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Abstract

Carbon dioxide removal from the atmosphere (CDR)—also known as ‘negative emissions’—features
prominently in most 2 °C scenarios and has been under increased scrutiny by scientists, citizens, and
policymakers. Critics argue that ‘negative emission technologies’ (NETs) are insufficiently mature to

rely on them for climate stabilization. Some even argue that 2 °C is no longer feasible or might have
unacceptable social and environmental costs. Nonetheless, the Paris Agreement endorsed an
aspirational goal of limiting global warming to even lower levels, arguing that climate impacts—
especially for vulnerable nations such as small island states—will be unacceptably severeina 2 °C
world. While there are few pathways to 2 °C that do not rely on negative emissions, 1.5 °C scenarios
are barely conceivable without them. Building on previous assessments of NETs, we identify some
urgent research needs to provide a more complete picture for reaching ambitious climate targets, and

the role that NETs can play in reaching them.

1. Introduction

In 2015, the international community adopted the
‘Paris Agreement’ at the 21st Conference of the Parties
[1], focusing international climate policy on keeping
global warming ‘well below’ 2 °C above pre-industrial
levels, and to pursue further efforts to keep the
temperature increase below 1.5 °C. Scenario analysis
suggests that the 1.5 °C [2, 3] and 2 °C targets [4] are
technically and economically feasible. However, it
remains uncertain whether future emissions will
decline fast enough to be consistent with the require-
ments of low temperature targets, while trying to
achieve other ambitious sustainability targets (e.g.
biodiversity conservation) and development goals (e.g.

food security). Most scenarios consistent with 2 °C [4],
and all of them consistent with 1.5 °C [3], require
large-scale carbon dioxide removal (CDR) using
negative emission technologies (NETs), defined here
as any anthropogenic activities that deliberately extract
CO, from the atmosphere.

Activities commonly considered to create negative
emissions include large-scale afforestation, bioenergy
combined with carbon capture and storage (BECCS),
direct removal of CO, from the ambient air by means
of chemical reaction, enhanced weathering, biochar
formation, and soil carbon sequestration. Research on
NETSs has been conducted for almost two decades [5—
13], but the topic has received more attention since the
IPCC’s AR5 [4] and beyond [14-17].

©2016 IOP Publishing Ltd
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Figure 1. Cumulative BECCS from 2015 t0 2100 in 2 °C scenarios (430-480 ppm CO,-eq in 2100, IPCC AR5 DB). The 11 IAMs using
BECCS are shown; different colors refer to different start dates of global uniform climate policies (shifted in the axis to avoid overlap).
In each start date, some scenarios can overlap; all BECCS scenarios are shown—irrespective of whether they have technology
restrictions or not. Data source: IPCC AR5 Database [20]. Note: ideally, the quantity of CO, stored in bioenergy production systems
should be used instead of cumulative energy. However, given that this variable is not available in the AR5 Database, cumulative
BECCS is used as a proxy.

Most mitigation strategies that depend on the
large-scale use of negative emissions begin deploy-
ment as soon as CCS becomes available, but only
achieve net negative emissions (i.e. net removal of car-
bon from the atmosphere at the global level) in the sec-
ond half of this century. While there are some
temperature stabilization pathways associated with a
more than even chance to keep average global warm-
ing below 2 °C (i.e. without overshoot), current 1.5 °C
scenarios all feature a temporary overshoot [3]. In
these scenarios, net negative emissions would need to
offset this temporary overshoot later in the century
[18, 19]. Negative emissions also offer flexibility for
sectors that are difficult to decarbonize completely,
e.g. greenhouse gas emissions from food production
(i.e., methane, nitrous oxide). However, negative
emissions should be viewed as part of a wider mitiga-
tion portfolio, and not as an alternative to deep cuts in
emissions in the near term [14], as unabated emissions
of CO, would have all associated side effects, such as
ocean acidification, and would increase the risk of ulti-
mately not achieving the target.

