
Demographic mechanisms of inbreeding adjustment

through extra-pair reproduction

Jane M. Reid1*, A. Bradley Duthie1, Matthew E. Wolak1 and Peter Arcese2

1Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Zoology

Building, Tillydrone Avenue, Aberdeen AB24 2TZ, Scotland; and 2Department of Forest and Conservation Sciences,

University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada V6T 1Z4

Summary

1. One hypothesis explaining extra-pair reproduction is that socially monogamous females

mate with extra-pair males to adjust the coefficient of inbreeding (f) of extra-pair offspring

(EPO) relative to that of within-pair offspring (WPO) they would produce with their socially

paired male. Such adjustment of offspring f requires non-random extra-pair reproduction

with respect to relatedness, which is in turn often assumed to require some mechanism of

explicit pre-copulatory or post-copulatory kin discrimination.

2. We propose three demographic processes that could potentially cause mean f to differ

between individual females’ EPO and WPO given random extra-pair reproduction with avail-

able males without necessarily requiring explicit kin discrimination. Specifically, such a differ-

ence could arise if social pairings formed non-randomly with respect to relatedness or

persisted non-randomly with respect to relatedness, or if the distribution of relatedness

between females and their sets of potential mates changed during the period through which

social pairings persisted.

3. We used comprehensive pedigree and pairing data from free-living song sparrows (Melosp-

iza melodia) to quantify these three processes and hence investigate how individual females

could adjust mean offspring f through instantaneously random extra-pair reproduction.

4. Female song sparrows tended to form social pairings with unrelated or distantly related males

slightly less frequently than expected given random pairing within the defined set of available

males. Furthermore, social pairings between more closely related mates tended to be more likely

to persist across years than social pairings between less closely related mates. However, these

effects were small and the mean relatedness between females and their sets of potential extra-pair

males did not change substantially across the years through which social pairings persisted.

5. Our framework and analyses illustrate how demographic and social structuring within

populations might allow females to adjust mean f of offspring through random extra-pair

reproduction without necessarily requiring explicit kin discrimination, implying that adjust-

ment of offspring f might be an inevitable consequence of extra-pair reproduction. New

theoretical and empirical studies are required to explore the general magnitude of such effects

and quantify the degree to which they could facilitate or constrain long-term evolution of

extra-pair reproduction.

Key-words: inbreeding avoidance, kinship, mate choice, mating system, paternity, pedigree,

polyandry, sexual selection

Introduction

Identifying the causes of extra-pair reproduction in

socially monogamous systems remains a key challenge in

behavioural and evolutionary ecology (Jennions & Petrie

2000; Kempenaers 2007; Forstmeier et al. 2014). One

hypothesis is that individual females mate with extra-pair

males to adjust the coefficient of inbreeding (f) of extra-

pair offspring (EPO) relative to that of the within-pair

offspring (WPO) they would produce with their socially

paired male (Jennions & Petrie 2000; Foerster et al. 2006;

Kempenaers 2007; Brouwer et al. 2011; Kingma, Hall &*Correspondence author. E-mail: jane.reid@abdn.ac.uk
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Peters 2013; While et al. 2014; Reid et al. 2015a). By

altering offspring f, defined as the probability that two

homologous alleles present in an offspring will be identi-

cal-by-descent, individual polyandrous females could

simultaneously alter inbreeding depression in offspring fit-

ness and alter the probability that offspring will inherit

alleles identical-by-descent to those carried by the female

herself (including alleles influencing reproductive strategy,

e.g. Waser, Austad & Keane 1986; Lynch & Walsh 1998;

p136; Szulkin et al. 2013). Depending on the balance

between inbreeding depression and parent–offspring relat-

edness, either a mean increase or decrease in offspring f

resulting from extra-pair reproduction could potentially

increase or decrease subsequent frequencies of alleles

underlying extra-pair reproduction, thereby shaping evo-

lution of reproductive strategy.

Any net change in mean f of individual females’ EPO

versus their WPO requires some form of non-random

extra-pair reproduction with respect to relatedness, such

that individual females systematically produce offspring

with extra-pair males to whom they are less or more clo-

sely related than they are to their socially paired males.

This is because completely random and unstructured

extra-pair reproduction is not expected to change the f of

individual females’ EPO versus WPO on average (Appen-

dix S1, Supporting information). The requirement for

non-random extra-pair reproduction with respect to relat-

edness seemingly requires females to assess their related-

ness to their socially paired male and potential extra-pair

males and allocate offspring paternity accordingly (Wheel-

wright, Freeman-Gallant & Mauck 2006; Kempenaers

2007; Griffith & Immler 2009). Debates regarding the fea-

sibility of such sophisticated reproductive strategies often

focus on individuals’ abilities to discern relatedness via

direct auditory, olfactory or molecular cues, thereby

enabling pre- or post-copulatory sexual selection for or

against related mates (Wheelwright, Freeman-Gallant &

Mauck 2006; Kempenaers 2007; Griffith & Immler 2009;

Krause et al. 2012; Leclaire et al. 2013a). It is less com-

monly considered that aspects of population demography

or social structure might create subtle variation in related-

ness between subsets of females and males that are avail-

able for social pairing versus extra-pair mating, thereby

causing the mean difference in f between individual

females’ EPO and WPO to differ from zero without

requiring explicit kin discrimination or direct pre- or post-

copulatory selection on relatedness.

Such structure can arise in populations with fine-scale

spatial variation in relatedness, where individuals inhabit-

ing proximate breeding locations or groups are more clo-

sely related than more distant individuals. Individuals’

relative locations then provide ‘rules of thumb’ by which

females could predict relatedness to proximate versus dis-

tant extra-pair or extra-group males (Foerster et al. 2006;

Kempenaers 2007; Szulkin et al. 2009; Brouwer, van de

Pol & Cockburn 2014; While et al. 2014). However, extra-

pair reproduction is often highly spatially restricted even

within such systems, often involving individuals inhabiting

proximate territories (e.g. Wheelwright, Freeman-Gallant

& Mauck 2006; Sardell et al. 2010; Brouwer et al. 2011;

Kingma, Hall & Peters 2013; Wang & Lu 2014). The

degree to which structured and hence predictable varia-

tion in relatedness might also arise among such spatially

restricted individuals is rarely considered.

