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ABSTRACT. Motivated by recent experimental and computational results that
show a motility-induced clustering transition in self-propelled particle systems,
we study an individual model and its corresponding Self-Organized Hydro-
dynamic model for collective behaviour that incorporates a density-dependent
velocity, as well as inter-particle alignment. The modal analysis of the hydrody-
namic model elucidates the relationship between the stability of the equilibria
and the changing velocity, and the formation of clusters. We find, in agreement
with earlier results for non-aligning particles, that the key criterion for stability
is (pv(p))’ > 0, i.e. a nondecreasing mass flux pv(p) with respect to the den-
sity. Numerical simulation for both the individual and hydrodynamic models
with a velocity function inspired by experiment demonstrates the validity of
the theoretical results.

1. Introduction. The study of flocking is inspired by the natural behaviour of
animal groups, such as flocks of birds and schools of fishes. Natural flocks exhibit
a range of states, including moving swarms, compact flocks, correlated turning
and enhanced density fluctuations. To capture flock properties, numerical flocking
models such as the Vicsek model [29] have been developed, and subsequently been
studied in great detail; see e.g. [5, 6, 8]. The Vicsek model exhibits a complex
first order transition [5] between an aligned flocking state at low noise levels and a
disordered state at high noise levels, via a band state that depends sensitively on
the detailed implementation [22]. In parallel, hydrodynamic models of the aligned
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state have been proposed [28, 12], which show that the aligned state exhibits critical
scaling fluctuations. In particular, enhanced transverse diffusion is responsible for
stabilizing true long-ranged order in the Vicsek model, in contrast to the quasi-long-
ranged order found in the XY model and cemented in the Mermin-Wagner theorem

Missing from the Vicsek model are the effects of excluded volume, and repulsion
or attraction between individual animals or agents. A flurry of recent numerical,
analytical and experimental work in the physics community has begun to investi-
gate the effects of non point-like agents. Using soft self-propelled particles, that is
a particle model where in addition to short-range repulsive forces, self-propulsion
is introduced as a force into fully overdamped Langevin dynamics, several groups
showed [17, 23] that the mix of self-propulsion and volume exclusion has a profound
effect on the system properties. These results were first obtained for non-aligning
active particles; in this paper we will investigate the effect of additional alignment.
At intermediate densities, the chief effect of volume exclusion is a slowdown of the
effective hydrodynamic velocity v(p) where p is the density and v'(p) < 0. Experi-
ments with artificially created active colloids [21] also show a pronounced clustering
tendency, likely due to the same slowdown of velocity with density. Pedestrian
dynamics is one practical area of application with the combination of alignment
and repulsion between actors that we focus on here. Encouragingly, the empirical
flow-density relation in a range of crowd situations shows the same decrease with
density that was observed numerically [25, 24] in what is a field where experiments
are very difficult. The flow-density relationship in pedestrian dynamics, (aka the
fundamental diagram), displays nonmonotonic behaviour of the flux pv that first
increases with respect to p in the free-flow branch and then decreases due to the
formation of jams.

Crowding effects in self-propelled aligning particles have previously been taken
into account by various ways. A first one is by enhancing the pressure as a result
of crowding; see e.g. the derivation of the corresponding Self-Organized Hydrody-
namic (SOH) model in [9] and the application to crowd dynamics in [11]. A second
one consists of supposing that the actual velocity of the particle has a component re-
sulting from repulsion by other particles that adds up to the self-propulsion velocity
[26, 19]. This second approach leads to an SOH model with other transport terms
[1, 10, 14]. The two approaches have been compared in [10]. Here, the present
approach aims at mimicking the effect observed in [1, 10] with a simpler model
allowing for analytical investigation of its stability. Another way of taking into ac-
count crowding in randomly diffusive particle systems is by reducing the diffusion
coefficient in the crowded areas. Such a model has been derived in [1] and has been
used for modelling cross-diffusion in [2]. The investigation of a density-dependent
diffusivity on self-propelled aligning particles has been investigated in [18] in the
framework of the SOH model. It has been shown that a decreasing angular diffu-
sivity leads to a loss of hyperbolicity of the corresponding SOH model, which is a
signature of clustering.