Of the 116 scenarios, that were assessed in the
IPCC’s AR5 [21] consistent with a high probability of
achieving the 2 °C target [4, 22], 104 scenarios use
BECCS and most of them at a large scale, with an IAM
median in 2100 of 160EJ/year and one of the models
using as much as 300E]/year in the second half of the
century. The scatter between the data points and mod-
els shown in figure 1 represents different preferences
for BECCS in the [AMs and scenarios, many of which
include limited technology portfolios (e.g., no CCS,
limited bioenergy, no nuclear, etc). A subset of the
IAMs were run assuming global climate policy starting
in 2010 and in 2020 [23] or 2030 [24]. Except for one

model, there is no clear signal that delay in global cli-
mate policy leads to more BECCS, which may be due
to the limited availability of bioenergy in the IAMs, as
is the case when comparing 1.5 °C and 2 °C scenarios
[3]. Comparisons across IAMs and scenarios is ham-
pered by the lack of model and scenario diversity, par-
ticularly in scenario subgroups (e.g., full technology
portfolio with climate policy starting in 2020). The
large spread between IAMs underlines the need for
further investigation to obtain a better understanding
of the underlying dynamics and the demand for nega-
tive emissions.

Large uncertainties and knowledge gaps remain in
all NET areas including supply (the actual negative
emissions potential that can be realized), demand (the
negative emission requirement to achieve a climate
target), and implications (the intended or unintended
socio-economic and environmental costs and con-
sequences of deploying large-scale NETs). The four
dimensions of uncertainty we consider in this article
are outlined in figure 2: sustainable and available
potentials (1) dictate the rate and maximum supply,
which feeds back to achievability of the target and the
optimal mix of mitigation options. This potential
needs to be assessed through the lens of all sustainable
development goals (SDGs), i.e., go beyond the climate
dimension. Mitigation pathways (2) inform about
how to stay within the quota in a cost-optimal way
given a set of mitigation options and deployment rates.
Earth system modeling, (3) considers the carbon cycle
and determines the total carbon quota to achieve a
temperature target, but does not determine how to
stay within budget, i.e., there is no distinction between
net or gross positive or negative emissions. Govern-
ance (4) encompasses society’s choice about what is

2
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Figure 2. The four components of a consistent climate strategy interact to determine supply and demand of negative emissions
motivated by economic, technical, sustainability, governance and Earth System factors (adapted from [14] with examples).
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‘dangerous’ climate change and sets a temperature tar-
get, decisive in turn for the remaining C budget and
the possible mitigation pathways. The rest of the arti-
cle is organized according to these four dimensions,
starting with the potentials on the supply side and end-
ing with governance factors influencing demand.

2. Background

2.1. Overview of negative emissions options

Earlier studies have listed various NETs and assessed
their strengths and weaknesses and the potential
contribution in creating negative emissions (e.g. [25—
27]). A list of the most commonly discussed options
includes:

+ Bio-energy and CCS (BECCS)—the generation of
energy from burning biomass coupled to the
capture and storage of carbon dioxide (CO,) in
geological or other reservoirs. Because CO, has been
captured from the atmosphere during biomass
growth, the process delivers net-negative emissions
to the atmosphere.

+ Afforestation/reforestation and forest management
(AR)—the planting of trees which capture CO, as
they grow, thereby removing CO, from the atmos-
phere and storing it in living biomass.

+ Direct air-capture and storage (DAC)—the use of
chemicals such as amines or sodium hydroxide to
absorb CO, from the atmosphere, after which it is
mineralized for solid storage or pumped into
geological reservoirs.

+ Soil carbon sequestration (SCS)—enhancing the
sequestration of carbon in soils by increasing inputs
or reducing losses, for example by reducing soil
disturbance.

+ Biochar—the pyrolysis of biomass so that it
becomes more resistant to decomposition, which is
then added to the soil to store the embedded carbon
and, in some cases, enhance fertility.

» Enhanced weathering (EW)—the grinding and
spreading of rocks that naturally absorb CO, to
increase their surface area so that they absorb CO,
more rapidly. The ground rock can be spread on
land or the ocean.

