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Chemotherapy is a widely accepted method for
tumour treatment. A medical doctor usually treats
the patients periodically with an amount of drug
according to empirical medicine guides. From the
point of view of cybernetics, this procedure is an
impulse control system, where the amount and
frequency of drug used can be determined analytically
using the impulse control theory. In this paper, the
stability of a chemotherapy treatment of a tumour
is analysed applying the impulse control theory. The
globally stable condition for prescription of a periodic
oscillatory chemotherapeutic agent is derived. The
permanence of the solution of the treatment process
is verified using the Lyapunov function and the
comparison theorem. Finally, we provide the values
for the strength and the time interval that the
chemotherapeutic agent needs to be applied such that
the proposed impulse chemotherapy can eliminate
the tumour cells and preserve the immune cells.
The results given in the paper provide an analytical
formula to guide medical doctors to choose the
theoretical minimum amount of drug to treat the
cancer and prevent harming the patients because of
over-treating.

1. Introduction
In a healthy individual, a new produced body cell
replaces a damaged or dead one in an orderly and
sustainable way. Cancer cells break this balanced order
by multiplying themselves in an uncontrolled way,
invading the space and demanding the nutrients of the
normal cells. The result is the death of the normal cells.
According to the International Agency for Research on
Cancer, there were 12.7 million new cancer cases in 2008,
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it is predicted that there will be 21.4 million cases of cancer and 13.5 million deaths by 2030 [1].
Cancer ranks the number one killer in the world, therefore, it is of great significance to explore
the effective mass of treatment techniques in order to reduce the rate of death due to cancer. It is
no surprise that cancer treatment receives great attention around the scientific world [2,3].

For most types of cancers, a wide range of chemotherapeutic drug treatments are available,
such as chorionic carcinoma and heterogeneous tumour [4]. Recently, there has been growing
interest to understand not only from the medical experimental point of view, but also from a
theoretical perspective the effects of the chemotherapy on the cells [5–7]. Fundamental issues
involve the amount of drug used and the periodical interval determination. From the view point
of cybernetics, the tumour-immune interaction system with the periodical impulse chemotherapy
can be considered as an impulse control procedure (or system), therefore, it should be studied
using impulse control theory and be treated using cybernetics strategy.

The immune system plays an important role to identify and eliminate tumours. This is called
immune surveillance. Our body defence against disease caused by a virus, bacteria or tumour
is the destruction of infected cells or tumours by actived cytotoxic T-lymphocytes cells (CTL),
also called hunter lymphocytes. CTL [8] can kill cells or make a programmed cell death. The
biological activation process occurs efficiently when the CTL receive impulses generated by T-
helper cells (TH). The stimuli occur through the release of cytokines. This process involves the
time delay for converting resting T-lymphocytes into CTL. The presence of time delay makes the
stability analysis to become complicate in the tumour-immune interaction model. Reference [9]
proposed a tumour growth model with time delay. The authors investigated the treatment of
cancer when impulse chemotherapy treatment was considered. This model is a time delay non-
autonomous system, the non-autonomous nature being provide by the impulse treatment. The
impulse control (treatment) of a dynamical system with delay introduces more difficulty for the
cybernetic strategy design and the stability analysis of the controlled system.

In this paper, the model of reference [9] is extended by treating the impulsive chemotherapy
as a dynamical variable. The extended system becomes a higher dimensional delay differential
system of equations concerning the tumour-immune interaction and the treatment of
chemotherapy. Firstly, after some basic notations are defined in section II and the impulse control
system model is formulated in section III, the stability of the steady state (a periodic solution) of
the extended system is studied in section IV, which shows conditions for when the chemotherapy
kills all cells. Secondly, the solution of the studied system is verified to be bounded using
Lyapunov function and comparison theorem in section V. And the periodic solution is verified
to be stable in the sense of the (definition of) permanence in section VI, which is guaranteed
by a derived theorem (formula). Finally, a chemotherapy strategy supported by our simulations
show the correctness of the formula in section VII. In conclusion, we provide a strategy to tell
what parameters of the impulsive chemotherapy can eliminate tumour cells and preserve the
permanence of the immune cells, i.e they are not completely destroyed. Therefore, this work
provides useful information for practical chemotherapy.

2. Notations and definitions
In this section we give some definitions.

Definition 1. r-order piecewise continuous function [10]: Let PC (D,F ) represents a piecewise
continuous function mapping D onto F , where D⊂R, F ⊂R. ϕ∈ PC (D,F ), t∈D, satisfies that ϕ
is a continuous function for t ̸= tk, and that ϕ is discontinuous and left continuous for t= tk = kT , where
T is the impulse period, tk →∞ as k→∞. An r-order piecewise continuous function, PCr (D,F ),
represents a differentiable function of ϕ, which satisfies ϕ∈ PC (D,F ) and drϕ

dtr ∈ PC (D,F ), r ∈N ,
where R is real, N is integer.

