
Argumentation Schemes for Collaborative
Planning

Alice Toniolo1, Timothy J. Norman1, and Katia Sycara2

1 Department of Computing Science, University of Aberdeen, Scotland, UK
{a.toniolo,t.j.norman}@abdn.ac.uk

2 Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, US
katia@cs.cmu.edu

Abstract. We address the collaborative planning problem in teams of
agents where partners have different objectives and norms. In this con-
text, agreeing on the best course of action to adopt represents a signifi-
cant challenge. Concurrent actions and causal plan-constraints may lead
to conflicts of opinion on what to do. Moreover, individual norms can
constrain agent behaviour. We propose an argumentation-based model
for deliberative dialogues based on argumentation schemes. This model
facilitates agreements about joint plans by enriching the quality of the
dialogue through the exchange of relevant information about plan com-
mitments and norms.

Keywords: Argumentation schemes, Practical reasoning, Planning

1 Introduction

In collaborative planning, distributed intelligent agents work in cooperation to
create an agreed plan of activities to fulfil requirements that are unachievable by
single individuals. For effective teamwork, mechanisms that enable agreements
to be reached regarding a shared plan are essential. Identifying the best course of
action is a complex task when agents of the team represent independent organi-
sations with their own objectives, activities to perform and regulations to follow.
Recent work has shown that the use of argumentation models for deliberative di-
alogues is a promising approach for generating consistent collaborative plans [1,
8]. Argumentation-based dialogues provide mechanisms to facilitate agreements
through the exchange of information about collaborative tasks.

In this paper, we present a model of arguments, based on argumentation
schemes, that can be used for deliberative dialogues among a team of agents
in preparing a collaborative plan where agents have different objectives. This
model deals with issues involved in planning, considering a wide set of conflicts
among actions and norm constraints. Previous work has considered norms and
plan-constraints in separate contexts for solving conflicts in practical reasoning
[1, 8] and for norm adoption [6], but in this paper we bring together these issues
within a single coherent model. Existing research on argumentation for practical
reasoning has mainly focussed on collaboration among agents in the creation of



2 Alice Toniolo, Timothy J. Norman, and Katia Sycara

a common plan when agents have different beliefs or preferences. For example, in
the model presented in [1] the arguments allow agents to explore what is possible
and justified at the level of a single plan among a group of agents.

In contrast, our model explores what is possible when agents elaborate indi-
vidual plans for achieving different objectives where only some activities require
cooperation. When an agent requires collaboration for performing an action, our
model allows agents to argue about possible conflicts with their individual plans
such as concurrency, causality and legality of actions. Agents can also justify the
need to adopt certain actions according to their plan rules and norms. Our model
of arguments allows agent to exploit these conflicts, understand the reasons that
have caused them and facilitate the establishment of agreements.

This paper is organised as follows. Section 2 introduces the deliberative di-
alogue. Section 3 describes a language for plans. In Section 4 we describe the
structure of the argumentation framework followed by the different kinds of ar-
guments. In Section 5 we discuss related work and our conclusions.

2 Deliberative Dialogue

In our scenario agents are heterogeneous and may have different objectives that
are not necessarily known to others. Agents prepare individual plans and, then,
engage in deliberative dialogue regarding collaborative actions. The debate com-
mences when one agent informs the team about its intention to perform an ac-
tion or requests an action to be performed by others. The proponent may seek
collaboration for different reasons; for example, the agent needs to obtain a per-
mission from others to perform an action. The proponent engages in a discussion
with other agents describing the action with preconditions, effects and the goal
that this action will help to achieve. The opponents, receiving more information
about the action, can select new arguments according to conflicts with their com-
mitments. The agents involved will then exchange arguments attacking others’
opinions. The discussion ends when the parties agree on which course of action
to perform, or when there are no other new arguments to exchange. If agents
agree, the action is included in the agents’ individual plans and in the shared
plan. If agents disagree, the proponent withdraws the proposal and re-plans the
action with an alternative that would not conflict with the new information
gathered. The protocol of a dispute between two agents x, y about a proposal
ϕ for an action is proposed in Fig.1 following similar protocols presented in the
literature (e.g. [5]). In this paper we propose three schemes for arguments that
agents can use during the discussion according to issues of practical reasoning
such as concurrent actions, causality among actions and norms.

3 A Model of Plans

The language for plans that underpins our model is based on situation calculus
[9]. In this section we introduce the planning domain using the foundational
axioms [9] extended for temporal applications [7] and norms [4].



Argumentation Schemes for Collaborative Planning 3

0 1

6

4

3 7

Propose(x,y,φ)

Withdraw(x,y,φ)

Reject(y,x,φ)

Argue(x,y)

Agree(y,x,φ)

Agree(y,x,φ)

why(y,x)

2

5

Argue(y,x)

why(x,y)
why(y,x)

Agree(y,x,φ)

Argue(y,x)

Argue(x,y)
Withdraw(x,y,φ)

Fig. 1. Deliberative protocol for proponent x and opponent y about a proposal ϕ.

