected 2080 range limits for this species). Repeated 

colonisation events combined with increased selection in new habitats at the range 

front can increase the possibility for clines to develop during range expansions, in 

contrast to predicted levels of clinal variation observed in stable populations (Berggren 

et al., 2012; Antoniazza et al., 2014). Thus the current range expansion offers an ideal 

scenario to test for social and environmental influences that could cause, support, or 

reinforce spatial gradients of colour-polymorphic phenotypes as they develop during 

range expansions. 

 

Field work and thermal trials 

 

 Adult damselflies were captured daily throughout the summer flying season 

from a set of intensively-studied populations representing the range core in southern 

Sweden in 2012 (Svensson et al., 2005; Le Rouzic et al., 2015), and in 2013 from a 

similar set of population at the northern range edge in central Sweden. We previously 

reported on regional variation in thermal tolerances using 25 populations from these 

regions (Lancaster et al. 2015). In the current study, populations with fewer than eight 

adult females captured were omitted from the analysis. This resulted in n = 7 

populations at the northern range limit (edge region; latitude = 59.47858 – 59.95853) 

and n= 14 populations in the range core (core region; latitude = 55.60500 – 55.81800). 

This subsetting allows a more reliable estimate of putative frequency dependent effects 

on thermal tolerances. We selected 8 as the cutoff because it balanced the resolution 

and potential accuracy in estimating morph frequencies against loss of data by omitting 

too many populations from the analysis. However, results were similar when the full 

dataset of 25 populations was included. Catching bouts were timed to obtain estimates 

of population density (number of individuals captured per minute of catching effort; 
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Svensson et al. 2005), and data on sex ratio and morph frequencies was recorded (Table 

S1). In each region, individual females of each morph were brought back to lab to be 

weighed (mass recorded in mg) and assessed for cold response phenotypes.  

To assess cold response, sexually-mature female damselflies were placed 

individually in 70cm (diameter) x 30cm (height) containers and provided with 

ventilation and a water source. 15-25 individuals per day were then placed into a 

Binder APT.line KB 53 (E3.1) refrigerated incubator (Binder GmBH, Tuttlingen, 

Germany), with programmable heating- and cooling-rate settings and heat transfer to 

subjects via convection. After a 25-minute equilibration period at 25° C, individuals 

were slowly ramped at a rate of 0.6° C min-1 down to 2° C, where they were retained 

overnight. The end temperature was selected in pilot studies as described in (Lancaster 

et al., 2015). Following the trial, individuals were returned to room temperature and 

their recovery time recorded, up to a censor time of 15 minutes. Recovery was scored 

when individuals flapped their wings in preparation for flight. Because the infuscans-

obsoleta morph is rare in Sweden, this morph was combined with the infuscans morph 

to characterize thermal responses of gynochromes (vs. androchromes), following (Stoks 

et al., 2001; Sánchez-Guillén et al., 2013) and other previous studies. Time to recovery 

from chill coma was assessed to estimate morph-differences in the drivers of cold 

tolerance. Overall, we assessed and analysed chill coma responses for n = 80 mature 

gynochromes and n = 150 mature androchromes, representing n = 3.71 and n = 4 

individual gynochrome females tested per site in the range core and range edge regions 

respectively, and representing n = 8.93  and n = 3.43 individual androchrome females 

tested per site in the range core and range edge regions respectively. While we balanced 

sampling between morphs at each site and in each region as much as possible, the low 

frequencies of gynochomes in the range core resulted in slightly over-sampling of 

androchomes there. 

