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ARTICLE INFO ABSTRACT

Keywords: Following a meal, a series of physiological changes occurs in animals as they digest, absorb and assimilate
Postprandial ingested nutrients, the kinetics of these responses depends on metabolic rate and nutrient quality. Here we
Hepatic proteins investigated the hepatic proteome in the ectothermic teleost, the rainbow trout, following a single meal to define
Trout . the postprandial expression of hepatic proteins. The fish were fed a high marine fishmeal/fish oil single meal
Erizteomlcs following a period of 24 h without feeding. Liver protein profiles were examined by 2D gel electrophoresis just
Meal before feeding (time 0 h) and at 6 and 12 h after feeding. Of a total of 588 protein spots analysed in a temporal
Nutrition fashion, 49 differed significantly in abundance between the three time groups (ANOVA, p < 0.05), before and

after feeding, 15 were increased and 34 were decreased in abundance after feeding. Amino acid metabolism-
regulated proteins such as phenylalanine-4-hydroxylase and proliferating cell antigen were increased in
abundance 12 and 6 h following the meal, suggesting by this time that the fish were increasing their protein
turnover to utilize efficiently their dietary protein consumption. Overall, these results highlight some specificity
of the trout metabolism and identify postprandial response of metabolism-related proteins 6—12 h after feeding
a single meal.

1. Introduction

Aquaculture production has increased dramatically in recent years
and it is predicted to grow from 67 M tonnes in 2012 to 140Mt by 2050
[1], this reflects the increased demand for fish protein and growing
global human population [2]. One major limitation to the expansion of
aquaculture is its reliance on wild fish for aquafeed production to fulfil
the demands of aquaculture. Salmonids similar to other carnivorous
fish require a high protein diet to attain maximum growth rates.
Fishmeal is used in high-protein feed for carnivorous fish but climate
change and the overexploitation of fisheries resources have resulted in
a reduced supply and, consequently, alternative protein sources such as
plant protein meal are used in aquafeeds [2]. However, the long term
metabolic consequences of feeding fish with a low fishmeal high plant
protein diet is still under consideration and further knowledge is
required regarding the way that dietary composition influences protein
metabolism in fish. In addition, it is necessary to obtain a better

understanding on the potential interactions between dietary protein
sources and the way that they may regulate the processes involved in
protein metabolism. Protein metabolism and dietary amino acid
profiles differ depending on the protein source in the diet, with
essential and non-essential amino acids appearing synchronously in
the plasma in juvenile rainbow trout (Oncorhynchus mykiss) fed a
fishmeal diet, while the appearance was less synchronised in fish fed a
plant meal diet [3]. Thus, amino acid uptake patterns are influenced by
the protein source in the feed, with different dynamics of protein
digestion and amino acid uptake between fishmeal and plant protein-
rich ingredients. Developing a better understanding of the molecular
mechanisms controlling nutrient utilization will help us to generate
sustainable and functional diets and improve the efficiency of aqua-
culture.

Recent research shows an improvement in understanding the
regulation of physiological functions of fish under conditions of
restricted or excessive food intake and in understanding the biochem-
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ical processes occurring in the fish tissues due to feeding. After a meal,
a sequence of physiological changes occurs in animals in response to
digestion, absorption and assimilation of the ingested nutrients [4].
Studies have investigated the post-prandial changes in protein synth-
esis in fish [5,6]. The liver responds early to the arrival of a single meal
as liver protein mass increases and protein synthesis rates rise sharply
4-6 h and then fall in 24 h [4]. Postprandial free amino acid (FAA)
levels indicate availability for muscle growth and provide a link
between feed intake and anabolic processes. Several researchers have
studied postprandial concentrations of FAA in fish tissues such as
Atlantic cod (Gadus morhua), koi carp (Cyprinus carpio), rainbow
trout [3,7-10] and Atlantic salmon (Salmo salar) [6,11,12]. A study by
[13] on postprandial regulation of hepatic microRNAs in rainbow trout
in relation to insulin signalling and target genes contributed to an
improved understanding of the nutritional regulation of intermediary
metabolism in this tissue. Gene expression in relation to diet in trout
fed a single meal showed a triggering of the signalling pathway of
insulin/amino acid after a single meal [14], indicating that trout use
amino acids both as an energy source and probably as a substrate for
lipogenesis. A study of muscle gene expression revealed that growth-
related genes in juvenile Atlantic salmon were up-regulated within one
hour of refeeding following fasting [15].