Planning Domain. The language includes the following sorts: A for actions,
S for situations, O for domain objects and T for time stamps ranging over the
integers. Lower case letters refer to variables, a ∈ A, s ∈ S, v ∈ O, t ∈ T and
upper case letters to constants. The operators are ∧,∨,⊃,≡,∀,∃,=, 6= and where
not specified free variables are universally quantified. We refer to the set of agents
as Agt ⊂ O where Agt = {x, y, z, . . . }. A fluent r(v1, . . . , vn, s) is a predicate
that represents the feature of the world in situation s; R(s) refers to the ground
predicate r in s. S0 ∈ S is the initial situation. Other elements are: a predicate
do(a, s) to indicate a situation resulting from performing action a in s; a relation
s < s′ to order situations, where s occurs before s′; and a predicate Poss(a, s) to
indicate that action a can be performed in s. Intuitively, through instantiations
of Poss(a, s), situations are structured as a tree where the root is S0, nodes
are situations representing the world while arcs are possible actions that modify
the state of the world. Each situation s is the result of performing a sequence
of actions from root S0, represented as s = do(an, do(an−1, . . . do(a1, S0))) and
abbreviated s = do(〈a1; . . . ; an〉, S0). This tree represents the planning domain.
A Basic Action Theory D [9] defines the axioms for the the planning domain.
Our model is based on an extended version, Dext, for norms and durative actions.

Definition 1. An Extended Action Theory is Dext = D ∪Ωd ∪Ωn where:

– D = Σ ∪ DS0 ∪ Duna ∪ Dss ∪ Dap is a Basic Action Theory where:
• Σ: set of domain independent axioms for situations.
• DS0

: set of sentences representing the initial state of the world.
• Duna: set of unique name axioms for actions.
• Dap: set of action precondition axioms in the form ΠA(s) ≡ Poss(A, s).
• Dss: set of successor state axioms in the form:

Poss(a, s) ⊃ [R(do(a, s)) ≡ γ+
R (a, s) ∨ (R(s) ∧ ¬γ−R (a, s))]

where γ+R , γ
−
R represent the add and delete conditions for fluent R.

– Ωd: set of axioms that handle actions with duration.
– Ωn: set of axioms that handle norms.

The set Ωd includes axioms that ensure consistency for actions with duration
ad ∈ A, following a work and notation of Pinto et al. [7]. Intuitively, action ad is
formed by: an instantaneous action begin(ad) for the beginning of ad; an action



4 Alice Toniolo, Timothy J. Norman, and Katia Sycara

end(ad) for the end of ad; and a fluent exec(ad, s) for the execution of ad during
s. In this approach different actions can be concurrent as long as their beginning
and ending points do not coincide. The extension Ωn (based on Demolombe et al.
[4]) includes axioms that define what an agent is obliged, permitted or forbidden
to do in terms of actions and features of the world under certain conditions. We
assume that everything is permitted when not explicitly prohibited and that all
individual norms are logically consistent. Active norms branch nodes or arcs of
the possible situation tree. Two operators, O and F , combined to a fluent express
obligations and prohibitions. A special fluent occ(a, s), denoting an action which
occurs at the end of s, is used to represent norms that regulate actions.

Definition 2. The following fluents define norm constraints: OR(s) is an obli-
gation fluent which holds in situation s iff a norm asserts that fluent R must hold
in s. FR(s) is a prohibition fluent which holds in s iff a norm asserts that R must
not hold in s. FR(s) ∧ R(s) and OR(s) ∧ ¬R(s) are violations for these norms.
Oocc(A)(s) indicates that an action A must be the next action occurring after s.
Focc(A)(s) indicates that action A is forbidden to occur as the next action. Vi-
olations are Poss(A, s)∧ [(∃a).(a 6= A)∧Oocc(a)(s)] and Focc(A)(s)∧Poss(A, s).

When an action ad is executed in an interval s1 to s2, if ad is forbidden beginning,
end and execution of ad are forbidden for the whole interval, Focc(Ad)(s1, s2).
If ad is obliged, the condition enforces ad to start in situation s1 and end in
s2, Oocc(Ad)(s1, s2). Each norm fluent is accompanied by a successor state ax-
iom in the form of Def.1; e.g. OR(do(a, s)) ≡ [ξ+OR

(a, s) ∨ (OR(s) ∧ ¬ξ−OR
(a, s))],

where ξ+, ξ− are conditions of activation and expiration of norms. A situa-
tion s is legal when all the actions in the history of s are possible defined by
the predicate legal(s) ≡ [s = S0 ∨ (∀a, s′).do(a, s′) ≤ s ⊃ Poss(a, s′) ∧ ¬η(a, s′)]

and compliant with the norms ensured by the predicate η(a, s) defined as:
η(a, s) ≡ [(∃r).r(s) ∧ Fr(s) ∨ ¬r(s) ∧Or(s)] ∨ [Focc(a)(s) ∨ (∃a′ 6= a) ∧Oocc(a′)(s)].

Agent Plans. An agent x maintains a description of the planning domain as a
subset of the extended action theory, Dxext ⊆ Dext. Agent x’s individual plan P x

is a sequence of actions that identifies a path of possible and legal situations in
the situation tree that goes from the root to a situation where the overall goal
is satisfied. The goals of an agent x are a set of sentences ψk. The overall goal
Ψ is defined by their conjunction through a sentence Ψ ≡ ψ1 ∧ · · · ∧ ψm. Since
actions of an agent may not be known by other agents, situations represent only
internal states and they have no meaning outside that agent’s subjective frame
of reference. We denote Sx as a situation on the path identified by x’s plan.

Definition 3. An individual plan P x is a solution for a planning problem iden-
tified by a domain Dxext and a goal Ψ . P x = 〈A1; . . . ;An〉 is a sequence of actions
that identifies a path of legal situations from Sx0 to a situation Sxn where Ψ(Sxn)
is satisfied. Dxext |= legal(Sxn) ∧ Ψ(Sxn) and Sxn = do(〈A1; . . . ;An〉, Sx0 ).