 

Statistical analyses 

 As previously described in Lancaster et al. (2015), we characterized mean 

climate within study sites using Bioclim variables (Hijmans et al., 2005), and we 

characterized weather events leading up to the day of capture using local weather 

station data from the Swedish Meteorological Institute (www.smhi.se). Population 

density, sex-ratio, and morph frequencies were obtained from our field data (see 

http://www.smhi.se/
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above). To identify factors affecting cold recovery rates for mature females, mixed-effect 

cox proportional hazard models were implemented in the Coxme package for R 

(Therneau, 2015). Effects of female morph, female body mass, site-level values for mean 

annual temperature (Bioclim Bio1) and diurnal temperature range (Bioclim Bio2), more 

recent temperatures from local weather station data, and population-level values for 

sex ratio, density, and morph frequencies, latitude, and interaction effects were tested 

as fixed factors in a single model. Site was included as a random factor. The best model 

was selected using AIC. We also ran individual models to explain cold tolerances of 

androchrome and gynochrome females separately, using the same explanatory 

variables and model selection procedure as in the full model containing all morphs. This 

latter approach provides greater resolution of predictive environmental effects within 

each morph, but results of the separate models cannot be used to infer significant 

differences between the morphs. Plotting of thermal response phenotypes was done in 

the coxph package for R (Figure 2).  

We estimated among-region differences in social and environmental factors in 

single-factor anovas using population-level data on climate, density, sex ratio, and 

morph frequencies, using populations as replicates. Regional differences in mass were 

assessed using individual-level data, and including region as a fixed factor and 

population as a random factor in a mixed model. To identify correlations between 

different social and environmental predictor variables (i.e., correlations of density with 

climate) among sites, we used partial Mantel tests to control for effects of spatial 

relationships among populations. Analyses were performed in R v3.3.0 (R Core 

development Team, 2012), with the lme4 and LmerTest packages (Bates et al., 2014; 

Kuznetsova et al., 2014) used for mixed models and the Ecodist package (Goslee & 

Urban, 2007) for Mantel tests. Reported error terms are standard errors. The ggmap 

package for R (Kahle & Wickham, 2013) was used to create figure 1.  

 

Results 

Factors affecting thermal tolerance of the morphs 

 Recovery rates from the cold-ramp experiment were best predicted by a model 

which included an effect of the female’s morphotype (androchromes exhibited better 

cold tolerance; Table 1A, Figure 2A), morphotype x mass, minimum temperature over 

the past 3 days and the frequencies of female morphs at the site (Table 1A). Thus in the 
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full model, cold hardiness was overall improved by recent cold weather events, and all 

mature females were generally more cold tolerant at sites characterised by higher 

gynochrome frequencies.  

Modeling cold tolerance separately within each female morphotype, we find that 

androchrome chill coma recovery was best predicted by a model that included only 

minimum temperatures over the past 3 days (Table 1B, Fig. 2C; androchrome cold 

tolerance was improved after recent exposure to cold weather). In contrast, 

gynochrome chill coma recovery was best explained by a model that included the 

female’s mass and local morph frequencies at her site of capture (Table 1C, Figure 

2C,D). Heavier gynochromes recovered more quickly from a cold challenge than lighter 

gynochromes, and an increasing frequency of gynochromes in the population was 

associated with quicker recovery times for gynochromes. 

 

Latitudinal clines in ecological and social predictors of cold tolerance within each morph. 

 Using a model including a random factor to account for populations sharing 

weather station data, we found that minimum temperatures over the past 3 days prior 

to capture were lower at the range edge than in the core (effect of region on the average 

recent minimum temperatures for individuals for each population = 1.28 ± 0.51, t = 

2.51, P = 0.02; Figure 1). Population-level gynochrome frequency also differed between 

sampling regions (effect of region on morph frequency = 0.37 ± 0.07, t = 5.10, P < 

0.0001; Figure 1; gynochrome frequencies were higher at the range edge). Body mass, 

which also explained gynochrome cold tolerance (more massive = more cold tolerant), 

decreased towards the range edge in females of both morphs (effect of region on body 

mass of mature females = -5.47 ± 1.43, t = -3.81, P = 0.001; Figure 3), and this effect did 

not differ by morph. We also found that gynochromes were heavier than androchromes 

at all latitudes (effect of morph on mature female body mass = 2.42 ± 0.71, t = 3.41, P = 