Fits to simulations of self-propelled hard and soft particles and collision-based
models suggest a universal form at low and intermediate densities v(p) = vo(1—cp),
where ¢ depends only on the Péclet number Pe = vg/av,., where a is the particle
radius and v, is the rotational diffusion constant, or more generally the ratio of
persistence rate to diffusion rate.
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This density-dependent velocity leads to a density instability, and finally to a
clustering transition where the system phase-separates into a (single) cluster and a
low density gas phase. This motility induced phase separation (MIPS) transition
appears to be of a spinodal decomposition type, in a direct analogy to the liquid-
gas transition. The transition line is determined by the Péclet number, and it is
hypothesized that it terminates in a critical point around Pe = 10 [23]. At high
density, a second transition branch separates the cluster phase from a dense liquid
phase, and ultimately a high density, low driving active glassy phase [16].

Analytically, MIPS was first proposed in a one-dimensional model of interacting
run-and-tumble particles [27]. By mapping the Fokker-Planck equation onto an
equivalent equilibrium equation, Tailleur and Cates were able to define an effec-
tive free energy with a spinodal transition analogous to the liquid-gas transition.
This theoretical approach was later extended to fully brownian particles and tested
numerically [3].

The effect of alignment on MIPS was first studied by Farrell et al. [15] using a
combination of hydrodynamic equations derived from a microscopic particle model,
and direct numerical simulation. The phase diagram contains both homogeneous
and MIPS phases, but also travelling bands and finite clusters. However, a full
understanding of the phase separation mechanism in the presence of alignment is
still lacking.

Instead of the usually constant speed, we introduce a density-dependent veloc-
ity v(p) to the Vicsek model with alignment between individuals, and study the
dynamics of the high density system both through direct simulation and the Self-
Organized Hydrodynamic (SOH) formalism. In this paper, we focus on the deeply
aligned phase, and study in detail the location of the instability line and its an-
gular dependence. In the unstable phase, we determine the unstable eigenmode
as a function of wave vector and orientation, and determine its growth rate with
perturbations. These results are then compared to a numerical solution of the full
SOH equations, and a direct solution of the particle model.

This paper is organized as follows: Section 2 introduces the particle model with
the density dependent velocity. Section 3 presents the derived hydrodynamic model
and studies the stability of the inviscid and viscous cases. Finally, Section 4 presents
numerical results from both the particle and hydrodynamic models and ends with a
discussion of the growth rate of the instability. The appendices detail the derivation
of the hydrodynamic model (Sections A.1 and A.2), and the numerical scheme used
to integrate the SOH equations (Section B). Finally we detail in Section C the
discrete Fourier transform used for the numerical evaluation of the growth rate of
the instability.

To derive the SOH equations, we employ the mathematical theory developed in
[12] and provide the proof in Appendix A.1 and A.2. One of the key components of
the proof is the concept of “Generalized Collision Invariance” (GCI) which allows
passing to the hydrodynamic limit in spite of the lack of momentum conservation
at the particle level. Further generalization and elaboration of this method can be
found in [18, 9].

Our macroscopic model describes two quantities, the density p(x,t) > 0 and the
mean orientation Q(x,t) at position x € R™ and time ¢ > 0, and is referred to as
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the Self-Organized Hydrodynamic (SOH) model:
Oep+ Va - (c1v(p)pf2) =0, (1a)

PO + (c2v(p)§2 - Vo) + dPqr Ve (v(p)p) = 7Par Ax(pS2), (1)
Q] =1, (L)

where c¢1,co and d are dimensionless mobility parameters coarse-grained from the
ones at the particle level. v has the dimensions of a diffusion constant and expresses
that polarization diffuses as a result of microscopic alignment interactions. v(p) is
the function which specifies the relation between the speed and the density, and
therefore non-negative. Note that the projection operator Po:r = Id — Q ® Q will
preserve the geometric constraint |2] = 1. Using a two-dimensional system, we
show below that the stability of the equilibrium is related to the behaviour of the
mass flux pv(p). More precisely, the inviscid model (v = 0) is hyperbolic and hence
stable against perturbations if (pv(p))’, the derivative of pv(p) with respect to p,
is non-negative or certain constraints on the equilibria are satisfied. The viscous
model (v # 0) is stable if and only if (pv(p))’ > 0.

This result shows that a density instability associated to clustering emerges be-
low a threshold mass flux derivative and also that we obtain steady states with
constant density for mass fluxes above this threshold. Our result agrees with the
conclusions of [27, 17, 23, 3, 16] for the soft particle and hydrodynamics models
where self-propulsion decreases with local density. In common with Farrell et al.
[15], we find that the alignment and clustering transitions are largely independent of
each other; however we find correlations between orientation of a perturbation and
stability which have not previously been explored. This analysis on the SOH model
is supported by numerical simulations with forms of v(p) inspired by experiment
for both the individual-based model and the SOH model. In particular, in the high
concentration limit, we can decompose the instability as a sum of unstable eigen-
modes, the growth rate of which we then study numerically. Given a steady state
for the density, we observe a positive correlation between the growth rate and the
stationary polarisation orientation for both the particle and hydrodynamic models.