In order for agents to engage in dialogue about their plans, they rely on a common
time line where the path of situations identified by the plan is grounded to obtain
a temporal plan, ~P

x
. Two functions are used for an agent x to identify the plan



Argumentation Schemes for Collaborative Planning 5

Table 1. Elements of ~P
x
.

• P x(ψk): sequence of actions in P x to achieve a goal ψk in Sx
k where Sx

k ≤ Sx
n.

• PAk = {R1, . . . , Rn}: set of preconditions of action Ak. If Ak is in P x, ΠAk

must hold in a situation Sx
k−1 since ΠAk (Sx

k−1) ≡ Poss(Ak, S
x
k−1). PAk is the

minimal set of Ri holding in Sx
k−1 that satisfies the formula ΠAk (Sx

k−1).
• EAk = {R1, . . . , Rm}: set of effects of action Ak. A fluent Ri(S

x
k ) is an effect of

Ak if the transition causes a change of its truth value Ri(S
x
k−1) ≡ ¬Ri(S

x
k ).

• 〈PAk , EAk〉: tuple representing the execution of an action. When Adk has dura-
tion, PAdk = Pbegin(Adk) and EAdk = Eend(Adk) are related to the global action.

• cLink(R,Ah, Ak): causal link which represents a relation between Ah and Ak

in P x, with Sx
k = do(Ak, S

x
k−1) and Sx

h = do(Ah, S
x
h−1), where a precondition

R(Sx
k−1) ∈ PAk not true in S0, is provided by an effect R(Sx

h) ∈ EAh of a previous
action Ah and Sx

h ≤ Sx
k−1. R(sx) holds in all the situations Sx

h ≤ sx ≤ Sx
k−1.

• occBet(a, sx1 , sx2): an action a occurs in the path from sx1 to sx2 defined as
occBet(a, sx1 , s

x
2) ≡ [(∃sxp , sxq ).sxq = do(a, sxp) ∧ sx1 ≤ sxp < sxq ≤ sx2 ].

• occBetT (a, t1, t2):] represents the previous relation in terms of time obtained
from occBetT (a, t1, t2) ≡ [occBet(a, sx1 , s

x
2) ∧ start(sx1) = t1 ∧ start(sx2) = t2].

• occOver(ad, s
x
1 , s

x
2): the execution of ad overlaps the path sx1 to sx2 , where

occOver(ad, s
x
1 , s

x
2) ≡ [occBet(begin(ad), sx1 , s

x
2) ∨ occBet(end(ad), sx1 , s

x
2)].

• occOverT (ad, t1, t2): the corresponding time relation where
occOverT (ad, t1, t2) ≡ [occBetT (begin(ad), t1, t2) ∨ occBetT (end(ad), t1, t2)].

• Norm Premises: A norm is activated if the formula ξ+F/OR
(Ap, S

x
p ) holds in Sx

p =

do(Ap, S
x
p−1). The norm premises are identified by NPrem = {R1, . . . , Rn} as

the minimal set of Ri(S
x
p−1) which satisfy ξ+ and Adp causing the transition.

temporally grounded. A function start(sx) = t indicates the time t when the
situation sx begins (start(S0) = 0). A function sit(x, t) returns the ongoing sit-
uation in x’s plan at time t. In fact, sx is returned if (∃sx, a).start(sx) ≤ t <
start(do(a, sx)) ⊃ sit(x, t) = sx. When action Ak in P x causes the transition
from Sxk−1 to Sxk = do(Ak, S

x
k−1) and the temporal axioms are start(Sxk−1) =

Tk−1 and start(Sxk ) = Tk, we refer to the temporal action Ak as [Tk]Ak. Hence,

the plan ~P
x

is composed by ~P
x

= 〈[T1]A1; . . . ; [Tn]An〉. Moreover, agents en-
gaging in dialogue need to deal with new knowledge introduced by other team
members. We use the K-accessibility relation in [9] where K(s′, s) indicates that
in s an agent believes that the world is in situation s′. This relation associates
situations that the agent considers indistinguishable. An agent x knows ϕ in sx,

Know(ϕ, sx)
def
= ∀sxq (K(sxq , s

x) ⊃ ϕ(sxq )), if ϕ holds in all situations K-accessible
from sx. Table 1 summarises further elements of plan that are used in the paper.

4 Argumentation

The arguments that agents use during the deliberative dialogue are structured as
argumentation schemes [10]. These schemes are composed by premises and con-
clusions (identified by “⇒”). Each scheme also includes a set of critical questions
CQs that provide a structured way of challenging an argument. Thus, argumen-



6 Alice Toniolo, Timothy J. Norman, and Katia Sycara

tation schemes are defeasible rules of inference in the norm-governed practical
reasoning context that provide heuristics to guide the deliberative dialogue. We
introduce general critical questions which identify the type of argument that can
be formulated and then we specify what each argument can capture with more
specific attacks (ATK s). The following locutions are used in the arguments:

Definition 4. Given plan ~P
x

of agent x: Perform(x,Adk, Tk1, Tk2) indicates
that x intends to perform action Adk through [Tk1]begin(Adk), [Tk2]end(Adk);

Hold(x,R, Tk) indicates that for x a feature R holds at Tk, Hold(x,R, Tk)
def
=

[R(Sxk ) ∧ start(Sxk ) = Tk] and ¬Hold(x,R, Tk)
def
= [¬R(Sxk ) ∧ start(Sxk ) = Tk];

Hold(x, {R1, . . . , Rn}, Tk)
def
= [Hold(x,R1, Tk) ∧ · · · ∧Hold(x,Rn, Tk)] is used for

a set of features; achieve(x, ψk) indicates that x intends to achieve goal ψk.