0.007; Figure 3). Due to differing but complementary mechanisms affecting variation in 

cold tolerance variation within morphs, all females exhibited increased cold tolerance at 

the range edge in comparison to the core (effect of region on chill coma recovery time = 

0.42 ± 0.66, z = 2.32, P = 0.02). 
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Relationships among predictor variables: 

Correcting for spatial distances among sites, we found that the proportion of 

gynochromes at a site was negatively correlated with mean annual temperature (Mantel 

r = -0.28, P = 0.01; Figure 3), but morph frequencies are uncorrelated with changes in 

recent minimum temperatures leading up to capture dates across our study sites 

(Mantel r = 0.07, P = 0.24). In contrast to previous findings (Hinnekint 1987), morph 

frequencies did not correlate with population density (Mantel r = -0.14, P = 0.12) or 

with sex ratio (Mantel r = 0.11, P = 0.93). Among-population variation in female mass 

did not correlate with population density, sex ratio, morph frequencies, or climate 

variables in a spatial analysis.  

 

Discussion 

 Clinal variation in morph frequencies across environmentally heterogeneous 

landscapes results from complex processes, because both phenotypic expression and 

fitnesses of each morph respond to social processes such as frequency-dependence, as 

well as to non-social, environmental factors and neutral processes. We find that I. 

elegans morph frequencies exhibit a unique latitudinal cline in morph frequencies near 

their northern range limit that corresponds to recent range expansion history and 

climatic differences among sites. Specifically, gynochromes are more common in cooler 

and more recently colonised sites along the northern range margin, while androchrome 

frequencies are higher in warmer sites which are closer to the population core, although 

still relatively far north in reference to the mid-point of the geographic range. This 

result suggests that events during the recent range expansion may have acted to 

counteract the continent-wide latitudinal cline across the range core for this species, in 

which androchrome frequencies increase between Southern Europe and Southern 

Sweden (Gosden et al. 2011). We also found pronounced differences in how underlying 

social and climatic environmental variation shaped thermal tolerances within each 

morph.  

Both androchrome and gynochrome cold tolerances responded to ecological and 

social environments in ways that appeared to facilitate better cold tolerance at higher 

latitudes. In a model considering the general drivers of variation in cold tolerance 

across all females, it was apparent that spatially-varying social (gynochrome 

frequencies) and climatic effects (recent exposure to cold) had beneficial consequences 
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irrespective of morph. However, these individual environmental factors did not equally 

explain variation in cold tolerance observed within each morphotype. Variation in 

androchrome cold tolerance was best explained only by variation in recent weather 

events, such that individuals of this morph produce more cold-tolerant phenotypes 

under conditions of recent cold weather events. This is a classic example of a beneficial 

acclimation strategy, which is commonly reported in invertebrates (Gunderson & 

Stillman, 2015). This phenotypic shift in direct response to thermal conditions allows 

androchromes to cope with intensifying climatic variability at high latitudes. However, 

androchromes might be unable to reach high frequency at the northernmost range limit 

where weather conditions are more variable, and where cold weather events are more 

frequent than in their historic conditions in the range core. Our findings corroborate a 

recent meta-analysis suggesting that adaptive plasticity in thermal tolerance is 

generally insufficient to prepare species for novel sources of thermal stress (e.g., during 

a range expansion or in response to climatic warming; Gunderson and Stillman 2015). 

