

Received 8 February 2015 Accepted 10 February 2015

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

**Keywords**: crystal structure; cyclopentane ring; envelope conformation; N—H···N hydrogen bonding;  $\pi$ – $\pi$  interactions

**CCDC reference**: 1048517 **Supporting information**: this article has supporting information at journals.iucr.org/e

### Crystal structure of 2-benzylamino-4-(4-bromophenyl)-6,7-dihydro-5*H*-cyclopenta[*b*]pyridine-3carbonitrile

# R. A. Nagalakshmi,<sup>a</sup> J. Suresh,<sup>a</sup> S. Maharani,<sup>b</sup> R. Ranjith Kumar<sup>b</sup> and P. L. Nilantha Lakshman<sup>c</sup>\*

<sup>a</sup>Department of Physics, The Madura College, Madurai 625 011, India, <sup>b</sup>Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and <sup>c</sup>Department of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka. \*Correspondence e-mail: plakshmannilantha@ymail.com

In the title compound  $C_{22}H_{18}BrN_3$ , the cyclopentane ring adopts an envelope conformation with the central methylene C atom as the flap. The dihedral angles between the central pyridine ring and the pendant benzyl and and bromobenzene rings are 82.65 (1) and 47.23 (1)°, respectively. In the crystal, inversion dimers linked by pairs of  $N-H\cdots N_n$  (n = nitrile) hydrogen bonds generate  $R_2^2(12)$  loops. These dimers are linked by weak  $\pi-\pi$  interactions [centroid-centroid distance = 3.7713 (14) Å] into a layered structure.

#### 1. Chemical context

Cyanopyridine derivatives exhibit useful anticancer and antiviral activities (Cocco *et al.*, 2005; El-Hawash & Abdel Wahab, 2006). 3-Cyanopyridine derivatives have been reported for their wide range of applications such as in their antimicrobial, analgesic, anti-hyperglycemic, antiproliferative and antitumor activities (Brandt *et al.*, 2010; El-Sayed *et al.*, 2011; Ji *et al.*, 2007). As part of our ongoing work in this area, we synthesized the title compound, which contains a pyridine 3-carbonitrile group, and we report herein on its crystal structure.



#### 2. Structural commentary

The molecular structure of the title compound (I) is shown in Fig. 1. The nitrile atoms C31 and N3 are displaced from the mean plane of the pyridine ring by 0.1016 (1) and 0.1997 (1) Å, respectively. The cyclopentane ring fused with the pyridine ring adopts an envelope conformation with atom C8 as the flap, deviating by 0.3771 (1) Å from the mean plane defined by the other atoms (C5/C6/C7/C9). The amino group



## OPEN d ACCESS



Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

is nearly coplanar with the pyridine ring as indicated by the torsion angle  $N2-C2-C3-C4 = -178.0 (16)^{\circ}$ . Steric hindrance rotates the benzene ring (C22-C27) out of the plane of the central pyridine ring by 82.65 (1)°. This twist may be due to the non-bonded interactions between one of the *ortho* H atoms of the benzene ring and atom H21*B* of the CH<sub>2</sub>-NH<sub>2</sub> chain.

#### 3. Supramolecular features

In the crystal, molecules are linked *via* pairs of  $N-H\cdots N_n$  (n = nitrile) hydrogen bonds, forming inversion dimers which enclose  $R_2^2(12)$  ring motifs (Table 1 and Fig. 2). The dimers are further connected by slipped parallel  $\pi-\pi$  stacking interactions involving the pyridine rings of inversion-related molecules [centroid–centroid separation= 3.7713 (12) Å, slippage



Figure 2

Partial packing diagram of compound (I). For clarity, H atoms bound to atoms not involved in hydrogen bonding are not shown.

| Table 1                                  |  |
|------------------------------------------|--|
| Hydrogen-bond geometry (Å, $^{\circ}$ ). |  |
|                                          |  |

| $N2-H2\cdots N3^{i}$ 0.86 | 2.23 | 2.974 ( | (4) 145 |
|---------------------------|------|---------|---------|

Symmetry code: (i) -x + 1, -y, -z + 1.

= 1.018 Å; Cg1 is the centroid of the N1/C2–C6 ring; symmetry code: (i) -x, -y, 1 - z], as shown in Fig. 2.