* Qcean fertilization (OF)—the fertilization of the
ocean, for example with iron, so that the ocean
phytoplankton absorb more CO, through photo-
synthesis, and then potentially sink to the deep
ocean and sequester carbon after they die.

These technologies (except for OF; see [28]) were
assessed in terms of their negative emissions potential,
impacts on land, water and nutrient use, greenhouse
gas emissions, energy requirements and investments
costs in [15] (for BECCS, AF, DAC and EW) and [16]
(for SCS and biochar). Potentials vary from high
(BECCS, AR, DAC), to lower (EW, SCS and biochar).

All of these NETs run into their respective limits
when implemented at scale [15, 16]. For BECCS, there
are significant issues with competition for land if
BECCS is implemented at the median rate projected
by IAMs, and water use is also significant, while DAC
is energy-intensive, for example.
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Table 1. Negative emission potentials from BECCS, affor-
estation (AR), direct air capture (DAC), soil carbon storage
(SCS), biochar and enhanced weathering (EW) based on
range of 2100 negative emission requirement in AR5 2 °C
scenarios (3.67—12.1 GtCO, /year). Data adapted

from [15, 16].

Negative emission option 2100 potential (GtCO,/year)

BECCS 3.67-12.1
AR 4.03-12.1
DAC 3.67-12.1
SCS 1.47-2.57
Biochar 1.47-2.57
EW 0.73-3.67

In the following we take a closer look at afforesta-
tion and BECCS given they are the only NETs cur-
rently used at significant levels in low-stabilization
scenarios.

2.2. Therole of negative emissions in climate
stabilization

Afforestation can lead to negative emissions, but
requires land and is thus likely to compete with large-
scale biomass cultivation, bioenergy and ultimately
BECCS. In assessing its role in a climate change
mitigation portfolio, land and other resource require-
ments, economic costs and potential negative side
effects have to be weighed against their carbon
benefits.

BECCS relies on the production of bioenergy,
which either is carbon-neutral or emits less carbon
than is sequestered by the cultivation of biomass and
captured and stored in underground reservoirs. Yet,
this mechanism has come under great scrutiny, and
scientific assessments vary widely in their estimates of
carbon benefit. Concerns with respect to carbon-neu-
trality include indirect land use change, site-specific
barriers, and problems to achieve scale without
impacts on the environment [29-31].

Most NETs have not been commercially deployed
at large scales as required by low-carbon mitigation
scenarios. Afforestation generally already exists at
scale [46, 47] and considerable experience exists with
implementation and monitoring. However, to achieve
negative emissions as indicated in table 1, substantial
upscaling would be required. For BECCS, with the
individual components of these plants being bioe-
nergy production, capture of CO, and storage, only a
few projects exist [48, 49].

As summarized by the IPCC [4]—most scenarios
contain significantly larger amounts of negative emis-
sions using BECCS compared to afforestation. Affor-
estation tends to be more cost-efficient for carbon
removal at low carbon prices, whereas BECCS
becomes more competitive as carbon prices rise
[32, 33]. The land requirement for afforestation would
also be substantially higher than for BECCS. The
assumptions concerning potentials, however, are
model and scenario specific: yield assumptions and the
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dynamics of mitigation strategies vary widely across
IAMs [34]. Furthermore, different BECCS technolo-
gies can have different consequences for emissions, i.e.
the portion of emissions sequestered along the supply
chain may vary, and the bioenergy may substitute dif-
ferent technologies (e.g. [35, 36]). Finally, these more
aggregated studies will need to be reconciled with
more detailed analysis. NETs other than BECCS and
afforestation have achieved much less attention in the
work of IAMs—although some individual studies
exist. For instance, several studies have looked into the
consequences of enhanced weathering [37, 38], DAC
[39—43], and ocean fertilization [44, 45].