Proteomic studies have improved the understanding of the relation-
ships between diet composition, protein metabolism and nutrient
utilization in aquatic animals [16,17]. Two-dimensional proteomics is
a robust tool for examining protein responses to environmental or
dietary stimulations [18-21] and has greatly enhanced knowledge of
the metabolic pathways influenced by dietary changes in both liver and
muscle in rainbow trout [18,22—-25], Atlantic salmon [26,27], gilthead
sea bream and white sea bream [28—30]. The only reported post-
prandial proteomic examination of liver has been in the warm water
zebrafish which were fed diets containing different protein and
carbohydrates levels [31]. Ammonia excretion rates in rainbow trout
reached a peak values at 5-7 h post-feeding a single meal, suggesting
that the rates of dietary protein digestion occurs at that time [23].
Using this approach we examined the effect of a single meal on the
postprandial expression of proteins related to hepatic metabolism in
trout fed on a diet containing high level of marine protein derived
protein. The liver was chosen as the target organ in view of its
importance in fish metabolism. We show temporal changes in the
trout liver proteome following a single meal. The identification of the
proteins by mass spectrometry has been facilitated by the recent
publication of the rainbow trout genome and in silico derived tran-
scriptome and proteome [32].

2. Material and methods
2.1. Ethics statement

The experiment was carried out strictly in line with EU legal
frameworks related to the welfare and protection of animals used for
scientific purposes (Directive 2010/63/EU) and the guidelines of
legislation in the UK that governs the ethical treatment of animals
(Animal Scientific Procedures Act, 1986, UK). No regulated procedures
were carried out during this trial as defined by the Animal Scientific
Procedures Act, 1986 and Schedule 1 method (SFI), UK. The study was
approved under the University of Aberdeen's Code of Practice on the
Use of Animals in Research, which takes account of ethical, health and
safety considerations.

2.2. Experimental diets

The diet was formulated as a high marine fishmeal /fish oil diet
(560 fishmeal/120 fish oil g.kg™?). It used only organic trimmings from
a sustainable certified Peruvian fishmeal, organic fish oil, organic peas
and organic soya cake (which also supplied a small amount of protein)
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Table 1
Chemical composition of the experimental diet.

Chemical composition (g kg™ DM)

Moisture (g kg™) 577
Crude protein 430
Total lipid 230
Crude fibre 10

Ash 100
CHO" 240
GE (kJ.kg"'DM)" 21.5

# CHO, carbohydrate calculated by difference (100% - (% crude protein +% total lipid
+% ash)

Y GE, Gross energy calculated from nutrients assuming gross energy content of
23.6 kJ g™! for protein, 39.5kJ g™ for lipid, 17.2kJ g™* for carbohydrate (Bradfield
1985).

and did not contain any GM ingredients or synthetic amino acids. It
was prepared based on a commercial organic fish diet at BIOMAR
(Scotland, UK). The chemical composition of the diet (Table 1) was
analysed using the Kjeldahl method for determining the protein
content and the Soxtherm method for determining fat content [33].
Dry matter was measured after drying at 105 °C for 24 h.

2.3. Experimental procedures

Juvenile immature rainbow trout of mixed sex, weighing 44.98 +
1.08 g (n =140), were acquired from a commercial fish farm and reared
in 2501 tanks at the freshwater aquarium facilities in the School of
Biological Sciences, University of Aberdeen. The fish were randomly
distributed in three tanks with 40 individuals in each tank. The
temperature was maintained at 12 °C, pH at 7.60 and oxygen satura-
tion at 90% under a natural photoperiod and the fish were acclimatised
for two weeks to the tanks prior to feeding the organic diet. Fish were
fed by hand ad libitum twice daily at 09:00 and 15:00 for 5 weeks. The
amount of feed per tank was measured in order to ensure that feed
intake was equally distributed between the tanks (around 2% of fish
body weight). At the end of the experiment fish remained unfed for
24 h. They were used to examine the liver proteome prior to feeding
(t=0h) and at two times after feeding (6 h and 12 h after feeding)
based on previous data, which examined the postprandial response of
proteins to feeding a meal in trout [23]. A total of 18 fish were sampled
using two from each tank before feeding (0 h, n=6) and at 6 h and 12 h
after a single meal. Fish were sacrificed by anaesthesia overdose
(phenoxyethanol) followed by destruction of the brain, wet weight
was measured and the liver tissues immediately were dissected out,
samples weighed, frozen in liquid nitrogen and kept at —80 °C. Wet
weight was measured in all remaining fish not used for proteomics
analysis.