Page 2 of 15

http://mc.manuscriptcentral.com/issue-ptrsa

Submitted to Phil. Trans. R. Soc. A - Issue

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

3

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

Definition 2. Upper right derivative: For a m-dimensional
system ẋ= f(t,x) and a positive function V :R+ ×Rm

+ → R+, where x = (x1, x2, · · · , xm). The upper
right derivative of V (t, x) with respect to the system is defined as

D+V (t, x) = lim
h→0+

sup
1

h
[V (t+ h, x (t) + hf (t, x (t))) − V (t, x (t))]

Definition 3. Boundedness: Suppose ϕ (t) = x (t, t0 , x (t0) ) is a solution of a dynamical system
with x (t0) = x0, if for any positive real B > 0, and the initial time t0, there exists γ > 0, such that
|x (t, t0, x (t0))| ≤B for t≥ γ + t0, then, the solution is ultimately bounded.

Definition 4. Positive solution: Assume u1 (t) , u2 (t) , ..., um (t) is a solution of an m-dimensional
systems U . If ui (t)> 0, i= 1, 2, ...,m, then (u1 (t) , u2 (t) , ...um (t)) is defined as a positive solution
of system U .

Definition 5. Permanence [11]: If there exists constants ς and M , such that the solution of a system,
ui (t), satisfies ς ≤ lim

t→∞
inf ui (t)≤ lim

t→∞
supui (t)≤M , then the system is permanence, ς is ultimately

lower bound and M is the ultimately upper bound.

3. Tumour growth model with impulse chemotherapy
A mathematical model describing tumour growth under a treatment of chemotherapy was
proposed recently [9]. The model is based on the predator-prey system [12]. The T-lymphocyte
is the predator, while the tumour cell is the prey that is being attacked. The predators can be in a
hunting or a resting state. The resting cells do not kill tumour cells, but they can become hunters
after activation. The chemotherapeutic agent is treated as activation. The chemotherapeutic agent
acts as a predator on both cancerous and lymphocytes cells. The model is described by

dC(t)
dt = q1C(t)

(
1− C(t)

K1

)
− α1C(t)H(t)− p1C(t)

a1+C(t)
Z(t)

dH(t)
dt = β1H(t)R(t− τ)− d1H(t)− α2C(t)H(t)− p2H(t)

a2+H(t)
Z(t)

dR(t)
dt = q2R(t)

(
1− R(t)

K2

)
− β1H(t)R(t− τ)− p3R(t)

a3+R(t)
Z(t)

dZ(t)
dt =∆−

(
ξ +

g1C(t)
a1+C(t)

+
g2H(t)
a2+H(t)

+
g3R(t)
a3+R(t)

)
Z(t)

(3.1)

where C, H and R are the number of cancerous, hunting and resting cells, respectively, t is the
time and Z is the concentration of the chemotherapeutic agent. q1, q2, α1, α2, K1, K2, p1, p1, p3,
a1, a1, a3, g1, g1, g3, d1, β1, ξ where values can be seen in Table 1. ∆ represents the infusion rate
of chemotherapy. τ is the time delay of the conversion from resting cells to hunting cells. To make
a clear distinction between parameters and variable, we define C = x1, H = x2, R= x3, Z = x4.
Then, the extended tumour growth model with impulsive chemotherapy as a dynamical variable
described by

dx1(t)
dt = q1x1(t)

(
1− x1(t)

K1

)
− α1x1(t)x2(t)− p1x1(t)

a1+x1(t)
x4(t)

dx2(t)
dt = β1x2(t)x3(t− τ)− d1x2(t)− α2x1(t)x2(t)− p2x2(t)

a2+x2(t)
x4(t)

dx3(t)
dt = q2x3(t)

(
1− x3(t)

K2

)
− β1x2(t)x3(t− τ)− p3x3(t)

a3+x3(t)
x4(t)

dx4(t)
dt =−

(
ξ +

g1x1(t)
a1+x1(t)

+
g2x2(t)
a2+x2(t)

+
g3x3(t)
a3+x3(t)

)
x4(t)

∆x1 = 0

∆x2 = 0

∆x3 = 0

∆x4 =∆

t ̸= nT

t= nT

(3.2)
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where ∆xi(t) = xi(nT
+)− xi(nT

−)(i= 1, 2, 3, 4), T is the period of the impulse, n= 1, 2, 3, ... is
a positive integer. This model means that at t= nT , an impulse drug treatment is applied with
amplitude ∆.

Using the techniques to calculate equilibrium in time delay systems [13], the first formula of
equation (3.2) has an equilibrium point given by (0,0,0,0) as t ̸= nT . From the Jacobian matrix of
system (3.2) evaluated at the equilibrium point (0,0,0,0), i.e.

J (0, 0, 0, 0) =


q1 0 0 0

0 −d1 0 0

0 0 q2 0

0 0 0 −ξ

 (3.3)

implying that two eigenvalues of the Jacobian matrix have positive real part. Therefore, the
equilibrium point (0,0,0,0) is unstable.