One potential source of structure stems from variation

in relatedness among individuals that are available for

social pairing versus extra-pair mating at different times

within or across reproductive episodes. Many socially

monogamous populations where extra-pair reproduction

occurs have non-zero adult survival across breeding

attempts and years, creating overlapping generations of

relatives. Furthermore, social pairings between surviving

adults often remain intact across multiple reproductive

episodes, creating temporal variation in mate availability

(e.g. Jamieson et al. 2009; Szulkin & Sheldon 2009; While

et al. 2014). Here, we first outline three general and non-

exclusive processes by which such demography and social

structure could cause the relatedness between individual

females and their socially paired males to differ from that

between these females and their current or future sets of

potential extra-pair mates. The mean difference in f

between individual females’ EPO versus their WPO might

then differ from zero given random extra-pair reproduc-

tion among temporally constrained sets of potential

mates, without necessarily requiring explicit kin discrimi-

nation. We then quantify the three processes using long-

term pedigree and pairing data from song sparrows

(Melospiza melodia, Wilson).

non-random social pair formation

First, social pairings might form non-randomly with

respect to relatedness, meaning that mean f of WPO

would differ from that expected given random pairing

among all females and males within a particular reproduc-

tive episode (Fig. 1a, Keller & Arcese 1998; Jamieson

et al. 2009; Szulkin et al. 2009). Random extra-pair repro-

duction might then alter mean f of a female’s EPO com-

pared to WPO produced by non-randomly established

social pairings (Fig. 1a).

Non-random social pairing could stem from active kin

recognition and discrimination, but might also arise pas-

sively if there were fine-scale temporal, spatial or social

structure in relatedness among adults available for pair-

ing. For example, relatives might tend to reach reproduc-

tive condition at similar times, to occupy similar

microenvironments or to attain similar social status,

potentially due to common genetic, maternal or environ-

mental effects on birth date or ontogeny. Relatives might

then be more likely to pair with each other than with

unrelated or distantly related individuals with different

characteristics (Foerster et al. 2006; Reid, Arcese & Keller

2008; Szulkin & Sheldon 2009; Robinson, Kennington &

Simmons 2012). Indeed, positive assortative mating with
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respect to phenotype is widespread in animals (Jiang, Bol-

nick & Kirkpatrick 2013), causing assortment among rela-

tives given phenotypic resemblance. A female’s relatedness

to her socially paired male might then differ systemati-

cally from her mean relatedness to the sets of males that

become available for extra-pair mating. This is because

social pairing typically pre-dates reproduction, particu-

larly in species with biparental territory defence, breeding

site construction or nuptial provisioning. Males that were

not available for social pairing might therefore become

available for extra-pair mating during a female’s fertile

period. These males might be less closely related to a

female than she is to her socially paired male on average,

due to the fine-scale temporal or spatial variation in relat-

edness that caused assortative social pairing. Random

extra-pair reproduction might then cause a directional

change in mean offspring f (Fig. 1a).

non-random social pair persistence

Secondly, social pairings might form randomly with

respect to relatedness with no active or passive assortative

pairing, but the probability that a pairing will persist to

subsequent breeding attempts or years might vary with

relatedness (Fig. 1b). Mean relatedness across social pair-

ings that exist at any time could then deviate from that

expected given random pairing at that time, and hence

deviate from the mean relatedness between a female and a

random extra-pair male. The mean difference in f between

females’ WPO versus randomly produced EPO could then

differ from zero (Fig. 1b).

Non-random pair persistence could result from non-

random divorce (i.e. separation of paired individuals given

that both survive) or non-random adult survival with

respect to pair relatedness. Both processes could poten-

tially occur without explicit kin discrimination. Divorce

might be more likely following reproductive failure, which

might itself result from high social pair relatedness, lead-

ing to high offspring f and mortality due to inbreeding

depression (Kempenaers, Adriaensen & Dhondt 1998;

Foerster et al. 2006; but see Szulkin & Sheldon 2009; Ihle,

Kempenaers & Forstmeier 2013). While an individual

adult’s survival might not be expected to be directly

affected by its relatedness to its socially paired mate, asso-

ciations might arise if there were a trade-off between sur-

vival and reproductive effort and reproductive effort were

to decrease with inbreeding, for example if inbred off-

spring were more likely to die before the standard termi-

nation of parental investment. Furthermore, adult

survival and pair relatedness might be correlated if indi-

viduals from lineages with high survival probabilities

(whether due to genetic or environmental effects) are

more likely to pair with a relative, simply because they

are likely to have more surviving relatives available for

(a) (b) (c)

Fig. 1. Three processes that could cause a female’s relatedness to a random extra-pair male to differ systematically from her relatedness

to her socially paired male, thereby causing a non-zero mean difference in the coefficient of inbreeding (f) of extra-pair offspring versus

within-pair offspring: a) social pairings (black zone) form non-randomly with respect to the distribution of relatedness among all adults

available for pairing (grey zone); b) social pairings (black zone) form randomly with respect to the distribution of relatedness among all

adults available for pairing (grey zone, time 1) but then persist non-randomly with respect to relatedness (time 2); and c) social pairings

(black zone) form and persist randomly with respect to the distribution of relatedness (grey zone, time 1) but the distribution of related-

ness changes for subsequent reproductive attempts (time 2). The three illustrated scenarios are not mutually exclusive and could cause a

decrease (upper panels) or an increase (lower panels) in mean offspring f given random extra-pair reproduction by socially paired females

(black zones) with males drawn from the full distribution of relatedness (grey zones).
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pairing (Reid, Arcese & Keller 2008; Szulkin & Sheldon

2009).