#### 4. Database survey

Similar structures reported in the literature include 2-(2-(4chlorophenyl)-2-oxoethoxy)-6,7-dihydro-5*H*-cyclopenta[*b*]pyridine-3-carbonitrile (Mazina *et al.*, 2005) and 2-benzylamino-4-(4-methoxyphenyl)-6,7,8,9-tetrahydro-5*H*-cyclohepta[*b*]pyridine-3-carbonitrile (Nagalakshmi *et al.*, 2014). In both compounds, the fused cyclopentane ring has an envelope conformation with the central methylene C atom as the flap.

#### 5. Synthesis and crystallization

A mixture of cyclopentanone (1 mmol) 1, 4-bromo benzaldehyde (1 mmol), malononitrile (1 mmol) and benzylamine were taken in ethanol (10 ml) to which *p*-TSA (1 mmol) was added. The reaction mixture was heated under reflux for 2– 3 h. The reaction progress was monitored by thin layer chro-

 Table 2

 Experimental details.

| I · · · · · · · · ·                                                          |                                            |
|------------------------------------------------------------------------------|--------------------------------------------|
| Crystal data                                                                 |                                            |
| Chemical formula                                                             | $C_{22}H_{18}BrN_3$                        |
| M <sub>r</sub>                                                               | 404.30                                     |
| Crystal system, space group                                                  | Monoclinic, $P2_1/c$                       |
| Temperature (K)                                                              | 293                                        |
| <i>a</i> , <i>b</i> , <i>c</i> (Å)                                           | 8.6471 (3), 18.0807 (5), 12.0395 (4)       |
| $\beta$ (°)                                                                  | 94.719 (2)                                 |
| $V(Å^3)$                                                                     | 1875.94 (10)                               |
| Z                                                                            | 4                                          |
| Radiation type                                                               | Μο Κα                                      |
| $\mu (\mathrm{mm}^{-1})$                                                     | 2.20                                       |
| Crystal size (mm)                                                            | $0.21 \times 0.19 \times 0.18$             |
| Data collection                                                              |                                            |
| Diffractometer                                                               | Bruker Kappa APEXII                        |
| Absorption correction                                                        | Multi-scan ( <i>SADABS</i> ; Bruker, 2004) |
| $T_{\min}, T_{\max}$                                                         | 0.967, 0.974                               |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections     | 37065, 3084, 2232                          |
| R <sub>int</sub>                                                             | 0.040                                      |
| $(\sin \theta/\lambda)_{\rm max} ({\rm \AA}^{-1})$                           | 0.582                                      |
| Refinement                                                                   |                                            |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                          | 0.036, 0.099, 1.05                         |
| No. of reflections                                                           | 3084                                       |
| No. of parameters                                                            | 235                                        |
| No. of restraints                                                            | 1                                          |
| H-atom treatment                                                             | H-atom parameters constrained              |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ | 0.32, -0.54                                |

Computer programs: *APEX2* and *SAINT* (Bruker, 2004), *SHELXS2013* (Sheldrick, 2008), *SHELXL2014* (Sheldrick, 2015) and *PLATON* (Spek, 2009).

matography (TLC). After completion of the reaction, the mixture was poured into crushed ice and extracted with ethyl acetate. The excess solvent was removed under vacuum and the residue was subjected to column chromatography using petroleum ether/ethyl acetate mixture (97:3  $\nu/\nu$ ) as eluent to obtain pure product The product was recrystallized from ethyl acetate, affording colourless block-like crystals (yield 68%; m.p. 474–478 K).

#### 6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH and C-bound H atoms were placed in calculated positions and allowed to ride on their carrier atoms: N-H = 0.86 Å, C-H = 0.93-0.97 Å, with  $U_{iso}(H) = 1.5U_{eq}(C)$  for methyl H atoms and  $= 1.2U_{eq}(N,C)$  for other H atoms. The best crystal investigated was of rather poor quality and very weakly diffracting, with no usable data obtained above 49° in 2 $\theta$ . Nonetheless, the structure solved readily and refined to give acceptable uncertainties on the metrical data.

#### Acknowledgements

JS and RAN thank the management of The Madura College (Autonomous), Madurai, for their encouragement and

support. RRK thanks the University Grants Commission, New Delhi, for funds through Major Research Project F. No. 42–242/2013 (SR).