4. The stability of periodic solutions of the chemotherapeutic
agent

In this section, we study the stability of periodic solutions [14] of system (3.2), when x1 = 0, x2 = 0,
x3 = 0. Our interest is to demonstrate that the impulse perturbation creates a periodic solution in
the chemotherapeutic variable, x4 (t). For such a case, system (3.2) is described by the following
equations 

dx4 (t)

dt
=− ξx4 (t) t ̸= nT

∆x4 =∆ t= nT

(4.1)

Lemma 1. [15] System (4.1) has a positive periodic solution x̃4 (t), i.e., for any solution x4 (t) with initial
condition x4

(
0+
)
> 0, x4 (t)→ x̃4(t) as t→∞, where x̃4 (t) = ∆e−ε(t−nT )

1−e−εT , t= (nT, (n+ 1)T ].

proof : Integrating the first formula of equation (4.1) on (nT, (n+ 1)T ] yields∫ t
nT+

dx4
x4

=

∫ t
nT+

−εdt

and we get
x4 (t) = x4

(
nT+) e−ε(t−nT ) nT < t≤ (n+ 1)T .

From the second formula of equation (4.1),we obtain Stroboscopic Map:

x4 ((n+ 1)T ) = x4

(
nT+

)
e−εT = (x4 (nT ) +∆)e−εT .

This map has the only positive fixed points

x̃4 (T ) =
∆e−εT

1− e−εT

or
x̃4

(
0+
)
=

∆

1− e−εT
.

The corresponding (4.1) has a periodic positive solution with period T , namely,

x̃4 (t) = x̃4

(
0+
)
e−ε(t−nT ) =

∆e−ε(t−nT )

1− e−εT
.

End the proof.

Theorem 1. Let (x1 (t) , x2 (t) , x3 (t) , x4 (t)) be any solution of (3.2), then (0, 0, 0, x̃4 (t)) is globally

asymptotically stable provided T ≤ T̂ , T̂
∆
=min

{
p1∆
q1a1

, p3∆
q2a3

}
.
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proof : Firstly, we prove the local stability of a periodic solution (0, 0, 0, x̃4 (t)) by considering
the behavior of small-amplitude perturbations about the periodic solution.

Define

x1 (t) = u (t) , x2 (t) = v (t) , x3 (t) = l (t) , x4 (t) =w (t) + x̃4 (t)

where (u (t) , v (t) , l (t) , w (t)) are small perturbations. We expand system (3.2) according to
Taylor’s formula, ignore higher-order terms, and obtain the linearized equation

du(t)
dt = (q1 − p1

a1
x̃4(t))u(t)

dv(t)
dt = (−d1 − p2

a2
x̃4(t))v(t)

dl(t)
dt = (q2 − p3

a3
x̃4(t))l(t)

dw(t)
dt =− g1x̃4(t)u(t)

a1
− g2x̃4(t)v(t)

a2
− g3x̃4(t)l(t)

a3
− ξw(t)

u
(
nT+)= u

(
nT−)

v
(
nT+)= v

(
nT−)

l
(
nT+)= l

(
nT−)

w
(
nT+)=w

(
nT−)

t ̸= nT

t= nT

(4.2)

Defined Φ (t) is the fundamental solution matrix of system (4.2) (the first to fourth equations),
hence

u (t)

v (t)

l (t)

w (t)

=Φ (t)


u (0)

v (0)

l (0)

w (0)


where Φ (t) satisfy

dΦ (t)

dt
=A (t)Φ (t) (4.3)

and

A (t) =


q1 − p1

a1
z̃(t) 0 0 0

0 −d1 − p2
a2

z̃(t) 0 0

0 0 q2 − p3
a3

z̃(t) 0

− g1z̃(t)
a1

− g2z̃(t)
a2

− g3z̃(t)
a3

−ξ


with Φ (0) = I , where I is the identity matrix. The impulsive conditions of (4.2) (the fifth to eighth
equations) becomes

u
(
nT+)

v
(
nT+)

l
(
nT+)

w
(
nT+)

=


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




u
(
nT−)

v
(
nT−)

l
(
nT−)

w
(
nT−)


Hence, if the absolute values of all eigenvalues of

M =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Φ (T ) =Φ (T )

are smaller than one, the periodic solution is locally stable (since [u (t) , v (t) , l (t) , w (t)]T →
[0, 0, 0, 0]T for t →∞). By calculating (4.3), we have

Φ (T ) =Φ (0) exp

(∫T
0
A (s) ds

)
∆Φ (0) exp

(
Ā
)
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where Ā=
∫T
0 A (s) ds, namely