Some individual studies have assessed the implica-
tions of negative emissions in shifting the mitigation
effort from current to future generations, with the
amount of negative emissions being significantly and
positively correlated with the discount rate [42]. The
use of NETs can allow for an overshoot of as much as
0.5 °C for standard assumptions on climate sensitivity
and other physical parameters—provided that tem-
porary overshoot of the target is allowed [11]. How-
ever, this has not been fully incorporated in the
integrated assessment of NETs, yet. This prevents us
from drawing systematic conclusions across models
with respect to delay (see figure 1). In any case, a delay
in mitigation may prolong our reliance on fossil fuels,
although even with CCS, most fossil fuel reserves will
need to remain underground to achieve ambitious cli-
mate targets [50]. This is particularly important in case
of future technology failure, or limited deployment of
NETs for social reasons [51]. Uncertainties in negative
emissions, combined with future uncertainties in the
performance of the natural carbon sinks, have a sig-
nificant effect on NET deployment [52]. NET's appear
to be particularly advantageous in scenarios with
delays in mitigation in some key regions [37].

Finally, even if these uncertainties surrounding
benefits, costs and risks of NETs could be resolved, the
technologies and the large-scale deployment will
require the acceptance by the public and thus policy-
makers ([53, 54] on CCS, and [55] on bioenergy). Cur-
rently, there is a vast gap between what is currently
being planned and developed and what would be nee-
ded based on the low-stabilization scenarios (e.g. [56]
for CCS).

3. Negative emissions: research challenges

3.1. Sustainable potentials: focus on BECCS and
afforestation

More detailed analysis of optimal land use is needed
that allows multi-functional uses for different pro-
ducts (e.g. food and bioenergy feedstock) to be derived
from the same land. For example, rice straw is among
the most abundant biomass resources with 550 Mt
annual production in Asia alone. The majority of this
potential feedstock is wasted when burned in the fields

4
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for easy disposal [57]. Logistical and financial solutions
to utilizing this abundant renewable resource—not
competing with food production—are missing. Simi-
larly, palm oil production generates considerable
residues and waste that are substantially under-utilized
for energy [58]. Clean energy services from oil palm
residues and waste provided to surrounding rural
areas could be a key contributor to SDG 7 ensuring
access to affordable, reliable, sustainable and modern
energy for all. Furthermore, breeding of new plants
needs more focus on multiple uses. Though not
commercially proven, mangrove palm is a promising
new feedstock for bioethanol production showing
higher productivity than sugarcane and not competing
with other crops for agricultural land or freshwater.
Planted in suitable areas, it can help to preserve and
restore mangrove (e.g. [59]).

A major challenge for land-based NETs remains
the selection of the optimal feedstock plant species for
a given location. Further suitability research is needed
—especially with feedstock plants that grow on defor-
ested land and hence have a broad geographic range.
Canadell and Schulze [60] warn that many first gen-
eration biofuels do not yield net GHG emission sav-
ings if their establishment requires the transformation
of native ecosystems: carbon debts for different biofuel
systems range from 17 years for sugarcane-based etha-
nol systems replacing Cerrado in Brazil up to 840 years
for specific oil palm-based biodiesel systems that
replaced original tropical forest on peat in South-
east Asia.

Careful suitability assessments are thus needed to
avoid incorrect assumptions and planning mistakes
when ramping up a large-scale BECCS system. Palm
oil production in particular has expanded greatly,
from 6 Mha in 1990 to 16 Mha in 2010. Much of this
expansion has come at the expense of biodiversity-rich
tropical forests [61]. On the other hand, it is an income
source greatly contributing to poverty alleviation. Pir-
ker et al [62] found in their global oil palm suitability
study that—based on purely biophysical parameters
—1land used for palm oil production could be doubled
without expanding into protected or highly biodiverse
forests. Such global suitability guidelines should be
paired with continuous efforts to strengthen govern-
ance and consumer-driven market tools such as certi-
fication of forest and agricultural management
[63, 64]. Furthermore, ministerial initiatives such as
the ‘Bonn Challenge™—a global effort to restore
350 Mha of the world’s deforested and degraded land
by 2030—can help identify and assess marginal, degra-
ded and abandoned land for restoration with suitable
plants for bioenergy feedstock production.