#### References

- Brandt, W., Mologni, L., Preu, L., Lemcke, T., Gambacorti-Passerini, C. & Kunick, C. (2010). *Eur. J. Med. Chem.* **45**, 2919–2927.
- Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cocco, M. T., Congiu, C., Lilliu, V. & Onnis, V. (2005). Eur. J. Med. Chem. 40, 1365–1372.
- El-Hawash, S. A. M. & Abdel Wahab, A. E. (2006). Arch. Pharm. Chem. Life Sci. 339, 437–447.
- El-Sayed, H. A., Moustafa, A. H., Haikal, A. E.-F. Z., Abu-El-Halawa, R. & El Ashry, E. S. H. (2011). *Eur. J. Med. Chem.* **46**, 2948–2954.
- Ji, J., Bunnelle, W. H., Anderson, D. J., Faltynek, C., Dyhring, T., Ahring, P. K., Rueter, L. E., Curzon, P., Buckley, M. J., Marsh, K. C., Kempf-Grote, A. & Meyer, M. D. (2007). *Biochem. Pharmacol.* 74, 1253–1262.
- Mazina, O. S., Rybakov, V. B., Troyanov, S. I., Babaev, E. V. & Aslanov, L. A. (2005). *Kristallografiya*, **50**, 68–78.
- Nagalakshmi, R. A., Suresh, J., Maharani, S., Kumar, R. R. & Lakshman, P. L. N. (2014). *Acta Cryst.* E70, 441–443.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

## supporting information

Acta Cryst. (2015). E71, 296-298 [doi:10.1107/S2056989015002820]

# Crystal structure of 2-benzylamino-4-(4-bromophenyl)-6,7-dihydro-5*H*-cyclo-penta[*b*]pyridine-3-carbonitrile

#### R. A. Nagalakshmi, J. Suresh, S. Maharani, R. Ranjith Kumar and P. L. Nilantha Lakshman

#### **Computing details**

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT* (Bruker, 2004); program(s) used to solve structure: *SHELXS2013* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL2014* (Sheldrick, 2015).

#### 2-Benzylamino-4-(4-bromophenyl)-6,7-dihydro-5H-cyclopenta[b]pyridine-3-carbonitrile

| Crystal data                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $C_{22}H_{18}BrN_3$ $M_r = 404.30$ Monoclinic, $P2_1/c$ $a = 8.6471 (3) Å$ $b = 18.0807 (5) Å$ $c = 12.0395 (4) Å$ $\beta = 94.719 (2)^{\circ}$ $V = 1875.94 (10) Å^3$ $Z = 4$                                                                                | F(000) = 824<br>$D_x = 1.432 \text{ Mg m}^{-3}$<br>Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$<br>Cell parameters from 2000 reflections<br>$\theta = 2-31^{\circ}$<br>$\mu = 2.20 \text{ mm}^{-1}$<br>T = 293  K<br>Block, colourless<br>$0.21 \times 0.19 \times 0.18 \text{ mm}$                                |
| Data collection                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                      |
| Bruker Kappa APEXII<br>diffractometer<br>Radiation source: fine-focus sealed tube<br>$\omega$ and $\varphi$ scans<br>Absorption correction: multi-scan<br>( <i>SADABS</i> ; Bruker, 2004)<br>$T_{min} = 0.967, T_{max} = 0.974$<br>37065 measured reflections | 3084 independent reflections<br>2232 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.040$<br>$\theta_{max} = 24.5^\circ, \ \theta_{min} = 2.0^\circ$<br>$h = -10 \rightarrow 10$<br>$k = -21 \rightarrow 21$<br>$l = -13 \rightarrow 13$                                                                           |
| Refinement<br>Refinement on $F^2$<br>Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.036$<br>$wR(F^2) = 0.099$<br>S = 1.05<br>3084 reflections<br>235 parameters<br>1 restraint                                                                      | Hydrogen site location: inferred from<br>neighbouring sites<br>H-atom parameters constrained<br>$w = 1/[\sigma^2(F_o^2) + (0.0373P)^2 + 1.776P]$<br>where $P = (F_o^2 + 2F_c^2)/3$<br>$(\Delta/\sigma)_{max} < 0.001$<br>$\Delta\rho_{max} = 0.32$ e Å <sup>-3</sup><br>$\Delta\rho_{min} = -0.54$ e Å <sup>-3</sup> |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