2.4. Protein extraction and gel analysis

Protein extraction and analysis were performed in line with Cash
et al., 1995 [34] and Martin et al., 2003 [23]. Briefly, the samples of the
liver (approximately 100 mg each, n =6 for each time point) were
homogenized in 2-D lysis buffer (0.5ml 0.5M Tris—HCl pH 6.8,
0.125ml 0.2M EDTA, 12g urea (8 M), 2.5ml 0.5M DTT, 2.5ml
glycerol (10%), 1.25ml NP-40 (5%), 3.7 ml pH 3-10 ampholytes
(40%) 6%, 5 ml MilliQ water) using a pestle, kept cooled and lysis
buffer was added in a 10:1 ratio (e.g. 1.0 ml added to a 100 mg
sample). The homogenates were centrifuged at 11,000 g for 10 min,
and the supernatants were decanted and stored at —80 °C. Proteins
from the supernatants were precipitated by using a ReadyPrep™ 2-D
Cleanup kit (Bio-Rad Laboratories, Hercules USA) following the
manufacturer's instructions. The precipitate was solubilized in 200 uL
IPG buffer (2.01g UREA (7 M), 0.76g Thiourea (2 M), 0.2g CHAPS
(4%), 0.015g DTT (0.3%), 3 ml MilliQ water, 50 _1 pH 4-7 IPG buffer
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(GE Healthcare) and in sufficient bromophenol blue in order to provide
to the solution a blue colour. The protein solution was sonicated with 3
bursts each of 5 s. It was then incubated with one part DNase solution
(0.05ml 1M MgCl2, 0.5ml 1M Tris—HCl pH 8.0 and 0.1 ml
20,000 U ml-1) to two parts protein solution for 10 min on ice. The
protein samples (2 pL) were first analysed by 1-dimensional SDS PAGE
to check protein quality and amount. A volume of between 30 and
35 puL of protein sample was applied to the first dimension IPG strips
(11 cm, pH 4-7) (Bio-Rad) to equalise the total protein load, as judged
from the 1-D profiles. Following isoelectric focussing, IPG strips were
applied to the second dimension SDS-PAGE (Criterion Any kD™, Bio-
Rad), electrophoresed and the resolved proteins detected using
Colloidal Coomassie Blue G250 staining. The gels were dried then
scanned in an ImageScannerTMIII (GE Healthcare, UK) with LabScan
software (GE Healthcare, UK). 16 bit images were obtained in a
resolution of 600 dpi. The digitised images were transferred to the
Progenesis SameSpots, version 4.5 (Non-linear Dynamics, Newcastle
upon Tyne, UK). A reference gel from the control samples at time 0 h
was selected using a combination of manual and automatically
generated vectors. The remaining gel images were aligned to the
reference gel. Spots on the 2D dried gel profiles were detected
automatically and normalised spot volumes calculated. The
SameSpots normalisation factors ranged from 0.88 to 1.45, demon-
strating that similar amounts of protein had been loaded. Then, they
were reviewed manually using the software and spots showing a
significant difference (p<0.05) between treatments were selected.

2.5. Identification of protein spots that are altered following meal

Comparisons of the 2D protein profiles of fish before feeding (0 h)
and at 6 h and 12 h after a single meal (n=6 biological replicates). The
2D protein profiles for each time point for each fish were matched to
the 2D reference gel using Progenesis SameSpots software [35]. The 2D
gel images were grouped per time point; thus there were three groups:
0 h, 6 h and 12 h and protein spots that showed statistically significant
differences by ANOVA (p <0.05) in abundance between the three
groups were selected. These spots were further analysed by using
Principal Component Analysis (PCA). Both spot and gel data were
plotted as a “biplot”.