Unlike first generation biofuels, forest-based
bioenergy and other ligno-cellulosic short rotation
crops/second generation crops such as Miscanthus,
poplar, willow and eucalyptus often do not compete
directly with food crops [60]. Sustainable
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management of such systems is already recognized
under the REDD+- schemes.

For forest-based bioenergy and BECCS systems,
further to (certified) sustainable management [63], the
use of wood and harvesting residues is desirable from a
technological point of view. Many industries (e.g.,
pulp and paper, construction, furniture, flooring,
biorefinery, etc) compete for wood, which calls for a
careful distribution while burning wood for energy
should come as late as possible in the cascade (see
[65, 66]), unless other valuable services such as CO,
removal are accounted for. Preference shall be given to
long-living products from wood (e.g. for construc-
tion) for long-term carbon storage, but permanence
remains a challenge for carbon capture for utilization
(CCUS) of products (e.g. chemical products, con-
struction materials). Furthermore, wood-forestry-
based BECCS systems generally show higher effi-
ciencies than those based on agricultural-herbaceous
systems. However, a recent study on the BECCS
potential in Brazil for sugarcane ethanol states that
CO, can be captured twice along the BECCS supply
chain—during biofuel generation and combustion
[67]. Still, energy penalties that materialize in higher
land demand for compensation need to be accounted
for [68]. For any technology involving CCS, more
large-scale demonstration projects are required to
reduce costs and improve efficiencies ahead of larger-
scale rollout.

Additional risk management for all land-based
carbon mitigation should incorporate wildfires
(350 Mha burnt per year globally according to [69]),
extreme weather events (storm, hail, drought, flood-
ing, etc) and pests and diseases (infestations by e.g.
bark beetles and locust, plant diseases caused by fungi,
etc). Pests and diseases are particularly important for
monoculture systems, though significant amounts of
food are produced in monoculture areas. There is a
need to better understand the interdependency
between bioenergy production and meteorological
processes across time and spatial scales [70, 71].

Negative emissions can be generated through
aquatic biomass as well. Green algae could be managed
either in floating pools or on land to produce biomass
with carbon separation after gasification or combus-
tion [72]. The technology is being developed in many
laboratories including with genetically modified
organisms but is far from commercialization. The
advantage of off-shore schemes would be that the
separated CO, could be stored in the aquifers under
the seafloor as is the case with the Sleipner platform in
the North Sea that separates CO, from produced nat-
ural gas.

Research also needs to examine how possible
negative environmental impacts (e.g., effects on water,
biodiversity, etc) associated with land-based NETs
could be minimized or, in some places, improved. The
research needs to include the optimization of locations
for future BECCS plants and related logistics for




10P Publishing

Environ. Res. Lett. 11 (2016) 115007

feedstock and CO, transportation, with highly
resolved geographically explicit studies at regional and
national levels [73]. Only the combination of process-
based (biophysical and techno-engineering model-
ing), economic (IAMs) and Earth system models
(ESMs) will allow system dynamics to be fully
captured.

3.2. Mitigation pathways: benefits and risks of NET's
for climate stabilization

A key set of knowledge gaps relates to further
quantification and improved representation of the
land use and sustainability impacts of large scale NET's
in integrated assessments. IAMs already feature
energy-land use systems, which can compute the
trade-offs of using land to grow bioenergy [74]. Never-
theless, additional focus on modeling the ecosystem
and land use impacts of biological NETs is needed to
generate more realistic estimates of potentials [60, 75].
Similarly, integration of new knowledge on yield
developments and afforestation potential in IAMs will
aid the evaluation of the consequences of NETs for the
SDGs, as NETs have impacts not pertaining to climate
change alone, but also interacting with several of the
SDGs, such as poverty and hunger (SDG1 and 2), water
and land (SDG14 and 15) and energy (SDG7). By
moving mitigation effort in time and space, NET's
bring about significant new challenges for equity, for
example. The emergence of other NETs—currently
not broadly integrated in the assessments—could
alleviate some of the unintended negative side effects
on other SDGs and still help to deliver sufficient
potentials for carbon removal.