|      | x           | у             | Z          | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|-------------|---------------|------------|-----------------------------|--|
| C2   | 0.1424 (3)  | -0.02258 (15) | 0.3665 (2) | 0.0368 (6)                  |  |
| C3   | 0.1545 (3)  | 0.05038 (15)  | 0.4090 (2) | 0.0370 (6)                  |  |
| C4   | 0.0305 (3)  | 0.10033 (15)  | 0.3938 (2) | 0.0373 (7)                  |  |
| C5   | -0.1024 (3) | 0.07382 (15)  | 0.3339 (2) | 0.0397 (7)                  |  |
| C6   | -0.1033 (3) | 0.00227 (16)  | 0.2938 (2) | 0.0395 (7)                  |  |
| C7   | -0.2548 (3) | -0.01578 (19) | 0.2298 (3) | 0.0538 (8)                  |  |
| H7A  | -0.2933     | -0.0636       | 0.2515     | 0.065*                      |  |
| H7B  | -0.2446     | -0.0158       | 0.1502     | 0.065*                      |  |
| C8   | -0.3606 (4) | 0.0462 (2)    | 0.2624 (3) | 0.0612 (9)                  |  |
| H8A  | -0.4211     | 0.0304        | 0.3225     | 0.073*                      |  |
| H8B  | -0.4312     | 0.0605        | 0.1993     | 0.073*                      |  |
| C9   | -0.2551 (4) | 0.11100 (19)  | 0.3002 (3) | 0.0566 (9)                  |  |
| H9A  | -0.2452     | 0.1457        | 0.2398     | 0.068*                      |  |
| H9B  | -0.2944     | 0.1369        | 0.3626     | 0.068*                      |  |
| C21  | 0.2666 (4)  | -0.14468 (15) | 0.3414 (3) | 0.0469 (8)                  |  |
| H21A | 0.1612      | -0.1619       | 0.3236     | 0.056*                      |  |
| H21B | 0.3145      | -0.1768       | 0.3989     | 0.056*                      |  |
| C22  | 0.3542 (3)  | -0.15117 (16) | 0.2394 (3) | 0.0477 (8)                  |  |
| C23  | 0.4514 (4)  | -0.2097 (2)   | 0.2266 (4) | 0.0782 (12)                 |  |
| H23  | 0.4681      | -0.2445       | 0.2832     | 0.094*                      |  |
| C24  | 0.5267 (6)  | -0.2170 (3)   | 0.1270 (6) | 0.1083 (18)                 |  |
| H24  | 0.5913      | -0.2572       | 0.1167     | 0.130*                      |  |
| C25  | 0.5029 (7)  | -0.1644 (4)   | 0.0463 (5) | 0.1124 (19)                 |  |
| H25  | 0.5518      | -0.1690       | -0.0193    | 0.135*                      |  |
| C26  | 0.4104 (6)  | -0.1059 (4)   | 0.0597 (4) | 0.1037 (16)                 |  |
| H26  | 0.3969      | -0.0701       | 0.0043     | 0.124*                      |  |
| C27  | 0.3361 (5)  | -0.0992 (2)   | 0.1556 (3) | 0.0746 (11)                 |  |
| H27  | 0.2720      | -0.0587       | 0.1642     | 0.090*                      |  |
| C31  | 0.3004 (4)  | 0.07214 (15)  | 0.4625 (3) | 0.0417 (7)                  |  |
| C41  | 0.0463 (3)  | 0.17640 (15)  | 0.4382 (2) | 0.0379 (7)                  |  |
| C42  | 0.0037 (4)  | 0.23703 (16)  | 0.3719 (3) | 0.0492 (8)                  |  |
| H42  | -0.0396     | 0.2292        | 0.2996     | 0.059*                      |  |
| C43  | 0.0239 (4)  | 0.30833 (17)  | 0.4102 (3) | 0.0557 (9)                  |  |
| H43  | -0.0034     | 0.3484        | 0.3642     | 0.067*                      |  |
| C44  | 0.0850 (4)  | 0.31911 (16)  | 0.5177 (3) | 0.0509 (8)                  |  |
| C45  | 0.1276 (4)  | 0.26076 (16)  | 0.5862 (3) | 0.0490 (8)                  |  |
| H45  | 0.1689      | 0.2691        | 0.6589     | 0.059*                      |  |
| C46  | 0.1085 (3)  | 0.18992 (16)  | 0.5465 (2) | 0.0443 (7)                  |  |
| H46  | 0.1377      | 0.1503        | 0.5928     | 0.053*                      |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