In our description the debate is between agent x and agent y where x is in-
forming y about the intention of performing action Adk. Hence, the claim ϕ is
Perform(x,Adk, Tk1, Tk2). The individual plans are ~P

x
and ~P

y
where Adk is in

~P
x

and if agents agree, Adk will be included in the set of agreed actions ~P
xy

.
We take as starting point an adaptation of Atkinson’s argumentation scheme

for practical reasoning [1]. This scheme involves a single action warranted by
preconditions, where the effects allow the agent to achieve a goal which promotes
or demotes a value. An argument ArgI initiates the debate about the action,
i.e. Perform(x,Adk, Tk1, Tk2). The proponent specifies PAdk

, EAdk
for Adk in ~P

x

and a partial goal ψk where Adk ∈ P x(ψk). The initial argument ArgI results:

ArgI : - Given preconditions Hold(x,PAdk , Tk1)
- Perform(x,Adk, Tk1, Tk2)
- brings about Hold(x, EAdk , Tk2)
- that will contribute to achieve(x, ψk) [where Adk ∈ P x(ψk)],
⇒ therefore Perform(x,Adk, Tk1, Tk2)

The opponent y receiving ArgI can select new arguments according to possible
conflicts with commitments and norms following the critical questions:

– CQ1: Is the action possible according to concurrent actions in the plan?
– CQ2: Is the action possible according to causal plan constraints?
– CQ3: Is there any norm which regulates actions or states of the world?

A description of the argument structures is presented in the following sections.

Arguments for Concurrent Actions. Here, we explore the critical question
CQ1 concerned with concurrent actions. The argumentation scheme Argc is an
extension of the initial argument where action Adk is considered in the context of
other actions already scheduled in an individual plan. Although in an individual
plan actions can be concurrent only if starting or ending points do not coincide,
actions from different plans can entirely overlap. Two concurrent actions Ak and
Ah are executable if their preconditions hold and their effects are consistent.
Furthermore, the effects of Ak should not contradict the preconditions of Ah
and vice-versa. For a durative action Adk there should not be direct interference
on its preconditions and effects with other actions Adh throughout its execution.



Argumentation Schemes for Collaborative Planning 7

When agent x discusses with y about Adk with specifications 〈PAdk
, EAdk

〉
(see Table 1), y needs to identify its internal situations that correspond to the ex-
ecution of Adk. Action Adk is represented by [Tk1]begin(Adk) and [Tk2]end(Adk)

in ~P
x
. The situations that delimit Adk from y’s point of view are sit(y, Tk1)

and sit(y, Tk2). Suppose that in y’s plan there is an action Adh overlapping the
execution of Adk, (∃sy).sit(y, Tk1) ≤ sy ≤ sit(y, Tk2) where exec(Ah, s

y) holds.

Action Adh is formed by [Th1]begin(Adh), [Th2]end(Adh) in ~P
y
. The concurrency

for y is occOver(Adk, S
y
h1, S

y
h2) where Sy

h1−1 < Sy
h1 ≤ Sy

h2−1 < Sy
h2 and Sy

h1 =

do(begin(Adh), Sy
h1−1) ∧ Sy

h2 = do(end(Adh), Sy
h2−1) ∧ start(Sy

h1) = Th1 ∧ start(Sy
h2) =

Th2. Action Adk is possible for agent y only if there is no interference on pre-
conditions and effects between Adk and Adh throughout their execution; i.e.
(∀sy, r).r ∈ {PAdk ∪EAdk}∧S

y
h1 ≤ s

y ≤ Sy
h2 ∧ occOver(Adk, S

y
h1, S

y
h2) ⊃ Know(r, sy)∨

¬Know(¬r, sy)∨¬Know(r, sy). The conflicting condition is Know(¬R, sy). Action
Adk cannot be adopted by y when in its plan there is a concurrent action Adh
and: i)Adk has an effect R ∈ EAdk

that contradicts an effect ¬R ∈ EAdh
of Adh;

ii) Adk has an effect R ∈ EAdk
that negates a precondition ¬R ∈ PAdh

of Adh;
iii) Adk has a precondition R ∈ PAdk

negated by an effect ¬R ∈ EAdh
of Adh; iv)

Adk has a precondition R ∈ PAdk
that contradicts a precondition ¬R ∈ PAdh

.
Argument Argc involves the two conflicting actions Adk, Adh with their spec-

ifications. The conflict is caused by Adk, which occOverT (Adk, Th1, Th2), since
R ∈ {PAdk ∪ EAdk} and ¬R ∈ {PAdh ∪ EAdh}. Argc has the structure:
Argc: - Given preconditions Hold(x,PAdk , Tk1),

- Perform(x,Adk, Tk1, Tk2),
- brings about Hold(x, EAdk , Tk2) [and R ∈ {PAdk ∪ EAdk}],
- and given preconditions Hold(y,PAdh , Th1),
- ¬Perform(y,Adh, Th1, Th2),
- brings about ¬Hold(y, EAdh , Th2) [and ¬R ∈ {PAdh ∪ EAdh}]
- that will contribute ¬achieve(y, ψh), [and Adh ∈ P y(ψh)]
- and occOverT (Adk, Th1, Th2)
⇒ therefore ¬Perform(x,Adk, Tk1, Tk2) ∧ Perform(y,Adh, Th1, Th2).