2.6. Protein identification by mass spectrometry (LC-MS/MS)

Ten protein spots were chosen according to several criteria. They
represent changes that increased and decreased in abundance at 6 h or
12 h following a single meal. They also had an intensity enough to allow
trypsin digest fingerprinting. In addition, they were not attached to a
second spot or other spots. Selected proteins were excised in 1.5-mm
diameter gel plugs from Coomassie Blue stained 2-D gels. They were
processed as described by Nestbakken et al. [36]. Proteins in the gel
plugs were digested with trypsin. Peptide solutions were analysed using
an HCTultra PTM Discovery System (Bruker Daltonics Ltd., Coventry,
UK) combined to an UltiMate 3000 LC System (Dionex Ltd.,
Camberley, Surrey, UK). Peptides were separated on a Monolithic
Capillary Column (200 pm i.d. x5 cm; Dionex) at a flow rate of 2 pL/
min using a gradient of acetonitrile (6—-38% over 12 min) in 0.04%
(aq.) formic acid. Peptide fragment mass spectra were acquired in data-
dependent AutoMS(2) mode with a scan range of 300-1500 m/z, 3
averages, and up to 3 precursor ions selected from the MS scan (100—
2200 m/z). Precursors were rejected within a 1.0 min window, and all
singly charged ions were excluded. Peptide peaks were identified and
deconvoluted automatically using DataAnalysis software (Bruker).
Mass lists in the form of Mascot Generic Files were created auto-
matically and used as the input for Mascot MS/MS Ions searches of the
rainbow trout proteome [32] using Mascot Server version 2.2. The
default search parameters used were: enzyme=trypsin; max. missed
cleavages =1; fixed modifications=carbamidomethyl (C); variable mod-
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ifications=oxidation (M); peptide tolerance + 1.5 Da; MS/MS tolerance
+ 0.5 Da; peptide charge =2+ and 3+; instrument=ESI-TRAP. The
proteins from the rainbow trout proteome are not annotated and to
assign annotated proteins a BLASTP search was performed against all
proteins on NCBI; following this all searches defined a significant
protein match.

2.7. Statistical analysis

Means with their standard error (SE) are presented. The growth
performance of the fish (initial and final weights) was analysed using
Student's t-tests. One-way ANOVA and if necessary, Tukey multiple-
range tests was used to analyse the relationship between time after
feeding and proteome analysis. Homogeneity was confirmed using
Levene's test. Database searching for protein identities was performed.
All statistical analyses were carried out using IBM SPSS Statistics,
version 22.

3. Results
3.1. Growth performance

At the beginning of the trial there were no significant differences
among tanks in the initial weight of the fish, which was 44.98 + 1.08 g
(p > 0.05). Fish weight gain was 32.60 + 1.91 g. The specific growth rate
(SGR, %/day) and feed efficiency was 1.55 + 0.08, 1.06 + 0.17 respec-
tively.

3.2. Detection of differentially expressed proteins

The effects of refeeding on the expression of hepatic proteins were
analysed by comparing fish, which were fasted for 24 h (0 h) and 6 and
12 h after refeeding. The protein profile from a fish at 0 h (Fig. 1) shows
a representative sample of the liver proteins separated by 2DE. This
was chosen as a reference gel. All the other gel profiles were matched
against the reference with each protein assigned a reference number,
molecular weight, pI and abundance. The gels showed good resolution
of the cellular proteins with pI of 4-7 and molecular masses of 10—
250 kDa (Fig. 1).