Technological uncertainties and the resulting
engineering challenges that can influence the mitiga-
tion mix and its timing include the ability to deploy
large-scale BECCS, in particular with respect to its
costs, systems integration, the ability of the technology
to deal with a feedstock that may vary in terms of its
exact composition and the capture rate. Global bio-
mass-based electricity generation by 2015 reached
464 TWh with an installed capacity of 106 GW com-
pared to more than 1000 GW of hydropower [76] or
over 1600 GW of coal-fired power plants. Many of
these thermoelectric plants are of small size, which
could be an economic disadvantage if combined with
CCS. Still, research shows that both in Brazil and the
United States larger-scale bioenergy plants are already
available [77, 78].

On the storage side, a large-scale CO, pipeline net-
work will likely be needed—from power stations and
factories to the storage sites, unless BECCS plants are
optimally sited to take advantage of in situ storage
opportunities. In the IAM scenarios, transported
volumes are typically quite large, i.e. in the order of up
to 10 GtCO, per year and sometimes even higher
(based on the AR5 Database). Such a network would
be similar in size to the current natural gas network.
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Research should focus on the costs and risks that are
involved in such infrastructure.

3.3. Earth system: carbon cycle response to negative
emissions

The natural carbon cycle—land and ocean—acts as a
buffer to excess CO, emissions from human activity.
More than half of all CO, emissions are absorbed by
oceans and vegetation on land, thereby slowing by
about half the rate of atmospheric CO, growth
[79, 80]. Although this ecosystem service has largely
kept pace with increasing emissions and maintained a
mean airborne fraction (AF) of 42% (the fraction of
emissions staying in the atmosphere), the efficiency at
which natural CO, sinks work has declined [81].

The same processes that slow down the CO,
growth rate will respond to negative emissions in
reverse—to buffer the system and partially oppose
negative emissions. If more CO, is removed from the
atmosphere than added, the CO, fertilization effect on
vegetation will weaken and therefore reduce the land
sink. The oceans will reduce their uptake and ulti-
mately even degas CO, to equilibrate with the lower
CO, concentration, also weakening the net ocean sink.
This implies that the resulting change in the atmos-
phere is only a fraction of the amount of CO, removed
—exactly analogous to the response to positive emis-
sions. [83] analyzed this response under the RCP2.6
scenario across CMIP5 ESMs and found that on long
timescales, natural sinks reverse. Therefore, the AF of
negative emissions must be treated in the same way as
for positive emissions—only a fraction of the CO,
reduction will persist in the atmosphere. However,
there are large uncertainties between ESMs over the
magnitude of this response, which hinders the useful-
ness of projections to policy makers. Models also lack
some crucial processes, leading to research gaps and
priorities for improving our understanding of the
Earth system response to negative emissions.

The highest priority is reducing the large model
spread in simulating carbon cycle sensitivity to climate
changes. With a focus on low mitigation scenarios,
ESMs need to be better evaluated, so that we can more
precisely and reliably determine the remaining carbon
budget associated with a chosen climate target. For
instance, the most up-to-date assessment on the
remaining carbon budget to comply with the 2 °C tar-
get is 590-1240 GtCO, [82]. IAMs should continue to
draw on ESM outputs for their carbon cycle response,
but focus on testing these under low stabilization or
even peak-and-decline concentration pathways.

In addition to the overall impact of CO, removal
from the atmosphere, different methods of extracting
CO, will also interact differently with the Earth sys-
tem. For example, land- or ocean-based uptake have
effects on the carbon cycle that are very different from
DAC and CCS with geological storage [82]. Little is
understood about the underlying mechanisms and the
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magnitudes involved. Yet, these insights can have
important impacts on the estimated negative emission
needs and their effectiveness in climate stabilization.