In contrast to androchromes, variation in cold tolerance within gynochromes 

was not well explained by variation in recent environmental thermal conditions via 

acclimation, but was strongly influenced by social factors. Cold tolerance variation 

within gynochromes was strongly affected by the frequency of gynochromes in the 

population, with gynochromes exhibiting higher cold tolerances when captured from 

sites characterised by high gynochrome frequencies. The mechanism facilitating this 

effect is unknown. One possibility is that cold tolerance is directly affected with both 

individual personality and the levels of social stress that the individual has recently 

experienced. A similar mechanism recently been partially reported for salmonid fish, in 

which subordinate individuals exhibit overexpression of stress-inducible chaperone 

proteins in comparison to dominant fish, in response to social stress and prior to any 

thermal challenges (Currie et al., 2010; LeBlanc et al., 2011). Thus social stress may 

have a pleiotropic effect on thermal stress-response enzyme pathways that mimics cold 

weather acclimation. In I. elegans, gynochromes innately exhibit lower levels of 

behavioural dominance than their androchrome counterparts (Stoks et al., 2001). Due 

to their phenotypic differentiation from males, gynochromes can also experience higher 

harassment rates from males, especially at high frequencies (Fincke 2004), a severe 

source of social stress. If social stress provides a cold-tolerance priming mechanism in I. 

elegans, then our results suggest that higher harassment rates of gynochromes when at 
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high frequencies may indirectly enhance their cold tolerances. Furthermore, the larger 

body mass of gynochromes (in comparison to androchromes) is likely to have initially 

provided a cold-tolerance advantage (e.g., increased flight muscle mass may increase 

the capacity for shivering thermogenesis), and this body size advantage in conferring 

cold tolerance (see results) could later have been amplified by social feedback.  

Of the two, distinct, underlying causes of latitudinal variation in cold tolerance in 

each morph, one involving social feedback and the other based on recent environmental 

temperature variation, social effects had stronger explanatory power for the observed 

cline in morph frequencies near and at the expanding range margin. Thus putative 

selective drivers of spatial variation in morph frequencies in this system do not simply 

reflect straightforward environment-dependent matching of morph-specific variation in 

cold resistance to local abiotic conditions. In such a straightforward scenario of local 

adaptation to abiotic environmental conditions, androchromes, which were better able 

to respond to underlying climatic variation, should have been observed to be more 

frequent at the expanding range edge.  Instead and rather unexpectedly, gynochromes 

increase in frequency at northernmost sites with cooler and harsher climates near the 

poleward expansion front for this species. These high gynochrome frequencies towards 

the range limit might result from or be reinforced by a positive frequency-dependent 

thermal tolerance advantage to gynochromes there (Figure 2A,D, 3).  

 

Increasing frequencies of gynochromes towards the range limit likely results in 

part from a slight thermal tolerance advantage that these social environments confer. 

However, effects of genetic drift and morph- and sex- differences in larval growth 

processes in response to novel climates (Gosden et al, 2011, Abbott 2013) might also 

contribute to the observed cline reversal. These combined effects during range 

expansions may thus reverse or counteract the larger-scale geographic cline across 

Europe with increasing frequencies of androchromes at higher latitudes in I. elegans 

(Hammers & Hans Van Gossum, 2008; Gosden et al., 2011). Recent work at the I. elegans 

poleward range expansion front in Great Britain also suggests that gynochromes 

increase in frequency towards cooler sites within the recently-colonised region 

(Lancaster and Fitt, unpublished data). This provides additional support that the 

continent-wide cline is typically reversed at the poleward expansion front in this 

species. Note also that the positive frequency-dependent effects on gynochrome cold 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

tolerance at the range limits counteracts the typical negative frequency-dependent 

selection that maintains all alternative morphs in populations within the range core (Le 

Rouzic et al., 2015). Together these results suggest that the demographic processes 

underpinning local morph frequency maintenance and large-scale clinal variation in 

morph frequencies in the established portion of the species range might differ 

substantially from the demographic processes occurring at the range margin. At the 

range margin, local populations will encounter novel environmental variation and 

experience demographic expansion. These differences between range core and range 

limit populations may contribute to selection for social benefits that are unique to range 

shifting populations. Such social benefits may contribute to the observed, unexpected 

clinal reversal during colonisation at the expanding range limit.  