M = exp
(
Ā
)
= exp

(∫T
0
A (s) ds

)

then,

Ā=

∫T
0


q1 − p1

a1
z̃(s) 0 0 0

0 −d1 − p2
a2

z̃(s) 0 0

0 0 q2 − p3
a3

z̃(s) 0

− g1z̃(s)
a1

− g2z̃(s)
a2

− g3z̃(s)
a3

−ε

 ds,

we have

Ā=


∫T
0 (q1 − p1

a1
z̃(s))ds 0 0 0

0
∫T
0 (−d1 − p2

a2
z̃(s))ds 0 0

0 0
∫T
0 (q2 − p3

a3
z̃(s))ds 0∫T

0 (− g1z̃(s)
a1

)ds
∫T
0 (− g2z̃(s)

a2
)ds

∫T
0 (− g3z̃(s)

a3
)ds

∫T
0 (−ε)ds


assume that λ1, λ2, λ3 and λ4 are the eigenvalues of Ā, then we have

λ1 =

∫T
0
(q1 − p1

a1
z̃(s))ds= q1T − p1

a1

∫T
0
z̃(s)ds= q1T − p1

a1

(
∆

1− e−εT
− ∆e−εT

1− e−εT

)
=

q1a1T − p1∆

a1

λ2 =

∫T
0
(−d1 − p2

a2
z̃(s))ds=−d1T − p2

a2

∫T
0
z̃(s)ds=−d1T − p2∆

a2
< 0

λ3 =

∫T
0
(q2 − p3

a3
z̃(s))ds= q2T − p3

a3

∫T
0
z̃(s)ds= q2T − p3

a3

(
∆

1− e−εT
− ∆e−εT

1− e−εT

)
= q2T − p3∆

a3

λ4 =

∫T
0
(−ε)ds=−εT < 0

the absolute value of eigenvalues eλ1 , eλ2 , eλ3 , eλ4 of M are less than one provided that
T ≤ T̂ . Therefore, according to Floquet theory, the periodic solution (0, 0, 0, x̃4 (t)) is locally
asymptotically stable.

In the following, we prove the global stability of (0, 0, 0 x̃4 (t)). Choose an ε > 0 such that

σ= q1T +
p1ε

a1
T − p1∆

a1
< 0

According to the fourth equation of system (3.2), we have dx4(t)
dt ≤−ξx4 (t), consider the

following impulsive differential equation
dy (t)

dt
=− ξy (t) t ̸= nT

∆y (t) =∆ t= nT

y
(
0+
)
=x4

(
0+
)
≥ 0

Using comparison theory, we have that y (t)≥ x4 (t). Defining y (t) = ỹ (t) + ε, then
ỹ (t) + ε≥ x4 (t)> x̃4 (t)− ε for large enough t.

Let ε→ 0, we get ỹ (t)→ x̃4 (t), x4 (t)→ x̃4 (t) as t→∞.
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From the first equation of (3.2) we get

dx1 (t)

dt
≤ x1 (t)

(
q1 − p1

a1
(x̃4 (t)− ε)

)
(4.4)

integrating (4.4) on (nT, (n+ 1)T ] yields

x1 ((n+ 1)T )≤ Tn = x1 (nT ) exp (σ)

where

Tn = x1 (nT ) exp

(∫ (n+1)T

nT

(
q1 − p1

a1
(x̃4 (t)− ε)

))

Thus x1 (nT )≤ x1
(
0+
)
exp(nσ) and x1 (nT )→ 0 as n→ ∞. Therefore, x1 (t)→ 0 as n→∞

(since 0<x1 (t)≤ x1 (nT ) exp (q1T ), for nT < t< (n+ 1) T ). By the same method, we can prove
x2 (t)→ 0, x3 (t)→ 0 as n→∞.

Next, we prove that x4 (t)→ x̃4 (t) as t→∞, if lim
t→∞

x1 (t) = 0, lim
t→∞

x2 (t) = 0 and

lim
t→∞

x3 (t) = 0. For 0< ε1 < ξ, there exist T̂ > 0 such that 0<x1 (t) < ε1, 0 <x2 (t)< ε2,

0<x3 (t)< ε3 for t≥ T̂ . From the fourth equation of system (3.2), we have

−
(
ξ +

g1ε1
a1

+
g2ε1
a2

+
g3ε1
a3

)
x4 (t)≤

dx4 (t)

dt
≤−ξx4 (t)

Using comparison theory, we obtain y1 (t)≤ x4 (t)≤ y (t), y1 (t)→ ỹ1 (t), y (t)→ ỹ (t) as
n→∞, where y1 (t) are solution of

dy1 (t)

dt
=−

(
ξ +

g1ε1
a1

+
g2ε1
a2

+
g3ε1
a3

)
y1 (t) t ̸= nT

∆y1 (t) =∆ t= nT

y1

(
0+
)
=x4

(
0+
)
≥ 0

and

ỹ1 (t) =
∆ exp

(
ξ + g1ε1

a1
+ g2ε1

a2
+ g3ε1

a3

)
(t− nT )

1− exp
((

ξ + g1ε1
a1

+ g2ε1
a2

+ g3ε1
a3

)
T
)

for nT < t≤ (n+ 1)T .
Therefore, there exists a ε2 > 0 such that x̃4 (t)− ε2 < y1 (t)<x4 (t), for t being large enough.

Let ε1 → 0, we get ỹ1 (t)→ x̃4 (t).
End the proof.