The conditions for conflicts between two concurrent actions lead an agent to for-
mulate the following attacks against an action Adk (formalised in Table 2):

– ATK1.1: Adk has an effect R that contradicts an effect ¬R of action Adh in my
plan and their execution overlaps, therefore Adk should not be performed.

– ATK1.2: Adk has an effect R that negates a precondition ¬R of Adh in my plan
and their execution overlaps, therefore Adk should not be performed.

– ATK1.3: Adk has a precondition R that is negated by an effect ¬R of Adh in my
plan and their execution overlaps, therefore Adk should not be performed.

– ATK1.4: Adk has a precondition R that contradicts a precondition ¬R of action
Adh in my plan and their execution overlaps, hence Adk should not be performed.

Arguments for Plan Constraints. In this section we define the argument
for causal plan constraints Argp following CQ2. The preconditions that allow
to schedule an action in the plan must be satisfied by performing other actions
when not true at the outset. The causal relations among these actions must be
protected when new actions are included in the plan for ensuring consistency.
When an agent y receives a proposal Perform(x,Adk, Tk1, Tk2) from agent x with



8 Alice Toniolo, Timothy J. Norman, and Katia Sycara

〈PAdk
, EAdk

〉, it should verify that Adk does not threat any causal relation in ~P
y
.

Assume that Adk has a precondition or an effect R, but ¬R is a causal link
between two actions Ada and Adb in ~P

y
. A conflict occurs when action Adk is

concurrent to the execution of the sequence of the two actions Ada and Adb. The
link is represented as cLink(¬R,Ada, Adb) where ¬R ∈ EAda

and ¬R ∈ PAdb
(see

Table 1). Agent y believes that Know(¬R, sy) in the path (∀sy)Sya1 ≤ sy ≤ S
y
b2

from the starting of Ada to the end of Adb, where Sya1 = do(begin(Aa), Sya1−1)
and Syb2 = do(end(Ab), S

y
b2−1). Action Adk where R ∈ {PAdk

∪ EAdk
} is a threat

to the causal link if occOver(Adk, S
y
a1, S

y
b2) holds. Hence, argument Argp results:

Argp: - Given preconditions Hold(x,PAdk , Tk1),
- Perform(x,Adk, Tk1, Tk2),
- brings about Hold(x, EAdk , Tk2) [and R ∈ {PAdk ∪ EAdk}],
- Given cLink(¬R,Ada, Adb)
- ¬Perform(y,Ada, Ta1, Ta2) and ¬Perform(y,Adb, Tb1, Tb2),
- and occOverT (Adk, Ta1, Tb2)
⇒ therefore ¬Perform(x,Adk, Tk1, Tk2) ∧ Perform(y,Ada, Ta1, Ta2)∧

Perform(y,Adb, Tb1, Tb2)

An opponent agent can use an attack Adk if threat to the causal link is caused
by its preconditions or effects. Agent x can also justify the adoption of an action
with a similar argument. If x’s plan contains a causal link from Adk to Adj ∈ ~P

x
,

cLink(Q,Adk, Adj) such that Q ∈ EAdk
, Q ∈ PAdj

, then Adk is necessary to
perform Adj . Therefore, agent x can formulate the arguments (see Table 2):

– ATK2.1: A precondition of action Adk is a threat to a causal link between two
action Ada, Adb in my plan, therefore Adk should not be performed.

– ATK2.2: An effect of action Adk is a threat to a causal link between two action
Ada, Adb in my plan, therefore Adk should not be performed.

– ATK2.3: The effects of action Adk are fundamental preconditions for executing
action Adj in my plan, therefore Adk should be performed.

Arguments for Norms. Here, we expand upon the critical question CQ3 for
norms. We consider norms as external regulations about what the agent is for-
bidden or obliged to do in terms of actions and states of the world. Agents’
plans are internally norm-consistent enforced by the legality of situation Sn
where the overall individual goal is achieved. Conflicts may arise when new
information about states of the world or actions introduced by others cause in-
consistencies. An agent x can assert that a feature Rk holds, Hold(x,Rk, Tk).
From agent y’s point of view this is possible only if Rk is not forbidden to hold,
¬Know(FRk

, sit(y, Tk))∧¬Know(O¬Rk
, sit(y, Tk)). When an agent x claims to

Perform(x,Adk, Tk1, Tk2), y’s norms allow x to perform Adk only if the inter-
val of the execution of Adk does not overlap an interval where a norm forbids
the performance of the action. If Focc(Adk)(S

y
1 , S

y
2 ) and OccOver(Adk, S

y
1 , S

y
2 ),

where the interval of situations sit(y, Tk1) to sit(y, Tk2) overlaps Sy1 to Sy2 , then
performing Adk is forbidden. The argument for norms is based on the normative
reasoning scheme proposed by Oren et al. [6]. The structure involves the active
norm with conclusions about actions and features of the world and its premises
as Hold(y,NPrem, Tp) and Perform(y,Adp, Tp1, Tp2) (see Table 1). Hence, the
argument for norms for a prohibition Argn has the following structure:



Argumentation Schemes for Collaborative Planning 9

Argn: - Given premises Hold(y,NPrem, Tp) and Perform(y,Adp, Tp1, Tp2),
- a norm Forbids to
- Perform(x,Adk, Tk1, Tk2)/Hold(x,R, Tk)
⇒ therefore ¬Perform(x,Adk, Tk1, Tk2)/¬Hold(x,R, Tk)