The number of protein spots identified on each gel varied from 500
—-800. Following quality control and editing 588 spots were obtained
for statistical analysis in all gels, among which forty-nine spots were
found to differ significantly (ANOVA, P < 0.05) in abundance (Table 2)
after refeeding. We found fifteen spots that increased in abundance, of
which 10 protein spots increased at 6 h after feeding and 5 increased at
12 h after feeding (Table 2). The fold differences between the protein
abundances for significant spots in the three time groups ranged
between 1.2 and 2.05. Thiry-four proteins were found decreased in
abundance with 22 lower at 6 h and 12 lower at 12 h following the meal
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Fig. 1. A representative two-dimensional gel of rainbow trout (Oncorhynchus mykiss)
liver proteins after 24 h of fasting.
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Table 2
Protein spots that were increased or decreased following a single meal (mean values and
their standard deviations, n=4 or 5).

Spots reference no q value Fold Time after PI MW
difference feeding (kDa)
Upregulated”
4272 0.379 1.6 12h 6.03 17
3902 0.364 1.6 12h 6.19 47
3677 0.293 1.5 12h 586 70
1944 0.316 1.6 12h 571 31
1418 0.201 1.3 12h 533 47
Upregulated
4149 0.379 1.4 6h 4.48 29
4125 0.156 1.6 6h 432 30
3957 0.379 1.7 6h 4.74 42
3718 0.156 1.5 6h 421 58
2981 0.379 1.5 6h 6.5 13
2322 0.329 1.4 6h 6.47 23
2192 0.377 1.4 6h 552 26
1862 0.384 1.4 6h 585 33
1652 0.382 1.3 6h 6.4 39
1210 0.440 1.4 6h 4.79 59
Downregulated” ™"
1099 0.271 1.4 12h 531 68
1165 0.184 1.8 12h 5.69 63
1199 0.244 1.2 12h 6.29 60
1201 0.201 1.6 12h 593 59
1596 0.26 1.6 12h 5.78 42
1587 0.356 14 12h 4.82 42
1697 0.383 1.5 12h 6.32 37
1911 0.384 1.4 12h 6.19 32
1954 0.271 1.5 12h 486 31
3710 0.316 1.7 12h 4.47 53
3861 0.382 1.4 12h 5.16 50
4102 0.244 2.0 12h 587 31
Downregulated ™"
885 0.44 1.9 6h 5.78 89
1061 0.364 1.2 6h 499 69
1118 0.184 1.3 6h 5.36 67
1146 0.383 1.2 6h 6.02 64
1257 0.244 1.2 6h 5.89 56
1244 0.356 1.9 6h 6.24 57
1391 0.364 1.3 6h 5.83 48
1439 0.316 1.6 6h 599 47
1831 0.244 1.3 6h 6.32 34
2422 0.244 2.0 6h 457 21
2618 0.383 1.8 6h 584 17
3608 0.384 1.5 6h 6.24 106
3625 0.271 1.5 6h 585 93
3664 0.385 15 6h 4.9 70
3691 0.364 1.3 6h 6.65 70
3764 0.349 1.7 6h 5.84 56
3846 0.364 1.2 6h 591 46
3894 0.344 1.3 6h 547 47
3900 0.293 1.3 6h 6.03 47
3993 0.364 1.3 6h 5.11 40
4318 0.384 1.2 6h 532 13
4327 0.271 1.7 6h 5.66 12

MW: experimentally obtained molecular mass from the gel.

" Significant difference (upregulated) at 12h compared to Oh and 6 h (One-way
ANOVA followed by post-hoc Tukey HSD, p < 0.05)

" Significant difference (upregulated) at 6 h compared to 0-h and 12 h (One-way
ANOVA followed by post-hoc Tukey HSD, p < 0.05)

™" Significant difference (downregulated) at 12 h compared to 0 h and 6 h (One-way
ANOVA followed by post-hoc Tukey HSD, p < 0.05)

""" Significant difference (downregulated) at 6 h compared to 0 h and 12 h (One-way
ANOVA followed by post-hoc Tukey HSD, p < 0.05)

(Table 2). We found six protein spots that were increased at 6 h but

were then decreased in expression following 12 h after the meal and

four proteins that were increased at both 6 h and 12 h (Fig. 2).
Further analysis of the 49 spots by PCA characterized the spots
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according to their abundance levels amongst the three groups (Fig. 2).
According to the PCA, 28 spots (57%) were significantly more abundant
in the 6-h cluster compared to the abundance of 23 spots (47%) in the
12 h group and the 19 spots (38%) in the 6—12 h group. The time 0 h
cluster expressed different abundance of protein spots that distin-
guishes it from the other two groups (6 and 12 h) (Fig. 2).