5. Boundedness
Now we show that all the solutions of system (3.2) are uniformly ultimately bounded.

Lemma 2. [16] Let the function W ∈ PC1 ([0,+∞) , R) satisfies the following inequalities
Ẇ (t)≤f (t)W (t) + g (t) t ̸= nT, t > 0

W
(
nT+

)
≤fnW (nT ) + gn t= nT

W
(
0+
)
≤W0

where f (t), g (t)∈C (R+, R), fn > 0, gn and W0 are constants. Then

W (t)≤W
(
0+
)
ef(t)t +

∫t
0 g (t)e

f(t)(t−s)ds+
∑

0<nT<t
gne

−f(t)(t−nT ) t > 0
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Theorem 2. There exists a constant M > 0, such that xi (t)≤M , i= 1, 2, 3, 4, for each positive solution
Ψ(t) = (x1 (t) , x2 (t) , x3 (t) , x4 (t)) of system (3.2) with large enough t.

proof : Let Ψ(t) = (x1 (t) , x2 (t) , x3 (t) , x4 (t)) be any positive solution of (3.2), and defined a

function W (t, x) = x4+
3∑

i=1

pi
aigi

xi. Then W (t, x)∈ V0.

Because Ψ (t) is a positive solution of (3.2), from the third equation of system (3.2), we
have ẋ3 (t)< q2x3 (t). Integrating ẋ3 (t)< q2x3 (t) on (t− τ, t), yields x3 (t)≤ x3 (t− τ) eq2τ , we
obtain x3 (t− τ) ≥ x3 (t) e

−q2τ . Then the upper right derivative of W (t, x) along the solution of
(3.2) is described as

D+W (t) =
p1

a1g1
ẋ1 +

p2
a2g2

ẋ2 +
p3

a3g3
ẋ3 + ẋ4

For any λ> 0, ignoring the third and fourth terms of the first equation, the first, the third and
the fourth terms of the second equation, the third and the fourth items of the third equation, and
the second, the third and the fourth terms of the fourth equation of (3.2), for t ̸= nT , we get

D+W (t) + λW (t) = (q1 + λ) p1
a1g1

x1 − q1
K1

· p1
a1g1

x1
2 + (−d1 + λ) p2

a2g2
x2 + (q2 + λ) p3

a3g3
x3

− q2
K2

· p3
a3g3

x3
2 + (λ− ξ)x4

=− q1
K1

· p1
a1g1

(
x1

2 − K1
q1

(q1 + λ)x1 +
(
K1(q1+λ)

2q1

)2
−
(
K1(q1+λ)

2q1

)2)
+ (−d1 + λ) p2

a2g2
x2

− q2
K2

· p3
a3g3

(
x3

2 − K2
q2

(q2 + λ)x3 +
(
K2(q2+λ)

2q2

)2
−
(
K2(q2+λ)

2q2

)2)
+ (λ− ξ)x4

=− q1
K1

· p1
a1g1

(
x1 − K1(q1+λ)

2q1

)2
+

p1K1(q1+λ)2

4a1g1q1
+ (−d1 + λ) p2

a2g2
x2

− q2
K2

· p3
a3g3

(
x3 − K2(q2+λ)

2q2

)2
+

p3K2(q2+λ)2

4a3g3q2
+ (λ− ξ)x4

in the above equation, the second and fifth terms are positive constants. Define the sum of them
as K, because q1, q2, p1, p2, p3, K1, K2, a1, a2, a3, g1, g2, g3 are all positive (as shown in Table 1,
which is determined by their biological meaning), at the same time, the first and fourth terms are
negative, we have then

D+W (t) + λW (t)≤K + (−d1 + λ)
p2

a2g2
x2 + (λ− ξ)x4. (5.1)

If λ<min (d1, ξ), for any positive solution Ψ (t) (that means that x2 > 0 and x4 > 0),

D+W (t) + λW (t)≤K.

For t= nT , we obtain

W
(
nT+

)
=W

(
nT−

)
+∆

where

W
(
nT−

)
=

p1
a1g1

x1

(
nT−

)
+

p2
a2g2

x2

(
nT−

)
+

p3
a3g3

x3

(
nT−

)
+ x4

(
nT−

)
+∆

we have {
D+W (t)≤−λW (t) +K t ̸= nT

W
(
t+
)
=W (t) +∆ t= nT

(5.2)

According to Lemma 2, we have
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W (t)≤W
(
0+
)
e−λt +

∫ t
0
Ke−λ(t−s)ds +

∑
0<nT<t

∆e−λ(t−nT )

and
t
T∑

n=0

∆e−λ(t−nT ) =∆e−λt
eλT

(
1− eλt

)
1− eλT

=
∆e−λ(t−T )

1− eλT
+

∆eλT

eλT − 1

then we have

W (t)≤W
(
0+
)
e−λt +

K

λ

(
1− e−λt

)
+

∆e−λ(t−T )

1− eλT
+

∆eλT

eλT − 1

The right-hand side of the inequality is K
λ + ∆eλT

eλT−1
as t→∞.

Hence, W (t) is ultimately bounded for any positive solution of system (3.2).
End the proof.