An opponent y can argue against a proponent x according to the instantiated
norms. Furthermore, those parts in x’s plan committed to maintain norm consis-
tency can be justified with a similar argument. Agent x can claimHold(x,Rk, Tk)
because of a norm that enforces ORk

(Sxk ) or F¬Rk
(Sxk ) where Tk = start(Sxk ). A

norm can enforce an agent x to Perform(x,Adk, Tk1, Tk2). If action Adk is obliged
to occur between Sx1 and Sx2 where start(Sx1 ) = Tk1 and start(Sx2 ) = Tk2 then,

Table 2. Formalisation of Arguments Argc, Argp, Argn

CQ1-ATK1.1: 〈Hold(x,PAdk , Tk1),Perform(x,Adk, Tk1, Tk2), Hold(x, EAdk , Tk2)∧
R ∈ EAdk , Hold(y,PAdh , Th1),¬Perform(y,Adh, Th1, Th2),¬Hold(y, EAdh , Th2)∧
¬R ∈ EAdh ,¬achieve(y, ψh), occOverT (Adk, Th1, Th2)
⇒ ¬Perform(x,Adk, Tk1, Tk2) ∧ Perform(y,Adh, Th1, Th2)〉
CQ1-ATK1.2:〈Hold(x,PAdk , Tk1),Perform(x,Adk, Tk1, Tk2), Hold(x, EAdk , Tk2)∧
R ∈ EAdk ,¬Hold(y,PAdh , Th1) ∧¬R ∈ PAdh ,¬Perform(y,Adh, Th1, Th2),
¬Hold(y, EAdh , Th2),¬achieve(y, ψh), occOverT (Adk, Th1, Th2)
⇒ ¬Perform(x,Adk, Tk1, Tk2) ∧ Perform(y,Adh, Th1, Th2)〉
CQ1-ATK1.3: 〈Hold(x,PAdk , Tk1) ∧R ∈ PAdk ,Perform(x,Adk, Tk1, Tk2),
Hold(x, EAdk , Tk2), Hold(y,PAdh , Th1),¬Perform(y,Adh, Th1, Th2),
¬Hold(y, EAdh , Th2) ∧¬R ∈ EAdh ,¬achieve(y, ψh), occOverT (Adk, Th1, Th2)
⇒ ¬Perform(x,Adk, Tk1, Tk2) ∧ Perform(y,Adh, Th1, Th2)〉
CQ1-ATK1.4: 〈Hold(x,PAdk , Tk1) ∧R ∈ PAdk ,Perform(x,Adk, Tk1, Tk2),
Hold(x, EAdk , Tk2),¬Hold(y,PAdh , Th1) ∧¬R ∈ PAdh ,¬Perform(y,Adh, Th1, Th2),
¬Hold(y, EAdh , Th2),¬achieve(y, ψh), occOverT (Adk, Th1, Th2)
⇒ ¬Perform(x,Adk, Tk1, Tk2) ∧ Perform(y,Adh, Th1, Th2)〉
CQ2-ATK2.1: 〈Hold(x,PAdk , Tk1) ∧R ∈ PAdk ,Perform(x,Adk, Tk1, Tk2),
Hold(x, EAdk , Tk2), cLink(¬R, Ada, Adb),¬Perform(y,Ada, Ta1, Ta2),
¬Perform(y,Adb, Tb1, Tb2), occOverT (Adk, Ta1, Tb2)⇒
¬Perform(x,Adk, Tk1, Tk2) ∧ Perform(y,Ada, Ta1, Ta2) ∧ Perform(y,Adb, Tb1, Tb2)〉
CQ2-ATK2.2: 〈Hold(x,PAdk , Tk1),Perform(x,Adk, Tk1, Tk2), Hold(x, EAdk , Tk2)∧
R ∈ EAdk , cLink(¬R, Ada, Adb),¬Perform(y,Ada, Ta1, Ta2),
¬Perform(y,Adb, Tb1, Tb2), occOverT (Adk, Ta1, Tb2)⇒
¬Perform(x,Adk, Tk1, Tk2) ∧ Perform(y,Ada, Ta1, Ta2) ∧ Perform(y,Adb, Tb1, Tb2)〉
CQ2-ATK2.3: 〈Hold(x,PAdk , Tk1),Perform(x,Adk, Tk1, Tk2), Hold(x, EAdk , Tk2)∧
R ∈ EAdk , cLink(R, Adk, Adj),Perform(x,Adk, Tk1, Tk2),Perform(x,Adj , Tj1, Tj2),
occOverT (Adk, Tk1, Tj2)⇒ Perform(x,Adk, Tk1, Tk2) ∧ Perform(x,Adj , Tj1, Tj2)〉
CQ3-ATK3.1: 〈Hold(y,NPrem, Tp) ∧ Perform(y,Adp, Tp1, Tp2),
Forbids : Perform(x,Adk, Tk1, Tk2)⇒ ¬Perform(x,Adk, Tk1, Tk2)〉
CQ3-ATK3.2: 〈Hold(y,NPrem, Tp) ∧ Perform(y,Adp, Tp1, Tp2),
Forbids : Hold(x,R, Tk)⇒ ¬Hold(x,R, Tk)〉
CQ3-ATK3.3: 〈Hold(x,NPrem, Tq) ∧ Perform(x,Adq, Tq1, Tq2),
Obliges : Perform(x,Adk, Tk1, Tk2)⇒ Perform(x,Adk, Tk1, Tk2)〉
CQ3-ATK3.4: 〈Hold(x,NPrem, Tq) ∧ Perform(x,Adq, Tq1, Tq2),
Obliges : Hold(x,R, Tk)⇒ Hold(x,R, Tk)〉



10 Alice Toniolo, Timothy J. Norman, and Katia Sycara

Oocc(Adk)(S
x
1 , S

x
2 ), action Adk must be performed between time Tk1 and Tk2. The

arguments for norms are identified as follows (formal structure in Table 2):

– ATK3.1: An active norm in my plan forbids an action Adk to be performed,
therefore Adk should not be performed.