temporal variation in relatedness

Thirdly, the difference between a female’s relatedness to

her existing socially paired male and her set of potential

extra-pair males might change across consecutive repro-

ductive attempts if the frequencies or availabilities of dif-

ferent types of relatives, and the corresponding

distribution of relatedness, were to change over time

(Fig. 1c). For example, when a female first recruits to the

breeding population, the males available for social pair-

ing might often include full- and half-brothers and cous-

ins that recruited simultaneously, plus more distant

relatives and unrelated individuals. Due to mortality,

same-generation relatives will gradually disappear over

subsequent reproductive attempts and be replaced by

their descendants. If the changing frequencies of these

relatives were to cause the mean relatedness between a

focal female and her set of potential mates to change,

then random extra-pair reproduction could potentially

cause a directional change in mean f of a female’s EPO

versus WPO produced with a previously established

socially paired male, even if social pairing was originally

random with respect to relatedness (Fig. 1c). Similarly,

males from previous cohorts might be less likely to be

available for social pairing at the time a focal female

recruits, because they are more likely to be socially

paired already when pairings persist from previous breed-

ing attempts or years. However, they might still be avail-

able as potential extra-pair males and might differ in

mean relatedness from the set of males available to

socially pair with a focal female.

empirical test

The hypotheses that random extra-pair reproduction

among instantaneously available mates could cause a non-

zero mean difference in f between individual females’

EPO and WPO given non-random formation (Fig. 1a) or

persistence (Fig. 1b) of related social pairings and/or sys-

tematic temporal variation in females’ relatedness to their

potential extra-pair mates (Fig. 1c) are not mutually

exclusive. Even if the overall net difference in offspring f

was small, it might still be sufficient to influence the evo-

lutionary dynamics of extra-pair reproduction if mani-

fested across numerous generations. To evaluate this

possibility, the three processes need to be quantified in

populations showing natural variation in demography and

relatedness. This can be achieved given data on pairing,

mate availability and relatedness without need to assign

genetic sires to all offspring.

Long-term pedigree and life-history data from song

sparrows inhabiting Mandarte island, Canada, have

proved valuable for quantifying mate availability, inbreed-

ing, inbreeding avoidance and inbreeding depression in

the wild (Keller 1998; Keller & Arcese 1998; Reid, Arcese

& Keller 2006, 2008; Reid et al. 2014). Recent analyses

showed that female song sparrows were on average

slightly more closely related to their socially paired male

than to their sets of potential extra-pair males, implying

that females would reduce mean offspring f through ran-

dom extra-pair reproduction (mean predicted difference in

offspring f � 0�01, Reid et al. 2015a).

Here, we first quantify the distributions of female song

sparrows’ coefficients of kinship (k) with their sets of

potential socially paired and extra-pair males. We then

quantify the three processes that could cause mean f to

decrease between females’ WPO versus EPO given other-

wise random extra-pair reproduction among demographi-

cally structured sets of potential mates. Specifically, we

quantify the degree to which (i) females that formed new

social pairings were more closely related to their socially

paired male than to other concurrently available males

(i.e. non-random pair formation, Fig. 1a); (ii) social pair-

ings between closer relatives were more likely to persist to

subsequent years (i.e. non-random pair persistence,

Fig. 1b); and (iii) relatedness changed across years

through which social pairings persisted, meaning that

females whose social pairings formed in any one year

were less closely related to potential extra-pair males

available subsequently (Fig. 1c).

Materials and methods

study system

Song sparrows are primarily socially monogamous but show

occasional social polygyny and polyandry and frequent extra-pair

reproduction (Janssen et al. 2008; Sardell et al. 2010; Hill et al.

2011). Both sexes can first breed aged 1 year, have median repro-

ductive life spans of 2 years (maximum 8 years), and pairs can

rear up to three broods per year (Smith et al. 2006). Socially

paired females and males often remain together across breeding

attempts within years and across years if both survive (Keller &

Arcese 1998). However, both sexes can form new social pairings

within or among years following divorce or mortality of their

mate (Smith et al. 2006).

Since 1975, all breeding territories on Mandarte were moni-

tored, nests were located and all chicks were marked with unique

colour-ring combinations ca. 6 days after hatching (Smith et al.

2006). The occasional immigrants (1�1 year�1 on average, suffi-

cient to prevent inbreeding from accumulating) were mist-netted

and colour-ringed soon after arriving. All social pairings of adults

that bred in each year (i.e. produced at least one clutch) were

identified, as were all males that remained socially unpaired when

the adult sex-ratio was male-biased (Keller & Arcese 1998; Sar-

dell et al. 2010; Reid et al. 2014). Adult song sparrows are resi-

dent on Mandarte year-round and recruited adults have never

been observed to emigrate (Smith et al. 2006). The intensive field-

work ensured an annual resighting probability of ca. one. Social

pairings that bred are consequently extremely unlikely to have

gone unobserved, and the full sets of adult females and males

alive in any year are known (Keller & Arcese 1998; Reid, Arcese

& Keller 2006).
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All song sparrows that survived to adulthood during 1993–

2012 were genotyped at 13 highly polymorphic microsatellite loci,

and their genetic parents were identified (Sardell et al. 2010; Reid

et al. 2014). Paternities were subsequently verified using up to

170 microsatellite markers and therefore assigned with extremely

high confidence. These analyses revealed no extra-pair maternity,

but ca. 28% of individuals were assigned to extra-pair sires rather

than to their mother’s socially paired male and hence identified

as EPO (Sardell et al. 2010; Reid et al. 2014).

A comprehensive pedigree spanning all adult song sparrows

alive during 1975–2012 was compiled from all available genetic

parentage data and pre-1993 social parentage data (Keller 1998;

Reid et al. 2014). Standard pedigree algorithms were used to cal-

culate the pairwise coefficient of kinship (k) between all adult

females and males alive in each year. The coefficient k is a

measure of relatedness; it quantifies the probability that two

homologous alleles sampled from two individuals will be

identical-by-descent relative to the defined pedigree baseline, and

equals f of resulting offspring. Immigrants to Mandarte were

assumed to be unrelated to existing natives upon arrival (k = 0,

Reid, Arcese & Keller 2006; Reid et al. 2014).