6. Permanence of the solution
Theorem 3. System (3.2) is permanent if β1K2e

(−q2τ) >α2K1 and T >max

{ p1
a1q1

∆

ξ+
g1
a1

+
g2
a2

+
g3

a3+K2

,

p2

a2(β1K2e(−q2τ)−α2K1)
∆

ξ+
g3

a3+K2
+

g2
a2

+
g1

a1+K1

,
p3

a3q2
∆

ξ+
g3
a3

+
g2
a2

+
g1

a1+K1

}
∆ T̂2, where K1, K2 are parameters of (3.2).

proof : Suppose that x (t) is a solution of (3.2) with x (0)> 0. From Theorem 2, we can assume

x4 (t)≤M . According to the first equation of (3.2), we get dx1(t)
dt ≤ q1x1(t)

(
1− x1(t)

K1

)
for any

positive solution of the system.
Considering the following comparison equation


dw(t)

dt
=w (t)

(
q1 − q1

K1
w (t)

)
w (0) =x1 (0)

we have x1 (t)≤w (t) and w (t)→K1 as t→∞. Similarly, we can get the comparison equation
for the second equation of (3.2) 

dn(t)

dt
=− d1n (t)

n (0) =x2 (0)

and the comparison equation for the third equation of (3.2)
dm(t)

dt
=m (t)

(
q2 − q2

K2
m (t)

)
m (0) =x3 (0)

Thus, there exists an ε1 > 0, such that x1 (t)<K1 + ε1 for large enough t. Without loss of
generality, we assume x2 (t)< ε2, x3 (t)<K2 + ε3 (t > 0).

Let m4 =
∆e−ξT

1−e−ξT − ε4 > 0, ε4 > 0. According to the comparison theorem, we have x4 (t)>m4

for large enough t. In the following, we want to find m̄1 > 0, m̄2 > 0, m̄3 > 0, such that
x1 (t)≥ m̄1, x2 (t)≥ m̄2, x3 (t)≥ m̄3 for large enough t. We will do it in the following two steps.

Step I: Let m1 > 0, m2 > 0, m3 > 0, we will prove that there exist t1, t2, t3 ∈ (0,∞), such that
x1 (t1)≥m1, x2 (t2)≥m2, x3 (t3)≥m3.
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Firstly, we prove there exist t1 ∈ (0,∞), such that x1 (t1)≥ m1. We use proof by contradiction
and suppose that for any t1 ∈ (0,∞), x1 (t1) ≤m1.
proof : Let ε1 > 0 small enough so that

σ̄1 =

(
q1 − q1

K1
m1 − α2ε2 − p1

a1
ε1

)
T −

p1
a1

∆

ξ + g1
a1+m1

+ g2
a2+ε2

+ g3
a3+(K2+ε2)

> 0

According to the above assumption, we get

dx4 (t)

dt
≤x4 (t)

(
−ξ − g1

a1 +m1
− g2

a2 + ε2
− g3
a3 + (K2 + ε3)

)
According to the comparison theorem, we have x4 (t)≤ y3 (t). By Lemma 1, we get y3 (t)→ ỹ3 (t)

as t→∞, where y3 (t) is the solution of

dy3 (t)

dt
=y3 (t)

(
−ξ − g1

a1 +m1
− g2

a2 + ε2
− g3
a3 + (K2 + ε3)

)
t ̸= nT

∆y3 (t) =∆ t= nT

y3

(
0+
)
=x4(0)≥ 0

(6.1)

Similarly to the periodic solution x̃4 (t) of equation (4.1), we have

ỹ3 (t) =
∆ exp

(
−ξ − g1

a1+m1
− g2

a2+ε2
− g3

a3+(K2+ε3)

)
(t− nT )

1− exp
((

−ξ − g1
a1+m1

− g2
a2+ε2

− g3
a3+(K2+ε3)

)
T
)

for t∈ (nT, (n+ 1)T ].
Thus, there exists T1 > 0 such that x4(t)≤ y3 (t)≤ ỹ3 (t) +ε1. In the first equation of system

(3.2), replace x4 with ỹ3 + ε1, x2 with ε2, and x1 with m1. For t≥ T1, we have

dx1 (t)

dt
≥ x1 (t)

(
q1 − q1m1

K1
− α2ε2 − p1

a1
(ỹ3 (t) + ε1)

)
(6.2)

Let N1 ∈Z+ be positive integer, and N1T ≥ T1, integrating (6.2) on (nT, (n+ 1)T ] (for n≥N1),
we get

x1 ((n+ 1)T )≥ Tz = x1 (nT ) exp (σ̄1)

where

Tz =x1 (nT ) exp

(∫ (n+1)T

nT

(
q1 − q1

K1
m1 − α2ε2 −p1

a1
ỹ3 (t)−

p1
a1

ε1

)
dt

)
similarly to the above case, for k→∞

x1 ((N1 + k)T )≥ x1 (N1T ) exp (kσ̄1)→∞ (6.3)

which is a contradiction to the boundedness of the solution. We conclude that there exists a t1
(t1 > 0), such that x1 (t)≥m1. By the same way, we can get similar conclusions for x2 (t), x3 (t).