 

Conclusions 

Ecological differences among morphs have previously been predicted to 

influence geographic clines in morph frequencies within colour-polymorphic species 

(West-Eberhard, 1986; Corl et al., 2010; Berggren et al., 2012). However, we find that a 

morphotypic cline along a thermal gradient was more strongly related to morph-

specific differences in social responses than ecological responses, possibly because 

social interaction effects can be amplified by positive frequency-dependent feedback, 

while ecological response traits cannot. Our results suggest that whenever phenotypes 

or fitnesses depend on population-level processes (i.e., under frequency- or density-

dependent selection, or effects of conspecifics on trait expression), social feedback can 

reverse or reinforce clines along ecological gradients, particularly during range shifts 

and under novel sources of stress such as climate change.  
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Table 1. Fixed effects in the best models explaining drivers of cold stress 
responses (recovery time from cold-ramping experiments), for mature 
female Ischnura elegans individuals in Sweden. 

    
a) All females : 

   

    
Effect: Estimate: z: P: 

Morph (affect of androchome) -3.86 ± 1.37 -2.81 0.005 

Morph x body mass -0.07 ± 0.03 -2.19 0.03 

Three-day minimum temperature 0.09 ± 0.05 2.07 0.03 

Local gynochrome frequency -1.20 ± 0.63 -1.90 0.05 

    
b) Androchrome females only: 

   

    
Effect: Estimate: z: P: 

Three-day minimum temperature 0.11 ± 0.05 2.44 0.01 

    
c) Gynochromes] females only: 

   

    
Effect: Estimate: z: P: 

Body mass -0.07 ± 0.03  -2.26 0.02 

Local gynochrome frequency -1.66 ± 0.85 -1.95 0.05 

 

Supplementary files: 

Table S1: Morph frequencies, population densities, and sex ratios of adult Ischnura 
elegans at study sites. 

 

Figure legends: 

Figure 1: Location of study populations within and beyond the published range limit. A. 

Towards the northern range expansion front, thermal tolerances of androchromes 

respond to recent weather events (more orange locales = cooler minimum 

temperatures over the 3-day window prior to individual capture days), while 

gynochromes improve thermal tolerances via social feedback (size of circles 
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corresponds to proportions of gynochromes at study sites). Previously-published range 

limit for I. elegans is from Dijkstra and Lewington (2006). B. Ternary plot showing 

morph frequencies at individual study sites at the range limit (red) and in the range 

core (blue). See Table S1 for raw data. 

 

Figure 2: Environmental factors affecting thermal tolerance of different female morphs, 

where thermal tolerance is estimated as the rate of recovery from a low-temperature 

physiological challenge. A. Variation in female cold tolerance by morph and region. B. 

Effect of minimum temperatures over the previous 3 days prior to capture on 

androchrome cold tolerances (a beneficial acclimation effect). C. Effect of body mass on 

cold tolerance of gynochomes. D. Effect of gynochome frequency on gynochrome cold 

tolerance (beneficial social feedback). For visualization purposes only, continuous 

predictor variables (panels B-D) were artificially bisected into two categories (above- 

vs. below-average values for predictor variables), and mean and confidence intervals of 

thermal tolerances associated with these categories are depicted. See Table 1 for 

statistical results. 

 

Figure 3: Relationships among predictor variables (solid lines = positive relationships, 

dashed lines = negative relationships, curved arrows = relationships among predictor 

variables). A. Androchromes exhibited adaptive plasticity in cold tolerance in response 

to relevant cold weather events, which were more common at the range edge. B. 

Gynochromes recovered better from cold challenge if they were more massive or if they 

were from a population with a higher frequency of gynochromes, which were also more 

common at the range edge. Positive feedback between gynochrome chill coma recovery 

and frequency of gynochromes in the population putatively reinforces higher 

frequencies of gynochromes in cooler climates at the northern range limit. 
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Figure 3: 
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