Analyses of pairing in relation to k were restricted to adults

alive during 2007–2012. For these years, all adults’ ancestors

back to and including all their great-grandparents (i.e. the great-

great-grandparents of potential offspring) were genetically verified

or immigrants, and most adults had more distant verified ances-

tors (Reid et al. 2015a). This restriction ensured that k was esti-

mated with minimal error or bias due to pedigree error or

insufficient depth, providing more precise expectations than are

typically available for wild populations (Reid et al. 2015a).

All social pairings that first formed during 2007–2012 were

identified, and statistics describing the distribution of k between

socially paired females and males (kSOC) were computed (mean,

median, standard deviation (SD), interquartile range (IQR),

range and skew).

available males

Quantifying whether and how the distribution of kSOC observed

across newly formed social pairings differs from that expected

given random pairing requires a null model that identifies the sets

of males available to pair with each female (Keller & Arcese

1998; Reid, Arcese & Keller 2008; Szulkin et al. 2009, 2013;

Rioux-Paquette, Festa-Bianchet & Coltman 2010). In practice,

the exact sets of available males are hard to define in any wild

population. Given social monogamy, the available individuals

will depend on the order in which other pairings form and dis-

solve, which is not readily observable. However, when all popula-

tion members can be identified, as in Mandarte’s song sparrows,

global sets of available individuals can be defined. Any deviation

between the observed distribution of kSOC and that expected

given the global null model can then be investigated, and would

potentially suggest some form of truly non-random pairing and/

or that there are additional constraints on mate availability that

bias the pattern of otherwise random pairing with respect to

relatedness (Reid, Arcese & Keller 2008; Szulkin et al. 2009).

Global sets of adult male song sparrows that were available for

social pairing in a particular year were defined as all individuals

that had newly recruited (i.e. age 1 year) and hence were newly

available for pairing; plus older individuals that had changed

their socially paired mate since the previous year, whether due to

divorce or mortality of their previous mate or because they were

previously socially unpaired, and hence must have been available

for pairing at some point; plus males that remained socially

unpaired and hence were presumably still available for social

pairing (hereafter together termed the ‘new-males’ set of males,

Keller & Arcese 1998; Reid, Arcese & Keller 2008). However,

being socially paired does not necessarily constrain a male’s avail-

ability as an extra-pair male (or may even facilitate it, Sardell

et al. 2010). Further global sets of males that were potentially

available for extra-pair mating were therefore defined as all adult

males alive in a particular year (hereafter the ‘all-males’ set, Kel-

ler & Arcese 1998; Reid, Arcese & Keller 2008). There is no

detectable small-scale structure in settlement or hence kinship

within Mandarte (Reid et al. 2015a).

To quantify among-female variation in k with potential mates,

statistics describing the distributions of k between each female

that formed a new social pairing in each year and each male

included in the ‘new-males’ and ‘all-males’ sets for that year were

computed.

social pair formation

To quantify the degree to which the distribution of kSOC across

social pairings that formed during 2007–2012 differed from that

expected given random pairing with available males (Fig. 1a),

we first quantified the distribution of the deviation between

observed kSOC and each female’s mean k with the defined

‘new-males’ and ‘all-males’ sets of males for the year in which

each social pairing formed (kMEAN.NEW and kMEAN.ALL, respec-

tively) such that kDEV.NEW = kSOC–kMEAN.NEW and kDEV.ALL =

kSOC–kMEAN.ALL.

However, since the distribution of k was skewed and individual

males cannot simultaneously form socially monogamous pairings

with numerous females, subtle deviations between the observed

distribution of kSOC and null expectation might not be detected

simply by comparing observed kSOC to global kMEAN.NEW or

kMEAN.ALL. We therefore ran simulations to generate null distri-

butions of kSOC arising from random social pairing. Each female

that formed a social pairing during 2007–2012 was assigned a

random socially paired male drawn without replacement from the

‘new-males’ set of available males for the focal year, in a random

order. For years when the sex-ratio of individuals available for

social pairing was female-biased, females that were not assigned a

socially paired male from the ‘new-males’ set were assigned a ran-

dom male from the ‘all-males’ set of all adult males alive in the

focal year without replacement, thereby creating the degree of

social polygyny necessary to ensure that all females were socially

paired (as observed, Janssen et al. 2008). The coefficient

kSOC.RAND between a female and her randomly assigned male

was calculated, and statistics describing the distributions of kSOC

and kSOC.RAND were compared over 10 000 iterations. To assess

the sensitivity of conclusions to the assumed set of available

males, simulations were repeated with all females’ mates drawn

from the ‘all-males’ set.

social pair persistence

To quantify whether a difference in mean kSOC across extant

social pairings compared to that expected given random pairing

could stem from non-random pair persistence (Fig. 1b), we com-

pared the distributions of kSOC between social pairings that
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formed during 2007–2011 that did and did not persist to a second

(subsequent) year up to 2012 and used logistic regression to test

whether the probability of pair persistence varied with kSOC.

Failure of a social pairing to persist across years could stem

from mortality of either adult, or from divorce. We therefore

tested whether the probability that at least one socially paired

adult would die, or the probability of divorce given that both

adults survived, varied with kSOC.

Finally, we compared the distributions of kSOC between social

pairings that first formed during 2007–2010 and persisted to a

second year, and then did or did not persist to a third year up to

2012. No pairings persisted to a fourth year during 2007–2012.

temporal variation in relatedness

To investigate whether a female’s relatedness to the male popula-

tion changed across consecutive years, and hence whether mean f

of EPO produced through random extra-pair reproduction could

differ from that of WPO produced by previously formed social

pairings (Fig. 1c), we identified females whose social pairings per-

sisted to second and third years and used linear mixed models

with fixed effects of the year of pair persistence (i.e. first, second

or third year) and random female effects to quantify whether

kMEAN.ALL changed across successive years. This analysis quanti-

fies within-female variation in kMEAN.ALL across years through

which social pairings persisted. Each individual female’s observed

socially paired male was excluded from the sets of potential

mates, meaning that any change in kMEAN.ALL relates directly to

the change in a female’s relatedness to the set of potential extra-

pair males.