Research also needs to understand how reversible
the Earth system is and the potential for hysteresis.
One question is how to restore CO, concentration to
the levels before the Industrial era, which is required in
scenarios that first overshoot a target before conver-
ging to a temperature target using negative emissions.
While the atmospheric reservoir may converge to a
previous concentration level, it is unlikely that all
other carbon reservoirs will be restored. For example,
if the tropics have been originally deforested and the
same amount has been afforested in the high latitudes,
the same CO, level may be achieved, but is the system
‘reversed’? Similarly, there is to date no robust evi-
dence as to what extent the climate system reverses,
whether there are irreversible changes or hysteresis
(e.g. ocean overturning or permafrost). Are there some
thresholds which can be crossed (e.g. tropical forest
dieback) and does the system possess ‘temporary resi-
lience’ in the sense that we can cross a threshold safely
for a few years or even decades before the tipping point
is triggered?

3.4. Governance: driver of demand and supply
The importance of governance and society is two-fold
for negative emissions. First, governance drives the
demand for negative emissions by achieving consensus
on temperature targets (figure 2). Second, the lack of
governance and societal concerns in the implementa-
tion phase can limit the timely supply and reduce the
demand for negative emissions, respectively. A further
complication is that both climate change and effects of
NET deployment raise cross-jurisdictional issues, for
which no governance structure currently exists. From
here, two major areas of research emerge: first, to better
understand the inhibiting factors, their history and
potential for change. Second, to determine institutional
and governance structures required to ensure the trial
and eventual large-scale deployment of NETs.
Indicative of the current lack of commitment to
NETs is their complete absence in any of the Intended
National Determined Commitments (INDCs) sub-
mitted in support of the Paris Climate Agreement.
Furthermore, CCS is only mentioned as a priority area
in three INDCs [84]. At the same time, investments
from the private sector are too low compared to what
would be needed at a short timescale [85] and CCS is
far behind earlier projections [56, 86]. In contrast, 90
INDCs mention renewable energy, and there is con-
stant government, civil society, and media attention to
the faster than expected growth in renewable energy,
except for bioenergy, which is the basis for BECCS
[75]. A possible explanation for this contrast is that
subsidizing some sources of renewable energy is seen
as politically expedient, while investing in CCS, NETs,
or other large-scale technologies is seen as having a
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high political risk. NETs are also causing a strong
debate in civil society, where BECCS has been unpop-
ular in many countries for two reasons: (1) bioenergy
has been one of the main culprits in the public debate
during the food price crisis in 2008, and (2) CCS has
been associated with environmental and safety issues
such as risks of leakage [87], and earthquakes [88], and
with prolonging the reliance on fossil fuels [89]. There
is a lack of understanding of how policy makers and
society receive and interpret information from emis-
sion scenarios, and why they favor certain technolo-
gies over others.

There are currently no institutional or governance
structures for dealing with some of the NETs, particu-
larly with the one most widely used in climate stabili-
zation scenarios, BECCS. Key issues for which new
developments are needed include biophysical and eco-
nomic constraints [15], sustainability risks [17], and
even legal risks with respect to liability in the case of
leakage from geological storage or other negative side
effects. As described in the previous subsections, many
of these areas represent key knowledge gaps that need
to be addressed. On the practical side, these knowledge
gaps are also associated with the current lack of con-
sistent emission accounting rules for all types of NETs.
In the case of BECCS, biomass harvest, combustion
and capture, and storage can occur in distinct coun-
tries, and while accounting rules do exist, there are
long-standing debates about their effectiveness, parti-
cularly for bioenergy [90].

Finally, the right set of policy instruments is nee-
ded to economically incentivize R&D, demonstration
and ultimately large-scale, sustainable deployment
(e.g. [86, 91]). BECCS has an added advantage with a
dual purpose to generate energy and remove carbon,
while other NETSs only remove carbon. It is currently
not clear what policies would lead to the ramp-up of
NETs, particularly at the scale needed. Whether incen-
tivisation best works through a combination of carbon
pricing (as in the IAMs) and sustainability standards or
short-run financial support to get specific technolo-
gies on the road should be the subject of further
research. What could be the role of debt finance in the
face of negative interest rates? To what extent should
we support fundamental research and development,
as opposed to actual capacity development? Since
many NETs require CCS to work, it appears to be
important to align policies supporting CCS with the
need for BECCS and DAC.