| N1  | 0.0134 (3)  | -0.04595 (12) | 0.30696 (19) | 0.0404 (6) |
|-----|-------------|---------------|--------------|------------|
| N2  | 0.2614 (3)  | -0.07048 (13) | 0.3849 (2)   | 0.0477 (6) |
| H2  | 0.3411      | -0.0554       | 0.4262       | 0.057*     |
| N3  | 0.4210 (3)  | 0.08573 (15)  | 0.5025 (3)   | 0.0621 (8) |
| Br1 | 0.11061 (6) | 0.41678 (2)   | 0.57329 (4)  | 0.0879 (2) |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | U <sup>23</sup> |
|-----|-------------|-------------|-------------|--------------|--------------|-----------------|
| C2  | 0.0354 (16) | 0.0361 (14) | 0.0392 (16) | 0.0024 (12)  | 0.0045 (13)  | 0.0010 (12)     |
| C3  | 0.0363 (13) | 0.0348 (14) | 0.0400 (16) | 0.0019 (12)  | 0.0034 (11)  | 0.0004 (12)     |
| C4  | 0.0388 (16) | 0.0376 (15) | 0.0361 (16) | 0.0038 (12)  | 0.0067 (13)  | 0.0045 (12)     |
| C5  | 0.0343 (16) | 0.0440 (16) | 0.0405 (16) | 0.0059 (13)  | 0.0016 (13)  | 0.0028 (13)     |
| C6  | 0.0360 (16) | 0.0441 (16) | 0.0382 (16) | -0.0008 (13) | 0.0024 (13)  | 0.0024 (13)     |
| C7  | 0.0413 (18) | 0.062 (2)   | 0.056 (2)   | -0.0035 (15) | -0.0059 (15) | -0.0018 (16)    |
| C8  | 0.0408 (18) | 0.073 (2)   | 0.068 (2)   | 0.0067 (17)  | -0.0063 (16) | -0.0006 (19)    |
| C9  | 0.0442 (19) | 0.060 (2)   | 0.064 (2)   | 0.0132 (16)  | -0.0039 (16) | 0.0023 (17)     |
| C21 | 0.0464 (18) | 0.0350 (15) | 0.059 (2)   | 0.0044 (13)  | 0.0007 (15)  | -0.0004 (14)    |
| C22 | 0.0360 (16) | 0.0403 (17) | 0.066 (2)   | -0.0037 (13) | 0.0006 (15)  | -0.0141 (15)    |
| C23 | 0.065 (2)   | 0.055 (2)   | 0.116 (3)   | 0.0057 (19)  | 0.018 (2)    | -0.021 (2)      |
| C24 | 0.077 (3)   | 0.088 (3)   | 0.165 (6)   | 0.005 (3)    | 0.040 (4)    | -0.054 (4)      |
| C25 | 0.094 (4)   | 0.144 (5)   | 0.105 (4)   | -0.022 (4)   | 0.039 (3)    | -0.046 (4)      |
| C26 | 0.090 (3)   | 0.148 (5)   | 0.076 (3)   | -0.005 (3)   | 0.023 (3)    | 0.003 (3)       |
| C27 | 0.067 (2)   | 0.088 (3)   | 0.070 (3)   | 0.009 (2)    | 0.013 (2)    | 0.008 (2)       |
| C31 | 0.0387 (14) | 0.0345 (15) | 0.0511 (18) | 0.0053 (12)  | -0.0003 (13) | -0.0038 (13)    |
| C41 | 0.0363 (16) | 0.0360 (15) | 0.0424 (17) | 0.0040 (12)  | 0.0092 (13)  | 0.0014 (12)     |
| C42 | 0.056 (2)   | 0.0439 (17) | 0.0476 (19) | 0.0069 (15)  | 0.0013 (15)  | 0.0040 (14)     |
| C43 | 0.068 (2)   | 0.0391 (17) | 0.060 (2)   | 0.0125 (16)  | 0.0060 (18)  | 0.0093 (15)     |
| C44 | 0.059 (2)   | 0.0365 (16) | 0.060 (2)   | 0.0046 (14)  | 0.0188 (17)  | -0.0043 (15)    |
| C45 | 0.061 (2)   | 0.0458 (18) | 0.0416 (18) | -0.0007 (15) | 0.0132 (15)  | -0.0035 (14)    |
| C46 | 0.0503 (18) | 0.0386 (16) | 0.0443 (19) | 0.0050 (13)  | 0.0059 (15)  | 0.0052 (13)     |
| N1  | 0.0380 (14) | 0.0380 (13) | 0.0447 (14) | 0.0004 (11)  | 0.0003 (11)  | -0.0014 (11)    |
| N2  | 0.0420 (14) | 0.0399 (14) | 0.0596 (16) | 0.0090 (11)  | -0.0054 (12) | -0.0115 (12)    |
| N3  | 0.0459 (17) | 0.0522 (17) | 0.086 (2)   | 0.0050 (13)  | -0.0084 (16) | -0.0154 (15)    |
| Brl | 0.1319 (4)  | 0.0405 (2)  | 0.0945 (3)  | 0.0012 (2)   | 0.0293 (3)   | -0.01699 (19)   |