Analyses were run in R 2.15.2 (R Core Team 2012). Raw means

are presented � 1SD unless otherwise stated. One immigrant

female was excluded from analyses because there was no variation

in her assumed k = 0 with all males. Conclusions remained similar

when non-territorial floaters were excluded from the sets of avail-

able males, and when the potential extra-pair mates of each female

were restricted to males inhabiting neighbouring territories

(because females were no more closely related to neighbours than

to non-neighbours, Reid et al. 2015a). For reference, k = 0�25,
0�125 and 0�0625 equate to pairings among outbred full-sibs, half-

sibs, first-cousins or equivalent relatives, respectively.

Results

During 2007–2012, the total numbers of adult female and

male song sparrows alive on Mandarte varied from 17 to

37 and 13 to 56 respectively, and the sex-ratio varied from

39% to 65% males (Table S1, Supporting information).

The numbers of males deemed available for social pairing

(i.e. new recruits and individuals that had changed mates

since the previous year or remained socially unpaired)

varied from 11 to 46 (Table S1, Supporting information).

Substantial proportions of males (81–94%) were therefore

available for pairing in any particular year, even without

social polygyny (Table S1, Supporting information).

A total of 135 new social pairings formed during 2007–
2012, involving 85 individual females and 90 individual

males and encompassing 125 female-years. Female and

male ages at pairing ranged from 1 to 8 and 1 to 7 years,

respectively (median 1 year for both sexes) and were not

correlated across new pairings (Spearman rank correla-

tion: r133 = 0�05, P = 0�59).

distributions of kinship

Mean kSOC across all 135 new social pairings was

0�101 � 0�064 (median 0�090, IQR 0�065–0�117, range

0�000–0�356, Fig. 2a). The distribution of kSOC was right-

skewed (skew 1�47), and 6 (4�4%) and 23 (17%) pairings

were between first-order (kSOC ≥ 0�25) and second-order

relatives (0�125 ≤ kSOC < 0�25), respectively. Mean kSOC

did not vary significantly across years (linear regression:

b133 = 0�003 � 0�003SE, P = 0�42) or among years

(ANOVA: F129,5 = 0�9, P = 0�49, Table S1 (Supporting

information), conclusions were similar after arc-sin trans-

formation to better approximate normality).

The distributions of k between females that formed new

social pairings and the ‘new-males’ sets of males deemed

available for social pairing in the 125 female-years are sum-

marized in Fig. 3 and Table S2 (Supporting information).

There was substantial among-female variation in the mean,

SD, maximum and skew in k, and in the numbers of avail-

able first-order and second-order relatives (Fig. 3, Table

S2, Supporting information). Since minimum k was zero in

111 (89%) female-years, most females had some opportu-

nity to pair with an unrelated male (Table S2, Supporting

information). Distributions were similar, but not identical,

given the ‘all-males’ sets of all males alive in each focal

year (Fig. S1, Table S2, Supporting information). All

females therefore had opportunity for a range of degrees of

inbreeding through social pairing and extra-pair reproduc-

tion within the defined sets of available males.
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female song sparrow and her observed socially paired male

(kSOC) across 135 social pairings and b) the deviation between

kSOC and the female’s mean kinship with the ‘new-males’ set of

males deemed available for social pairing.
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social pair formation

Across the 135 new social pairings, the deviation between

a female’s kSOC with her observed socially paired male

and her mean k with the ‘new-males’ set of available males

(kMEAN.NEW) was centred close to zero (mean kDEV.NEW

0�007 � 0�062, median -0�003) but varied among females

(IQR �0�021–0�020, range �0�116–0�241) and was slightly

right-skewed (skew 1�31, Fig. 2b). The distribution was

similar when kMEAN was calculated across the ‘all-males’

set of all males alive in each year (mean kDEV.ALL

0�005 � 0�062, median �0�004, range �0�114–0�235, Fig.

S2, Supporting information). Direct comparison between

kSOC and kMEAN.NEW therefore provided no evidence that

mean kSOC across new social pairings differed from that

expected given random pairing.

However, simulations that randomly assigned each

female a mate from the ‘new-males’ set showed that the

mean observed kSOC of 0�101 tended to be higher than the

mean simulated kSOC of 0�094 (95%CI 0�085–0�102,
P = 0�058, Fig. 4a). This tendency arose because unrelated

and distantly related pairings tended to occur less frequently

than expected given random pairing (Fig. 4b). Specifically,

the observed first quartile value of kSOC exceeded the mean

simulated value (0�065 versus 0�057, 95%CI 0�050–0�064).
The shape of the observed distribution of kSOC therefore

differed somewhat from that expected given random social

pairing (Fig. 4b). However, these deviations from expecta-

tion were smaller and did not differ from zero when mates

were randomly assigned from the ‘all-males’ sets of all males

alive in each year (mean simulated kSOC of 0�096, 95%CI

0�086–0�106, P = 0�14, Fig. S3, Supporting information).

social pair persistence

Of 103 new social pairings that formed during 2007–2011,
23 (22%) persisted to a second year and 80 (78%) did

not. The probability that a pairing would persist did not

vary significantly with kSOC (Table 1a).

Of the 103 pairings, there were 42 (41%) where both

adults survived to a second year and 61 (59%) where one or

both adults died. The probability that both adults would

survive did not vary significantly with kSOC (Table 1b).

Of the 42 pairings where both adults survived to a sec-

ond year, 23 (55%) persisted and 19 (45%) divorced. The

probability of divorce tended to decrease with increasing

kSOC, such that mean kSOC tended to be higher across

pairings that persisted than across pairings that divorced

(Table 1c).