From the above discussion, we get that there exists t1, t2, t3 ∈ (0,∞), such that x1 (t1)≥m1,
x2 (t2)≥m2, x3 (t3)≥m3.

Step II: If x1 (t)≥m1 for all t≥ t1, then our aim is obtained. Otherwise, x1 (t)<m1, for some
t≥ t1.

Setting t∗ = inf
t>t1

{x1 (t)<m1}, we have x1 (t)≥m1 for t∈ [t1, t
∗). It is easy to see that

x1 (t
∗) =m1, since x1 (t) is continuous at t∗ ∈ (n1T, (n1 + 1)T ] for n1 ∈Z+. Select n2, n3 ∈Z+
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such that
n2T >

1

−ξ − g1
a1+m1

− g2
a2+ε2

− g3
a3+(K2+ε3)

ln
ε4

M +∆

and
exp (δ (n2 + 1)T ) exp (n3σ̄1)> 1

where
δ= q1 − q1m1

K1
− α2ε2 − p1

a1
M < 0

Setting T ′ = n2T + n3T , we claim that there must exist t′ ∈ ((n1 + 1) T, (n1 + 1) T+T ′], such
that x1

(
t′
)
≥m1. Otherwise, x1 (t)<m1 ( for t∈

(
(n1 + 1)T, (n1 + 1)T + T ′] ), considering (6.1)

and y3 ((n1 + 1) T+)= x4
(
(n1 + 1)T+), we have

y3 (t) = y3

(
(n1 + 1)T+

)
− ∆

1− exp
((

−ξ − g1
a1+m1

− g2
a2+ε2

− g3
a3+(K2+ε3)

)
T
)

exp

((
−ξ − g1

a1 +m1
− g2

a2 + ε2
− g3

a3 + (K2 + ε3)

)
(t− (n1 + 1)T )

)
+ ỹ3 (t)

for t∈ (nT, (n+ 1)T ], n1 + 1≤ n≤ n1 + 1 + n2 + n3

According to y3
(
(n1 + 1)T+)= y3

(
(n1 + 1)T−)+∆ and x4 (t)≤M , we get

|y3 (t)− ỹ3 (t)|< (M +∆)Te < ε1

where

Te = exp

((
−ξ − g1

a1 +m1
− g2

a2 + ε2
− g3

a3 + (K2 + ε3)

)
(t− (n1 + 1)T )

)
and
x4 (t)≤ y3 (t)< ỹ3 (t) + ε1, for (n1 + 1 + n2)T ≤ t≤ (n1 +1)T + T ′. which implies that (6.2)
holds for (n1 + 1 + n2) T ≤ t≤ (n1 + 1)T + T ′. Similarly to (6.3), we have

x1 (n1 + 1 + n2 + n3)T ≥ x1((n1 + 1 + n2)T ) exp (n3σ̄1)

There are two possible cases for t∈ (t∗, (n1 + 1)T ]:
Case(1) ( x1 has an upper bound for a finite time internal ((t∗, (n1 + 1)]T ) )
If x1 (t)<m1 for t∈ (t∗, (n1 + 1)T ], then x1 (t)<m1 for all t∈ (t∗, (n1 + 1+ n2)T ].

According to system (3.2), we have

dx1 (t)

dt
≥ x1 (t)

(
q1 − q1m1

K1
− α2ε2 − p1

a1
M

)
= δx1 (t) (6.4)

Integrating (6.4) on (t∗, (n1 + 1 + n2)T ] yields

x1 ((n1 + 1 + n2)T )≥m1 exp (δ (n2 + 1)T )

Then
x1 ((n1 + 1 + n2 + n3)T )≥ x1 ((n1 + 1 + n2)T ) exp (n3σ̄1)

≥m1 exp (δ (n2 + 1)T ) exp (n3σ̄1)>m1

which is a contradiction to the boundedness of x1 (t). Therefore, assumption x1 (t)<m1 for all
t∈ (t∗, (n1 + 1)T ] is invalid.

Set t̄= inf
t>t∗

{x1 (t)≥m1}, then x1 (t̄) =m1 and (6.4) holds if only t∈ [t∗, t̄). Then integrating

(6.4) on t∈ [t∗, t̄) yields

x1 (t)≥ x1
(
t∗
)
exp

(
δ
(
t− t∗

))
≥m1 exp (δ (1 + n2 + n3)T )

∆
= m̄1

for t > t̄, the similar argument can be done ( since x1 (t̄) ≥m1 ). Hence x1 (t) ≥ m̄1for all t > t1.
Case(2) ( x1 still has an upper bound when a finite time internal ((t∗, (n1 +1)] ) is smaller than
Case (1) )
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Figure 1. Relationship of minimum drug intensity, ∆, to suppress cancer and pulse interval T . Solid line is the result

obtained from Theorem 4, dashed line is the result obtained in reference [11]

There exists a t
′′
∈ (t∗, (n1 + 1)T ] such that x1

(
t
′′)

≥ m1. Let t̂= inf {x1
t>t∗

(t)≥m1}, then

x1 (t)<m1 for t∈
[
t∗, t̂

)
and x1

(
t̂
)
=m1. By integrating (6.4) on

[
t∗, t̂

)
, we have

x1 (t)≥ x1
(
t∗
)
exp

(
δ
(
t− t∗

))
≥m1 exp (δT )> m̄1

This process can be continued since x1
(
t̂
)
≥m1 and we have x1 (t)≥ m̄1 for all t≥ t1.