3.3. Spot identification by mass spectrometry

Ten protein spots were selected for peptide mass mapping, which
were significantly different at 6 h and 12 h after feeding. All proteins
that were identified showed fold changes between 1.3 and 1.7 and 3
were significantly up-regulated at 6 h (4125,4149,3718), 2 were
significantly up-regulated at 12 h (1418, 1944), 1 was up regulated at
6 h and down regulated at 12 h (2322), 2 were significantly down-
regulated at 6 h (3900, 3993), 1 was significantly up regulated at 12 h
(3677) and 1 was significantly down regulated at 12 h (3710). Details
of protein homologies for trypsin digest fingerprinting are shown in
Table 3. The following proteins were successfully identified: phenyla-
lanine hydroxylase, which catalyses the hydroxylation of the aromatic
side-chain of phenylalanine to generate tyrosine; 3-hydroxyanthrani-
late 3,4-dioxygenase, which participates in tryptophan metabolism; 94
kD glucose-regulated protein and calreticulin that may have a role in
transcription regulation and type II keratin E3, a structural protein,
flotillin-1 involved in cellular metabolism and cell to cell communica-
tion, succinyl-CoA, a carbohydrate metabolism protein, subunit beta
proliferating cell nuclear antigen, involved in amino acid metabolism
and 14-3-3 protein epsilon which controls gene expression.

4. Discussion

Nutritional proteomics studies the relationship between nutrients
as controlling or regulatory factors and metabolic proteins. It analyses
the expression of a network of metabolic proteins in relation to
nutrients. The liver is a vital organ for the numerous metabolic
pathways and other functions that are taking place. Studies using
fasting and refeeding protocols have been used to investigate the
molecular mechanisms that regulate protein metabolism in fish. This
study identified differentially expressed proteins and changes in
protein abundances in the liver at two times after feeding a single
meal in rainbow trout fed on a high marine protein diet. Therefore, this
work investigates the proteomic changes resulting from altering
metabolic activity as a result of feeding. Proteomic research on
salmonid fish and especially in the liver give us the ability to analyse
increased or decreased abundance of different possible unrelated
metabolic pathways without prior assumptions of biological pathways
affected [18]. Although fasting and refeeding have been examined
[22,23,37-39] the postprandial response of hepatic proteins has not
previously been explored in salmonids. In this study, a total number of
588 spots were maintained from 2DE gel analysis for differential
protein abundance. PCA analysis clearly defined the protein patterns
with three distinguishable groups, the unfed group for 24 h and the 6 h
and 12h after a meal, indicating that consistent hepatic protein
changes were occurring following the meal. The changes in fish liver
after a single marine protein meal are documented with a rise in
protein synthesis in 5-7 h and then a fall until the next meal [4,23].
This agrees with the findings of this study, which showed that a single
meal caused a response to the hepatic proteins in 6—-12 h after the
meal.

Following the single meal we identified proteins involved in a
number of key biological processes. An interesting finding was that
amino acid metabolism-regulated proteins were increased in abun-
dance 12 h following the meal, suggesting by this time that the fish
were increasing their protein turnover to utilize efficiently their dietary
protein consumption. Furthermore, phenylalanine-4-hydroxylase,
which catalyses the hydroxylation of the aromatic side-chain of
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Principal Components Analysis
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Fig. 2. PCA changes in abundance of proteins spots. The 2D gel images were grouped per time point and three groups before feeding (0 h) and at 6 h and 12 h after feeding a single meal
are shown. The locations of the significantly different protein spots (expressed as mean normalised values) from 4 or 5 gels images per time point were used.