Of 16 social pairings that formed during 2007–2010 and

persisted into a second year, 5 (31%) persisted into a

third year and 11 (69%) did not. Mean kSOC across pair-

ings that persisted into a third year was higher than

across pairings that did not persist after the second year

(mean difference 0�088, Table 1d). The 11 pairings that

did not persist all involved adult mortality rather than

divorce. The probability that both socially paired adults

would survive from their second year into a third year

therefore increased with kSOC (Table 1d).

Overall, across all 119 observed intervals where social

pairings could have persisted to a subsequent year, the

probability of persistence tended to increase with kSOC

such that kSOC tended to be higher across pairings that

persisted than across pairings that did not (mean differ-

ence 0�023, Table 1e).
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Fig. 3. Distributions of the a) mean, b)
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skew in individual female song sparrows’

coefficients of kinship with the ‘new-males’

set of males deemed available for social

pairing, and the numbers of available e)

first-order and f) second-order relatives,

across 125 female-years when new social

pairings formed.
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temporal variation in relatedness

There were 23 females whose social pairings formed dur-

ing 2007–2011 and persisted to a second year, and five

females whose social pairings formed during 2007–2010
and persisted to a third year. Across these females, mean

kMEAN.ALL did not differ significantly across the 2 or

3 years through which each female’s social pairing per-

sisted (Table 2). Therefore, since kSOC is constant within

pairings that persisted across years, the difference

between kSOC and kMEAN.ALL could not vary signifi-

cantly across years. Similarly, the median and IQR of

each female’s distribution of k with the set of available

males did not vary substantially across the years through

which a social pairing persisted (Table S3, Supporting

information).

Discussion

Extra-pair reproduction is widely hypothesized to allow

socially monogamous females to adjust their relatedness

to the sire of their offspring and thereby adjust offspring
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Fig. 4. Comparisons between the distribu-

tions of a) mean coefficient of kinship

(ksoc) between female song sparrows and

their observed socially paired males (dot-

ted line) across 135 newly formed social

pairings versus a randomly assigned male

from the ‘new-males’ set of males deemed

available for social pairing in each focal

year (grey bars) and b) the frequencies of

observed (black circles) and simulated

pairings falling into categories of ksoc,

defined as <0�025, 0�025-0�05, 0�05-0�075,
0�075-0�10, 0�10-0�125 and 0�125-0�25. X-

axis labels demarcate lower category

boundaries. Totals of 6, 16, 26, 31, 27, 23

and 6 pairings were observed within these

categories, respectively. Black bars, boxes,

whiskers and circles show the median,

inter-quartile range, 1�5xIQR and outliers,

respectively.

Table 1. Distributions of the observed coefficient of kinship (kSOC) across social pairings of song sparrows (a) that formed during 2007–
2011 and did and did not persist to a second year, (b) where both adults did or did not survive to a second year, (c) that did and did

not divorce given that both adults survived to a second year, (d) that formed during 2007–2010 and persisted to a second year and did

and did not persist to a third year and (e) across all social pairings that did or did not persist across consecutive observed years. b � SE

and p are the logistic regression slope and associated standard error and P-value. For (d), a t-test rather than logistic regression was

implemented due to small sample sizes and non-overlapping distributions of kSOC, and the t statistic is presented. SD and IQR are the

standard deviation and inter-quartile range, respectively

N Mean � SD Median IQR Range b � SE (p)

a) Persisted to 2nd year 23 0�110 � 0�068 0�105 0�061–0�139 0�026–0�308 2�9 � 3�7 (0�44)
Did not persist 80 0�098 � 0�060 0�089 0�065–0�117 0�000–0�301

b) Both adults survived 42 0�093 � 0�067 0�082 0�048–0�117 0�000–0�308 �3�7 � 3�4 (0�29)
One or both adults died 61 0�106 � 0�058 0�097 0�069–0�118 0�000–0�301

c) Did not divorce 23 0�110 � 0�068 0�105 0�061–0�139 0�026–0�308 �9�9 � 5�8 (0�09)
Divorced 19 0�073 � 0�061 0�081 0�033–0�096 0�000–0�254

d) Persisted to 3rd year 5 0�159 � 0�026 0�147 0�142–0�169 0�136–0�200 t = �5�9 (0�001)
Did not persist 11 0�071 � 0�031 0�067 0�047–0�093 0�031–0�117

e) Persisted to next year 28 0�118 � 0�065 0�115 0�067–0�147 0�026–0�308 6�2 � 3�4 (0�08)
Did not persist 91 0�095 � 0�058 0�086 0�061–0�115 0�000–0�301

© 2015 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society., Journal of

Animal Ecology, 84, 1029–1040

1036 J. M. Reid et al.



coefficient of inbreeding (f, Jennions & Petrie 2000;

Kempenaers 2007; Reid et al. 2015a). Such adjustments

are widely assumed to require explicit pre- or post-copula-

tory sexual selection for more or less closely related

extra-pair males, in turn requiring some mechanism of kin

discrimination (e.g. Pizzari, Løvlie & Cornwallis 2004;

Griffith & Immler 2009; Jamieson et al. 2009; Rioux-Pa-

quette, Festa-Bianchet & Coltman 2010; Brouwer et al.

2011; Kingma, Hall & Peters 2013). While individuals of

some taxa can distinguish close and/or familiar relatives

from non-relatives (Krause et al. 2012; Leclaire et al.

2013a), it is less clear whether distant relatives might gen-

erally be distinguishable from non-relatives and hence

whether paternity could be allocated accordingly.

However, the expectation that random extra-pair repro-

duction will not alter the mean f of individual females’

EPO compared to their WPO stems from an assumption

that females draw concurrent socially paired and extra-

pair males from the same distribution of relatedness

(Appendix S1, Supporting information). It is not generally

considered that aspects of population demography or

social structure might cause systematically diverging sets

of related females and males to be available for social pair-

ing versus extra-pair mating at any time, creating diverg-

ing distributions of relatedness between individual females

and their socially paired versus potential extra-pair males.