#### Geometric parameters (Å, °)

| C2—N1  | 1.343 (3) | C22—C27 | 1.378 (5) |  |
|--------|-----------|---------|-----------|--|
| C2—N2  | 1.349 (3) | C23—C24 | 1.418 (7) |  |
| С2—С3  | 1.416 (4) | C23—H23 | 0.9300    |  |
| C3—C4  | 1.403 (4) | C24—C25 | 1.363 (8) |  |
| C3—C31 | 1.424 (4) | C24—H24 | 0.9300    |  |
| C4—C5  | 1.390 (4) | C25—C26 | 1.343 (7) |  |
| C4—C41 | 1.478 (4) | C25—H25 | 0.9300    |  |
| С5—С6  | 1.381 (4) | C26—C27 | 1.372 (6) |  |
| С5—С9  | 1.508 (4) | C26—H26 | 0.9300    |  |
| C6—N1  | 1.333 (4) | C27—H27 | 0.9300    |  |
|        |           |         |           |  |

| C6—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.500 (4)            | C31—N3                                                                  | 1.139 (4)            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------|----------------------|
| С7—С8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.519 (5)            | C41—C42                                                                 | 1.388 (4)            |
| С7—Н7А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9700               | C41—C46                                                                 | 1.391 (4)            |
| С7—Н7В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9700               | C42—C43                                                                 | 1.375 (4)            |
| С8—С9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.531 (5)            | C42—H42                                                                 | 0.9300               |
| C8—H8A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9700               | C43—C44                                                                 | 1.371 (5)            |
| C8—H8B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9700               | C43—H43                                                                 | 0.9300               |
| С9—Н9А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9700               | C44—C45                                                                 | 1.371 (4)            |
| C9—H9B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9700               | C44—Br1                                                                 | 1.895 (3)            |
| $C_{21}$ N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 442 (3)            | C45—C46                                                                 | 1 372 (4)            |
| $C_{21} - C_{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1500(4)              | C45—H45                                                                 | 0.9300               |
| C21—H21A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9700               | C46—H46                                                                 | 0.9300               |
| C21_H21B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9700               | N2H2                                                                    | 0.9500               |
| $C_{21}$ $C_{23}$ $C_{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 368 (5)            | 112 112                                                                 | 0.0000               |
| 022-023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.508 (5)            |                                                                         |                      |
| N1—C2—N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 118.3 (2)            | C23—C22—C21                                                             | 120.6 (3)            |
| N1—C2—C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121.3 (2)            | C27—C22—C21                                                             | 120.8 (3)            |
| N2-C2-C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.3 (3)            | C22—C23—C24                                                             | 119.8 (4)            |
| C4-C3-C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121.3(3)             | C22—C23—H23                                                             | 120.1                |
| C4-C3-C31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 121.0(0)<br>121.4(2) | C24—C23—H23                                                             | 120.1                |
| $C_{2} - C_{3} - C_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 127.7(2)<br>117.3(2) | $C_{25}$ $C_{25}$ $C_{23}$ $C_{23}$ $C_{25}$ $C_{23}$                   | 1190(4)              |
| $C_{5} - C_{4} - C_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 115.9 (2)            | C25—C24—H24                                                             | 120.5                |
| $C_{5} - C_{4} - C_{41}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 123.8 (2)            | $C_{23}$ $C_{24}$ $H_{24}$                                              | 120.5                |