For both cases, we conclude x1 (t)≥ m̄1 for all t≥ t1. Similarly, we can prove x2 (t)≥ m̄2 for
all t≥ t2 and x3 (t)≥ m̄3 for all t≥ t3.

End the proof.

Theorem 4. Let (x1 (t) , x2 (t) , x3 (t) , x4 (t)) be any solution of (3.2), then x2, x3 and
x4 are permanence, x1 (t)→ 0 as t→∞ provided that β1K2e

(−q2τ) >α2K1 and max{ p2

a2(β1K2e(−q2τ)−α2K1)
∆

ξ+
g3

a3+K2
+

g2
a2

+
g1

a1+K1

,
p3

a3q2
∆

ξ+
g3
a3

+
g2
a2

+
g1

a1+K1

}
<T < p1

a1q1
∆.

proof : By the proving process of Theorem 1, when σ= q1T + p1ε
a1

T − p1∆
a1

< 0, we have

T <
p1∆

a1

(
q1 + p1ε

a1

)
integrating (4.4) on nT < t< (n +1)T , we get

x1 ((n+ 1)T )≤ Tm = x1 (nT ) exp (σ)

where

Tm = x1 (nT ) exp

(∫ (n+1)T

nT

(
q1 − p1

a1
(x̃4 (t)− ε)

))

Then x1 (nT )≤ x1
(
0+
)
exp(nσ), and x1 (nT )→ 0 as n→ ∞. Therefore, x1 (t)→ 0 as n→∞ (

since 0<x1 (t)≤ x1 (nT ) exp(b1T )) ( for nT < t< (n+ 1)T ). By the proving process of Theorem
3, we get x1 (t)>m1, and according to permanence condition, let n→∞, m1 → 0, ε→ 0, ε1 → 0,
ε2 → 0, we can verify the conclusion of Theorem 4.

End the proof.
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Figure 2. Impulse chemotherapy results using the parameters suggested by Theorem 4. Subplot (a) shows the infusion

rate of the impulse chemotherapy. Subplot (b) gives the concentration of cancer cells (solid line), the hunter cells (dashed

line), and resting cells (dash-dotted) plot, respectively.

7. Simulation
Considering the parameters in Table 1 for system (3.2), reference [11] gives the dashed line
in Fig.1 (numerically obtained) to show the relationship of the time interval T of the pulsed
chemotherapy, and the minimum value of ∆ for which cancer can be suppressed. According to
Theorem 4, we know that the infusion rate ∆ is linearly related to the period T of the impulsive
chemotherapy to suppress the cancer. When T increases, it is necessary to increase the intensity
of the chemotherapy to obtain the cancer suppression. According to Theorem 4 and parameters
in Table 1, we obtain the solid line in Fig.1 by considering the upper bound of Theorem 4, i.e.
∆= a1q1

p1
T . The solid line is below the dashed line, which indicates that the infusion rate of

chemotherapy give by Theorem 4 is lower than that given in reference [11].
Using the parameters determined by the principle of Theorem 4, we obtain the simulation

results shown in Fig.2, where the parameters are ∆= 0.23 and P = 12, marked by the point in
Fig.1.
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Table 1. Dimensionless parameters

Parameter Value Parameter Value
q1 0.18 K1 1/3
α1 1.6515 α2 5.133× 10−3

d1 0.0412 q2 0.0245
τ 45.6 K2 2/3
β1 9.3× 10−2 p1 1× 10−3

p2 1× 10−3 p3 1× 10−3

a1 1× 10−4 a2 1× 10−4

a3 1× 10−4 g1 0.1
g2 0.1 g3 0.1
∆ 0∼ 104 ξ 0.2

8. Conclusion
Tumour chemotherapy procedure is a cybernetical system using impulse control in the field of
the cybernetic physics. In this paper, we investigate the stability of a tumour growth model with
time delay and impulse chemotherapy using impulse control theory. We show the stability of
the equilibrium point (chemotherapy kills all cells), the stability of the periodic oscillation of the
chemotherapeutic agent (so the impulse chemotherapy function has a well-defined shape), the
permanence of the immune cells (i.e., they are not completely destroyed by the chemotherapy),
and the condition under which the chemotherapy can eliminate the cancer cells and preserve
the immune cells. The theorem about the relationship between impulse treatment period and the
intensity of the drug can be used for a doctor to determine minimum drugs applied to the patient
to eliminate the cancer and minimize the harm to the immune cells and patient’s body.
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