Random extra-pair reproduction among instantaneously

available mates might then cause mean f to differ between

individual females’ EPO versus WPO, potentially influenc-

ing evolution of extra-pair reproduction without necessar-

ily requiring explicit kin discrimination.

Previous analyses showed that individual female song

sparrows breeding on Mandarte during 2007–2012 were

on average more closely related to their socially paired

male than to a random extra-pair male drawn from the

concurrent male population, implying that females would

reduce mean offspring f through random extra-pair repro-

duction (Reid et al. 2015a). Here, we propose and quan-

tify three demographic processes through which such a

difference could arise: non-random formation (Fig. 1a) or

persistence (Fig. 1b) of social pairings with respect to

coefficient of kinship (k), and changing distributions of k

between females and their potential extra-pair males

across years through which social pairings persisted

(Fig. 1c). We first summarize key results then consider the

wider context.

social pair formation

Across social pairings that formed during 2007–2012, the
distribution of the deviation between a female’s k with

her socially paired male (kSOC) and her mean k with the

‘new-males’ set of potentially available males was centred

close to zero. This suggests that mean kSOC between social

mates, and hence the mean f of resulting WPO, did not

differ from expectation given random social pairing. This

in turn implies an absence of population-wide inbreeding

avoidance or preference through social pairing. Keller &

Arcese (1998) and Reid et al. (2014), Reid, Arcese & Kel-

ler (2006, 2008) drew similar conclusions based on earlier

years of song sparrow data, albeit estimating k from

social pedigree data that were not corrected for extra-pair

paternity.

However, simulations that sequentially assigned ran-

dom social mates to individual females from the ‘new-

males’ set without replacement, thereby mimicking

sequential formation of socially monogamous pairings,

revealed subtle differences between the observed and

expected distributions of kSOC. Specifically, social pairings

among distantly related or unrelated individuals occurred

slightly less frequently than expected. This discrepancy

between analyses that do and do not account for sequen-

tial pair formation (i.e. allocating males without and with

replacement) implies that studies that quantify the devia-

tion between observed k and the mean calculated across

some defined set of available mates (e.g. Jamieson et al.

2009; Rioux-Paquette, Festa-Bianchet & Coltman 2010;

Billing et al. 2012) might not detect subtle patterns of

non-random pairing with respect to k. The small devia-

tion from expectation could potentially reflect kin discrim-

ination and outbreeding avoidance, but could also result

from fine-scale population structure, for example if rela-

tives have similar reproductive timing, social status or

other attributes and are therefore more likely to pair with

each other than with a non-relative (Reid, Arcese & Kel-

ler 2008; Szulkin & Sheldon 2009; Robinson, Kennington

& Simmons 2012).

However, the difference between the observed and

expected distributions of kSOC was smaller when socially

paired males were assigned from the ‘all-males’ set of all

males alive in each focal year rather than the ‘new-males’

set of males deemed available for social pairing. Since

song sparrows are primarily socially monogamous, males

Table 2. Distributions of the mean coefficient of kinship (kMEAN.ALL) between female song sparrows whose social pairings persisted to

a) a second year (N = 23) and b) a third year (N = 5) and the set of potential extra-pair males available in the year of pairing and subse-

quent years. SD and IQR are the standard deviation and inter-quartile range, respectively. F values are mixed model test statistics

Mean � SD Median IQR Range

a) Year of pairing 0�091 � 0�023 0�102 0�076–0�109 0�047–0�118 F = 1�7, P = 0�21
Second year 0�093 � 0�024 0�100 0�080–0�111 0�043–0�130

b) Year of pairing 0�103 � 0�014 0�108 0�104–0�108 0�080–0�116 F = 1�6, P = 0�26
Second year 0�102 � 0�011 0�101 0�100–0�110 0�086–0�113
Third year 0�110 � 0�009 0�109 0�107–0�110 0�099–0�124
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whose existing social pairings persist from previous years

might not be fully available to form new social pairings.

Assigning social mates from the ‘all-males’ set is therefore

unlikely to be realistic (Keller & Arcese 1998). However,

it illustrates that estimates of the degree of non-random

pairing with respect to k are somewhat sensitive to

assumptions regarding the set of available males (e.g.

Szulkin et al. 2009). This is in one sense problematic,

since the exact set of males available to pair with any

individual female will rarely be known in any field system

(Jamieson et al. 2009), even when all population members

are identifiable. Yet it is also interesting because it implies

that the distributions of k between females and the ‘new-

males’ versus ‘all-males’ sets of males differ to some

degree (Table S2, Supporting information). This in turn

implies that mean k between a female and her socially

paired male (assumed drawn from the ‘new-males’ set)

versus an extra-pair male (assumed drawn from the ‘all-

males’ set) could potentially differ simply due to popula-

tion structure rather than necessarily requiring additional

forms of non-random extra-pair reproduction.

social pair persistence

Across all observed occasions when a song sparrow pair-

ing that formed during 2007–2011 did or did not persist

to a subsequent year, social pairings comprising closer rel-

atives tended to be more likely to persist. The overall

mean difference in kSOC of ca. 0�023 between pairings that

did and did not persist roughly equates to the difference

between pairing with an unrelated individual versus a

first-cousin-once-removed (k = 0�031) or a second-cousin

(k = 0�016). However, the overall effect did not differ sig-

nificantly from zero and the two demographic processes

underlying pair persistence, namely divorce and mortality,

showed opposing patterns. While the probability that

both socially paired adults would survive from pairing to

a second year did not vary with kSOC, more closely related

socially paired mates that survived tended to be less likely

to divorce. Meanwhile, of the social pairings that per-

sisted to a second year, only the more closely related pair-

ings survived to a third year. More years of data are

needed to investigate whether such patterns are consistent

across years and why they might arise. However the phe-

nomenological conclusion is that, during 2007–2012, the

tendency for more closely related social pairings to be

more likely to persist to subsequent years contributed to

upward drift in mean kSOC compared to that observed

across newly formed pairings (Fig. 5).