– ATK3.2: An active norm in my plan forbids a feature of the world R to hold,
therefore R should not hold.

– ATK3.3: An active norm in my plan obliges an action Adk to be performed,
therefore Adk should be performed.

– ATK3.4: An active norm in my plan obliges a feature of the world R to hold,
therefore R should hold.

4.1 Example

In this section we illustrate some characteristics of our formal model using an
example. Agent x represents a travel agency that targets a sustainable tourism
through the collaboration with local transportation companies to create holiday
tours. Agent x schedules a package to the mountains considering two destina-
tions, C and D. C is the only possible because D is dangerous and an internal
policy forbids to schedule trips towards unsafe destinations. The group of cus-
tomers Gr leaves from location A by train Tr to a station B and, then, they will
take bus Bs to reach C (See Fig.3). Travel agency x engages in a discussion with
train company y for obtaining information about Tr from A to B. The initial
proposal is Perform(x,Ad1, 2, 8). Agent y is planning on the same period to do
some maintenance on the railway path from A to B and it is obliged to divert the
train Tr for B towards a location E in order to secure the railway path. Hence,
the train company rejects the proposal. The agents will exchange few arguments
following the protocol in Fig.1. At the end, since x cannot formulate any other
argument it withdraws the action and re-plans avoiding the train from A to B.
The arguments presented are formalised in Tab.4. The argument ArgI explains
the requirements of action Ad1. Using ATK2.3, x explains that the customers
have to reach B for catching the bus from B to C. Action Ad1 is justified with
Ad2 following the causal link cLink(R2, Ad1, Ad2). Using ATK1.1 y explains that
Tr leaving from A is diverted towards location E and it will not reach B at the
scheduled time. Diverting Tr, Ad4, is necessary for the train company to se-
cure the part of railway under maintenance, ψ2(Sy4 ). The conflict occurs because
Ad1 is concurrent to Ad4 where occOverT (Ad1, 2, 7). Agent y justifies Ad4 with
ATK3.3 claiming that a norm obliges y to divert the train when railway works
are scheduled, Ad3, and the path between A and B is a single track railway R13.

5 Discussion and Conclusions

In this paper we have presented a model for arguments that contributes in delib-
erative dialogues, based on argumentation schemes for arguing about norms and
actions in a multi-agent system. Argumentation for deliberative dialogues has
been the topic of numerous research efforts over the last few years [1, 8]. Atkinson
et al. [1] proposed an approach for practical reasoning based on argumentation



Argumentation Schemes for Collaborative Planning 11

Table 3. Scenario of Example.

Agent x: Travel Agency

Loc. A Loc. B

Loc. C

Loc. D

Gr

Tr

Bs

Ad1=Take(Gr,Tr,A,B) Ad2=Take(Gr,Bs,B,C)

Initial situation: R1(S
x
0 ), R5(S

x
0 ), R7(S

x
0 ), R9(S

x
0 ), R10(S

x
0 )

Norms: FR4
(Sx

0 ) Goals: Ψ(s) = ψ1(s) where ψ1 = R3 ∨ R4

Plan: ~P
x
= 〈[2]begin(Ad1), [8]end(Ad1), [9]begin(Ad2), [12]end(Ad2)〉

Def. R1 = in(Gr,A)

R2 = in(Gr,B)

R3 = in(Gr,C)

R4 = in(Gr,D)

R5 = in(Tr,A)

R6 = in(Tr,B)

R7 = in(Bs,B)

R8 = in(Bs,C)

R9 = dest(Tr,B)

R10 = dest(Bs,C)

Situations: Sx
0 ;S

x
1 = do(begin(Ad1), S

x
0 );S

x
2 = do(end(Ad1), S

x
1 );

Sx
3 = do(begin(Ad2), S

x
2 );S

x
4 = do(end(Ad2), S

x
3 )

Time: start(Sx
0 ) = 0, start(Sx

1 ) = 2, start(Sx
2 ) = 8, start(Sx

3 ) = 9, start(Sx
4 ) = 12

Agent y: Train Company

Loc. A Loc. B
Tr

Loc. E

Ad3=Work(A,B)

Ad4=Divert(Tr,A,B,E)

Initial situation: R5(S
x
0 ), R9(S

x
0 ), R11(S

x
0 ), R13(S

x
0 ), R15(S

x
0 )

Def.