| $C_{3}$ $C_{4}$ $C_{41}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.3(2)             | $C_{26}$ $C_{25}$ $C_{24}$                                              | 120.0<br>121.4(5)    |
| C6-C5-C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.5(3)<br>1190(3)  | $C_{26} = C_{25} = C_{24}$                                              | 119 3                |
| C6-C5-C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 110.1(3)             | $C_{24}$ $C_{25}$ $H_{25}$                                              | 119.3                |
| C4 - C5 - C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 130.9(3)             | $C_{24} = C_{25} = C_{125}$                                             | 119.5                |
| N1 C6 C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 130.9(3)<br>126.1(3) | $C_{25} = C_{26} = C_{27}$                                              | 119.7 (5)            |
| N1 - C6 - C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.1(3)<br>122.6(3) | $C_{23} = C_{20} = H_{20}$                                              | 120.2                |
| $C_{5}$ $C_{6}$ $C_{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 122.0(3)<br>111.3(3) | $C_{27} = C_{20} = H_{20}$                                              | 120.2<br>121.5(4)    |
| $C_{5} = C_{0} = C_{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 111.3(3)<br>103.1(3) | $C_{20} = C_{27} = C_{22}$                                              | 121.3 (4)            |
| C6 C7 H7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 103.1 (5)            | $C_{20} = C_{27} = H_{27}$                                              | 119.2                |
| $C_{0}$ $C_{1}$ $H_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 111.1                | $N_{2}^{2} = C_{2}^{2} - M_{2}^{2}$                                     | 119.2<br>175.7(3)    |
| C6 C7 H7R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 111.1                | $C_{42} = C_{41} = C_{46}$                                              | 173.7(3)             |
| C8 C7 H7B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 111.1                | $C_{42} = C_{41} = C_{40}$                                              | 117.7(3)<br>121.0(3) |
| $H_{1}$ $H_{2}$ $H_{2$ | 100 1                | $C_{42} = C_{41} = C_{4}$                                               | 121.0(3)<br>121.3(2) |
| $\Pi/\Lambda = C/ = \Pi/D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.1                | $C_{40} = C_{41} = C_{41}$                                              | 121.3(2)<br>121.8(3) |
| $C_7 = C_8 = U_8 \Lambda$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100.5 (5)            | $C_{43} = C_{42} = C_{41}$                                              | 121.8 (5)            |
| C = C = H A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 110.4                | C43 - C42 - H42                                                         | 119.1                |
| $C_{2} = C_{0} = H_{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 110.4                | C41 - C42 - H42                                                         | 119.1                |
| $C = C_0 = H_0 D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110.4                | C44 - C43 - C42                                                         | 110.0 (5)            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110.4                | C44 - C43 - H43                                                         | 120.7                |
| $H\delta A - C\delta - H\delta B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 108.0                | C42 - C43 - H43                                                         | 120.7                |
| $C_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 103.1 (3)            | C45 = C44 = C43                                                         | 121.3(3)             |
| $C_{2}$ $C_{2$ | 111.2                | C43 - C44 - Br1                                                         | 119.1 (3)            |
| Со-Су-ПУА                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 111.1                | C43 - C44 - Br1                                                         | 119.4 (2)            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111.1                | $\begin{array}{cccc} C44 & C45 & U45 \\ C44 & C45 & U45 \\ \end{array}$ | 119.5 (3)            |
| со-су-НУВ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 111.2                | C44—C45—H45                                                             | 120.3                |
| пул—су—нув                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.1                | U40-U43-H43                                                             | 120.5                |