temporal variation in relatedness

The degree to which an individual adult’s mean related-

ness to the opposite sex population changes across years

through which previously formed social pairings persist,

reflecting changing frequencies of individuals’ ancestors,

descendants and other relatives, has not to our knowledge

been quantified previously. However, there was no evi-

dence of systematic longitudinal change in a female’s

kMEAN.ALL with the male population within the duration

of individual social pairings. Furthermore, since an adult

song sparrow’s annual survival probability is ca. 0�6
(Smith et al. 2006), few social pairings persisted for more

than 2 years (expected proportion � 0�64(1–d) = 0�13
(1–d), where d is the probability of divorce given mutual

survival). There was therefore little opportunity for tem-

poral variation in relatedness within extant pairings to

substantially influence the mean population-wide differ-

ence in f between females’ EPO and WPO. In song spar-

rows, variation in kMEAN across years can therefore

contribute little to any systematic difference between a

female’s k with her socially paired versus a random extra-

pair male, and hence any systematic difference in off-

spring f that could result from random extra-pair repro-

duction in post-pairing years.

conclusions and context

The previous observation that socially paired female song

sparrows would reduce mean offspring f through random

extra-pair reproduction (Reid et al. 2015a) can be qualita-

tively explained by the combination of slightly non-ran-

dom social pairing such that pairings among unrelated or
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Fig. 5. Schematic overview of the mean coefficient of kinship

(kSOC) between a female and her socially paired male across pair-

ings that formed in each year (open circles) and persisted to a

second year (grey filled circles) or third year (black filled circles)

compared to the grand mean kinship between each female that

bred in each year and the set of all available males (i.e. mean

kMEAN.ALL, black squares). Solid and dashed lines link pairings

that formed in any one year that persisted to second or third

years, respectively. Circle sizes represent numbers of pairings.

Overall, most observed pairings (circles) fall in the zone where

kSOC exceeds mean kMEAN.ALL (above black squares) implying

that random extra-pair reproduction would reduce the mean

coefficient of inbreeding of females’ offspring.
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distantly related individuals formed slightly less frequently

than expected, and a tendency for more closely related

social pairings to be more likely to persist to subsequent

years (Fig. 5). The focus on pairings formed during 2007–
2012 ensured sufficient pedigree depth to allow adequately

precise estimation of k (Reid et al. 2015a), but inevitably

restricted sample sizes of years and pairings. Further data

are therefore required to determine whether observed ten-

dencies for non-random formation and persistence of

social pairings with respect to k are consistent across

years or simply reflect short-term chance events.

Nevertheless, our conceptual framework (Fig. 1) and

analyses highlight a general need to frame and test

hypotheses linking extra-pair reproduction to relatedness

in a realistic demographic context. Experimental studies

that quantify inbreeding avoidance or preference through

multiple mating typically assume that some direct physio-

logical mechanism of kin discrimination exists (e.g. Bret-

man, Wedell & Tregenza 2004; Pizzari, Løvlie &

Cornwallis 2004; Kempenaers 2007; Firman & Simmons

2008). Experimental designs consequently do not incorpo-

rate demographic variation or population structure, or

hence consider how the distribution of relatedness might

vary among temporally varying sets of potential mates.

Meanwhile, behavioural ecologists working on wild popu-

lations recognize that extra-pair reproduction might

depend on aspects of population ecology, including den-

sity, habitat geometry and reproductive synchrony (e.g.

Kingma, Hall & Peters 2013; Brouwer, van de Pol &

Cockburn 2014; Wang & Lu 2014). Furthermore, numer-

ous studies have tested for non-random social pairing or

reproduction with respect to relatedness (e.g. Wheel-

wright, Freeman-Gallant & Mauck 2006; Kempenaers

2007; Jamieson et al. 2009; Szulkin et al. 2009, 2013;

Rioux-Paquette, Festa-Bianchet & Coltman 2010; Billing

et al. 2012), and some have quantified divorce or widow-

ing rates (e.g. Foerster et al. 2006; Kempenaers 2007;

Szulkin & Sheldon 2009; Leclaire et al. 2013b). However,

the potential impact of non-random pair formation and

persistence on the degree to which polyandrous females

could adjust offspring f through instantaneously random

extra-pair reproduction is not generally emphasized. Fur-

ther theoretical and empirical tests of the hypothesis that

population demography and social structure might allow

females to systematically adjust mean offspring f through

random extra-pair reproduction among temporally vary-

ing sets of potential males are therefore warranted.

Such effects of demography and social structure might

be expected to be greatest in populations (i) with fine-scale

spatial or temporal variation in reproductive ecology; (ii)

where the timing or location of social pairing diverges

from that of extra-pair mating; (iii) where adult survival

and mate fidelity are sufficiently high for social pairings to

persist across multiple reproductive episodes; (iv) where

costs of failing to pair or of divorce are high (e.g. given

sequential mate searching or requirements for territory

acquisition or coordinated parental care); and (v) with

overlapping generations, allowing distributions of related-

ness to change within the duration of social pairings. Even

if net differences in k between females and their socially

paired versus instantaneously random extra-pair males

were small, as in song sparrows, they might potentially

facilitate or constrain long-term evolution of extra-pair

reproduction if manifested across numerous generations.

Indeed, directional adjustment of offspring f might be an

inevitable side-product of extra-pair reproduction occur-

ring for other reasons and have either positive or negative

fitness consequences. Such effects, which could potentially

act in conjunction with direct pre- or post-copulatory dis-

crimination among close kin and/or with state-dependent

extra-pair reproduction, need to be integrated into hypoth-

eses explaining evolution of extra-pair reproduction in the

context of natural population demography, reproductive

scheduling and relatedness structure.
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