R11 = altDest(Tr,E)

R12 = in(Tr,E)

R13 = singleTrack(A,B)

R14 = safeRail(A,B)

R15 = problems(A,B)

Norms: Oocc(Ad4)(S
y
2 , S

y
3 ) Goals: Ψ(s) = ψ2(s) where ψ2 = R14

Plan: ~P
y
= 〈[1]begin(Ad3), [2]begin(Ad4), [7]end(Ad4), [22]end(Ad3)〉

Situations: Sy
0 ;S

y
1 = do(begin(Ad3), S

y
0 );S

y
2 = do(begin(Ad4), S

y
1 );

Sy
3 = do(end(Ad4), S

y
2 );S

y
4 = do(end(Ad3), S

y
3 )

Time: start(Sy
0 ) = 0, start(Sy

1 ) = 1, start(Sy
2 ) = 2, start(Sy

3 ) = 7; start(Sy
4 ) = 22

schemes, accompanied by a set of critical questions that allow agents to evalu-
ate the outcomes on the basis of the social values highlighted by the arguments.
More recent work [3] considers also temporal aspects regarding the consequences
of performing an action on a subsequent action. Belesiotis et al. [2] have explored
the use of situation calculus as a language to present arguments about a common
plan in a multi-agent system. Existing research, however, does not adequately
address the requirements of applications where agents are concerned with agree-
ing joint plans. It focuses on the choice of the best of a set of mutually exclusive
actions to perform. In contrast we consider a team dialogue focussed upon what
is the best course of action to adopt based on the integration of individual agent
plans with different objectives. Furthermore, team members might have internal
norms which guide the choice of the plan and they should be considered as part of
the discussion about a course of action. Our aim is to construct a coherent model
for referring to multi-agent plans which considers norm and plan-constraints.

In future research, the aim is to evaluate the strength of this model against
the quality of the plan. We will also consider the integration of the model on
a rigours formalised dialogue. In this paper, however, we have demonstrated
through examples, how this model allows agents to clarify conflicts in different
courses of action and facilitate the exchange of information about joint plans.



12 Alice Toniolo, Timothy J. Norman, and Katia Sycara

Table 4. Example of Argumentation-Based Dialogue

1. Propose(x, y,Perform(x,Ad1, 2, 8)) 2. Reject(y, x,Perform(x,Ad1, 2, 8))
3. Argue(x, y, ArgI) - ArgI: 〈Hold(x, {R1, R5, R9}, 2),Perform(x,Ad1, 2, 8),
Hold(x, {¬R1,¬R5, R2, R6}, 8), achieve(x, ψ1)⇒ Perform(x,Ad1, 2, 8)〉
4. why(y, x,Perform(x,Ad1, 2, 8)) 5. Argue(x, y, ATK2.3) - ATK2.3:
〈Hold(x, {R1, R5, R9}, 2)Perform(x,Ad1, 2, 6), Hold(x, {¬R1,¬R5, R2, R6}, 8),
cLink(R2, Ad1, Ad2),Perform(y,Ad1, 2, 8),Perform(y,Ad2, 9, 12), occOverT (Ad1, 2, 12)
⇒ Perform(y,Ad1, 2, 8) ∧Perform(y,Ad2, 9, 12)〉 6. Argue(y, x, ATK1.1) - ATK1.1:
〈Hold(x, {R1, R5, R9}, 2),Perform(x,Ad1, 2, 8), Hold(x, {¬R1,¬R5, R2, R6}, 8),
Hold(y, {R5, R9, R11}, 2),¬Perform(y,Ad4, 2, 7),¬Hold(y, {¬R5,¬R6, R12}, 7),
¬achieve(y, ψ2), occOverT (Ad1, 2, 7)⇒ ¬Perform(x,Ad1, 2, 8)∧Perform(y,Ad4, 2, 7)〉
7. why(y, x,Perform(y,Ad4, 2, 7)) 8. Argue(y, x, ATK3.3) - ATK3.3:
〈Hold(y,R13, 1),Perform(y,Ad3, 1, 22), Obliges : Perform(x,Ad4, 2, 7)⇒
Perform(x,Ad4, 2, 7)〉 9. Withdraw(x, y,Perform(x,Ad1, 2, 8))

Acknowledgments. This research is supported by the award made by the
RCUK Digital Economy programme to the dot.rural Digital Economy Hub;
award reference: EP/G066051/1.

References

1. Atkinson, K., Bench-Capon, T.: Practical reasoning as presumptive argumentation
using action based alternating transition systems. Artificial Intelligence 171(10-15),
855–874 (2007)

2. Belesiotis, A., Rovatsos, M., Rahwan, I.: A generative dialogue system for argu-
ing about plans in situation calculus. In: Argumentation in Multi-Agent Systems,
Lecture Notes in Computer Science, vol. 6057, pp. 23–41. Springer Berlin (2010)

3. Bench-Capon, T., Atkinson, K.: Action-state semantics for practical reasoning. In:
Proceeding of the Fall Symposium on the Uses of Computational Argument (2009)

4. Demolombe, R., Pozos-Parra, P.: The chisholm paradox and the situation calculus.
In: Foundations of Intelligent Systems, Lecture Notes in Computer Science, vol.
3488, pp. 241–256. Springer Berlin / Heidelberg (2005)

5. McBurney, P., Hitchcock, D., Parsons, S.: The eightfold way of deliberation dia-
logue. International Journal of Intelligent Systems 22(1), 95–132 (January 2007)

6. Oren, N., Luck, M., Miles, S., Norman, T.J.: An argumentation inspired heuristic
for resolving normative conflict. In: Proceedings of the Fifth Workshop on Coor-
dination, Organizations, Institutions and Norms in Agent Systems (2008)

7. Pinto, J.A., Reiter, R.: Reasoning about time in the situation calculus. Annals of
Mathematics and Artificial Intelligence 14, 251–268 (1995)

8. Rahwan, I., Amgoud, L.: An argumentation-based approach for practical reasoning.
In: Proceedings of the Fifth International Joint Conference on Autonomous Agents
and Multiagent Systems. pp. 347–354 (2007)

9. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. MIT Press (2001)

10. Walton, D.N.: Argumentation schemes for presumptive reasoning. Lawrence Erl-
baum Associates (1996)