| N2—C21—C22      | 113.8 (2)  | C45—C46—C41     | 121.1 (3)  |
|-----------------|------------|-----------------|------------|
| N2—C21—H21A     | 108.8      | C45—C46—H46     | 119.4      |
| C22—C21—H21A    | 108.8      | C41—C46—H46     | 119.4      |
| N2—C21—H21B     | 108.8      | C6—N1—C2        | 116.4 (2)  |
| C22—C21—H21B    | 108.8      | C2—N2—C21       | 125.7 (2)  |
| H21A—C21—H21B   | 107.7      | C2—N2—H2        | 117.2      |
| C23—C22—C27     | 118.6 (4)  | C21—N2—H2       | 117.2      |
|                 |            |                 |            |
| N1—C2—C3—C4     | 2.1 (4)    | C23—C24—C25—C26 | 0.2 (8)    |
| N2-C2-C3-C4     | -178.0 (3) | C24—C25—C26—C27 | -1.0 (9)   |
| N1-C2-C3-C31    | -174.6 (3) | C25—C26—C27—C22 | 0.2 (7)    |
| N2-C2-C3-C31    | 5.3 (4)    | C23—C22—C27—C26 | 1.4 (6)    |
| C2—C3—C4—C5     | -0.6 (4)   | C21—C22—C27—C26 | -177.3 (4) |
| C31—C3—C4—C5    | 175.9 (3)  | C5—C4—C41—C42   | -47.5 (4)  |
| C2—C3—C4—C41    | -179.5 (2) | C3—C4—C41—C42   | 131.3 (3)  |
| C31—C3—C4—C41   | -3.0 (4)   | C5—C4—C41—C46   | 134.4 (3)  |
| C3—C4—C5—C6     | -0.5 (4)   | C3—C4—C41—C46   | -46.8 (4)  |
| C41—C4—C5—C6    | 178.3 (3)  | C46—C41—C42—C43 | 1.0 (4)    |
| C3—C4—C5—C9     | -179.1 (3) | C4—C41—C42—C43  | -177.1 (3) |
| C41—C4—C5—C9    | -0.3 (5)   | C41—C42—C43—C44 | -1.3 (5)   |
| C4—C5—C6—N1     | 0.3 (4)    | C42—C43—C44—C45 | 0.8 (5)    |
| C9—C5—C6—N1     | 179.1 (3)  | C42—C43—C44—Br1 | -178.9 (2) |
| C4—C5—C6—C7     | -178.9 (3) | C43—C44—C45—C46 | -0.1 (5)   |
| C9—C5—C6—C7     | 0.0 (4)    | Br1-C44-C45-C46 | 179.7 (2)  |
| N1—C6—C7—C8     | 166.1 (3)  | C44—C45—C46—C41 | -0.2 (5)   |
| C5—C6—C7—C8     | -14.7 (4)  | C42—C41—C46—C45 | -0.2 (4)   |
| C6—C7—C8—C9     | 23.4 (4)   | C4—C41—C46—C45  | 177.9 (3)  |
| C6—C5—C9—C8     | 14.7 (3)   | C5-C6-N1-C2     | 1.1 (4)    |
| C4—C5—C9—C8     | -166.6 (3) | C7—C6—N1—C2     | -179.8 (3) |
| C7—C8—C9—C5     | -23.4 (4)  | N2-C2-N1-C6     | 177.9 (3)  |
| N2-C21-C22-C23  | 138.8 (3)  | C3—C2—N1—C6     | -2.2 (4)   |
| N2-C21-C22-C27  | -42.5 (4)  | N1-C2-N2-C21    | 3.3 (4)    |
| C27—C22—C23—C24 | -2.2 (5)   | C3—C2—N2—C21    | -176.6 (3) |
| C21—C22—C23—C24 | 176.6 (3)  | C22—C21—N2—C2   | 98.5 (3)   |
| C22—C23—C24—C25 | 1.4 (7)    |                 |            |
|                 |            |                 |            |

| Hvdrogen-bond  | geometrv | (Å.  | <i>°</i> ) |
|----------------|----------|------|------------|
| 11yurogen-bonu | geometry | (11, | /          |

| D—H···A                 | D—H  | H···A | D····A    | <i>D</i> —H··· <i>A</i> |
|-------------------------|------|-------|-----------|-------------------------|
| N2—H2···N3 <sup>i</sup> | 0.86 | 2.23  | 2.974 (4) | 145                     |

Symmetry code: (i) -x+1, -y, -z+1.