3.5. Cross cutting issues

At the operational level, there are some cross-cutting
research needs emerging in all four dimensions
(figure 2). In particular, it is important to define a set of
‘system level” indicators to assess unintended negative
consequences of the expected large-scale deployment
of NETs. In addition, there are trade-offs between
NET impacts and climate impacts. To stabilize

7



10P Publishing

Environ. Res. Lett. 11 (2016) 115007

temperatures at low levels may require substantial
NETs, but the aggregated unintended negative impacts
of NET's may be greater than the climate impacts. On
the other hand, there can be also positive conse-
quences unrelated to carbon benefits such as new
business opportunities in bioenergy or carbon reven-
ues from afforestation offsets. The aggregation and
comparison of impacts between climate and NETs is
likely to be controversial. Metrics of the carbon cycle
response—e.g. AF—are easy to interpret, but might
not always be useful or even meaningful, whereas
‘process level’ metrics such as sink efficiency [81] may
be more meaningful to process experts, but not
necessarily useful for policy makers. The transient
climate response to cumulative emissions (TCRE) is a
metric used to relate surface air temperature increases
to cumulative emissions, and is often used to give a
remaining ‘quota’ [82, 92] before a given temperature
level is exceeded. Recently, studies have begun to use
the TCRE approach to relate carbon budgets directly
to impacts such as heatwave occurrence [93] or
regional temperature and precipitation extremes [94].
However, if a temporary overshoot in the cumulative
carbon budget and temperature is accepted for a
period that is sufficiently long [18, 19], then the NETs
in the long-term have to, at least partially, compensate
for excess CO, emissions in the near-term. It is unclear
whether the TCRE/budget approach is sufficiently
robust when high levels of NET's allow the budget to be
temporarily exceeded. Some progress has been made
to assess indicators for the risks to sustainability of
climate change mitigation in general [95]. Economic
indicators, such as policy costs with and without
negative emissions, can readily be extracted from the
IAMs, but societal preferences are generally under-
represented. For example, there are only few studies
looking into public acceptability of technologies and
location-specific political realities coming up with
comparable metrics.

4, Conclusion

We have set out a research agenda across four dimen-
sions, which interact to determine the demand for and
supply of negative emissions. The intersection—and
whether there is one—is not only determined by
technological parameters, but also by societal prefer-
ences, timing issues, economics, carbon cycle dynamics
and risks to sustainability. An interdisciplinary approach
is needed to comprehensively tackle these interactions.
The research priorities emerging from our analysis
of the literature across the four dimensions of figure 2
start with the potential capacities. Here, two research
and development areas require major advances. On
the one hand, CCS research, development and deploy-
ment is behind what roadmaps recommend particu-
larly for 2 °C-compatible pathways; on the other hand,
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sustainable large-scale supply of second-generation
bioenergy will need to be ensured. In addition, due to
the limitation of individual NETs, more research and
development of NETs other than BECCS and affor-
estation is needed. Currently, these two options are the
only ones used to a large extent in stabilization path-
ways. However, if energy supply can be largely dec-
arbonized and costs brought down, DAC and other
NETs could add to the total negative emissions poten-
tial at a negligible land footprint. Furthermore, carbon
cycle dynamics under net negative emissions need to
be examined in detail. Questions of reversibility and
asymmetry of processes as CO, concentrations rise
and fall are central to this topic area. Finally, spanning
from potentials over mitigation pathways to govern-
ance challenges, further model development is needed
to incorporate multiple criteria for large-scale deploy-
ment of NET's that achieves consistency not only with
climate change mitigation aspirations, but also
other SDGs.

It needs to be reiterated that short-term abatement
is a necessary, but not sufficient, condition to meet the
most ambitious climate targets (e.g., 1.5°C and most
likely 2°C). The research agenda set out here prior-
itizes the necessary biophysical and socio-economic
aspects required to initiate the deployment of negative
emission technologies in the short-term that is neces-
sary to reach a scale capable of removing excess CO,
from the atmosphere in the longer term. Without suf-
ficient short-term emission reductions, however,
negative emissions will also prove ineffective in
enabling climate stabilization at ambitious targets.
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