phenylalanine to generate tyrosine and 3-hydroxyanthranilate 3,4-
dioxygenase which participates in tryptophan metabolism and elonga-
tion factor 1-beta, 14-3-3 protein beta/alpha-1 were increased in
response to feeding, 12 h and 6 h after a single meal, indicating an
increase in metabolic activity. This demonstrates an altered regulation
of protein synthesis due to the arrival of amino acids from a meal that
initiated the synthesis of new proteins. This agrees with the findings of
Martin et al. [23], which showed that protein synthesis in trout liver
rose in 6 h after a single high protein meal and fell in 24 h until the next
meal. A single meal triggered the signalling pathway of insulin/amino
acid indicating that trout use amino acids both as an energy source and
probably as a substrate for lipogenesis [14]. Transferrin was found to
be upregulated at 12 h after the meal, this protein binds iron and
members of this protein family are involved in immune response in fish
[40]. The 14-3-3 protein was upregulated 6 h after the meal which
shows that at this time ubiquitous molecules are involved in a variety of
biologic events, such as transduction pathway modulation, cell cycle
control, and apoptosis [41]. The structural protein keratin E3 type II
protein, was increased at 12 h after the meal, which would suggest that
at this time there is still active translation of structural proteins in the
liver [42]. The result may reflect decreased requirements for energy
metabolism in the trout, thus, more energy available to synthesize
structural proteins 12 h after a single meal.

The recent availability of the rainbow trout genome and associated
resources has ensured that proteomic research approaches on salmo-
nids ensure much improved protein spot detection. The eighteen
identified proteins found by Enyu [43] of hepatic mitochondrial
proteome of zebrafish revealed that the fifteen days starvation caused
a reduction in glycolysis and an increase in gluconeogenesis which
returned to normal levels following seven days feeding. During starva-
tion energy was obtained by the utilization of non-carbohydrate
resources as suggested by the expression pattern of several proteins
associated with amino acid and fatty acid metabolism. In addition in
starved conditions glucose-regulated, heat-shock and paraxonase pro-
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tein known for their chaperoning and antioxidative roles were also up-
regulated. Heat shock proteins (Hsps) are ubiquitous chaperone
proteins that are conserved evolutionarily in most organisms. In this
study, glucose-related protein 94 (GRP94), a member of the heat shock
protein, was decreased in abundance 12 h after a meal. This protein is a
member of the HSP90 family, which is expressed in the endoplasmic
reticulum (ER), assists cells maintain protein integrity, regulate protein
quality control and degradation and may be an indicator of stability of
recently synthesised proteins [44]. The results from this work confirm
that protein turnover is maximal at 6 h and then reduced by 12 h
following the meal.

Changes in protein abundance in the fish are affected by the dietary
quality of consumed proteins. Proteins were expressed in a differential
manner due to altered metabolism in trout that were fed soy protein
extracts. Martin et al. [23] indicated a lower level of non-structural
protein expression in trout fed a diet containing fishmeal and plant
ingredients in comparison to a diet containing higher proportion of soy
protein. Martin et al. [23] and Vilhelmson et al. [18] showed the effect
of various plant proteins on hepatic metabolism in rainbow trout (O.
mykiss). Thus, this protein profile analysis is a characteristic of a
specific proteomic phenotype, which provides further insights in the
biology of the fish. In this study a high marine protein meal diet was
used and succinyl-CoA ligase [GDP-forming] subunit beta protein was
decreased in abundance at 6h after the meal suggesting a low
carbohydrate metabolism. The findings of Kolditz et al. [24] demon-
strated the effects of long term feeding of a high-PUFA diet on the
expression of genes and proteins involved in anti-oxidant metabolism
and in fatty acid desaturation in a similar fashion to that in mammals.
The liver transcriptome and proteome of rainbow trout identified
several molecules that respond to an increase in dietary energy and
lipid supply [24]. The results of this study showed that calreticulin was
up-regulated 6 h after a single meal. Calreticulin is associated with lipid
droplets and it plays an important role in embryonic development,
calcium homeostasis and immune function although there is limited
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knowledge about this protein with respect to its many functions in fish
and mammals [45].

Proteomic analysis extended our knowledge of postprandial
changes in the liver of rainbow trout and ectothermic vertebrate.
This is of relevance with changing dietary sources that farmed fish are
now fed and understanding the kinetics of liver responses to different
dietary nutrients will aid in understanding performance on new feeds.
Integration with genomics will facilitate identification of the key
proteins that function to regulate metabolic pathways and are affected
by specific nutrients and also allow for future comparative proteomics
to be performed.
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