2. Particle model with density-dependent velocity. In this section, we intro-
duce the particle model which is the starting point for the derivation of the SOH
model (1). Consider a system of N self-propelled particles in R™. Let ¢ be the time,
X, (t) the position of the i-th particle and w;(t) its velocity orientation. Then the
time evolution for the i-th particle is given by

dX;

pra v(m;)wi, (2a)
dw; = P, (v@;dt +V2DdBy), (2b)
|wi| = 1. (2¢)

Here ,PwiJ_ represents the projection on the plane which is perpendicular to w;, which

allows the geometrical constraint on w; (2¢) to be preserved. B} is a Brownian mo-

tion with noise strength D and @; is the mean velocity oriention in the neighborhood

Br, (X;) = {X; : |X; — X,| < Ry}, where Ry is the range of alignment. More pre-
cisely, we have

w; = Ji

| Til

N
with 7; = > K1(X; — X;)wj,

j=1
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where K;(X) is the kernel for the alignment with a compact support in Bg,, and
the constant parameter v is the alignment rate.

The new ingredient of this individual-based model compared to the Vicsek model
is the dependency of the velocity on the mass in the neighborhood, described by the
function v(m;) where m; is the density of the neighbourhood of X;. Let Ry be the
interaction range and | Bg, | the volume of the ball Br, (X;) = {X; : |X;—X;| < Ry}
Then m; is defined as

=2

1
|BR2|

ZKQ(Xi _Xj)7 (3)

m;

where K5(X) is a kernel defined on a compact support in Bg,. For instance, K>
can be chosen as xx, (|X; — X|), the characteristic function on Bg,(X;).

An intuitive motivation for the density-dependent velocity is as follows: Particles
that are not point-like will experience collisions. While in thermal systems this just
randomises directions, for active, persistent motion the combination of collision
and persistence just slows the particle down, much like a crowd slows a pedestrian
who passes through. A simple scaling argument shows that the collision rate is
proportional to density, leading to v(p) = vo(1—cp). For aligning systems, like here,
the situation is a bit more complex since colliding particles will also align, eventually
removing many of the collisions if the system has strong overall polarisation. Here,
we keep a generic form of v(p), and investigate the onset of instability as a function
of wave vector and angle with the polarisation direction.

3. Linearized stability analysis of the SOH model with density-dependent
velocity. The derivation of the SOH model (1) is analogous with the work in [12]
and [10]; for the details please see Appendix A.

We derive the linearized stability criteria for the inviscid and viscous cases in a
two-dimensional space in the following subsections. Consider the SOH model for
x = (z,y) € R%. Since |Q| = 1, we define Q(z,y,t) = (cosO(x,y,t),sinf(x,y,t))
through the angle function 6(z,y,t) of the vector £2. Then the projection operator

.92 .
B sisrl1n0 Ceos 0 Ség:;(:; 50 ) Without loss of
generalization, we scale the system (1) such that ¢; = 1, and arrive at a system of
p and 6:

p p Py _ 0
8t< b >+Afaz< b ) Ay ( b ) = < 7 [Bgb + 2(0,p0.0 + 0,p0,9)] )
(4)

Pqr becomes a matrix operator <

where the two matrices Az (p,6) and A, (p,8) are given by

A= ( o'(p)cos®  —v(p)sinb >, 4, = ( ﬁf/(p) sinf  9(p)cosd )7

—d7® ging CQM cos 6 A7) cos 0 C2M sin®
P p r P

and 9(p) = pv(p) and ¥’ (p) is the derivative of ¥ with respect to p.

To simplify, suppose that (p, ) depends only on z, i.e., we are interested in the
propagation of waves with arbitrary orientation €2 in the horizontal direction. Let
(ps(x),05(x)) denote the equilibrium solutions and they must satisfy the following
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system:
0. (0(ps) cosbs) = 0, (5a)
[(%2 + 1) cos? s — 1} 0(ps)0z0s = d’y c0s 050, (p20,.05). (5b)

S

Let us then expand around them with a small perturbation parameter o:
plx,t) = ps(x) + opo(z,t), O(x,t) =0s(x)+ 0b,(x,t).

Dropping the higher order terms O(¢?) and using (p,,0,) to represent the first
order perturbation, we arrive at the system below

2 ( o ) + Aa(ps, 85)0e ( o ) - ( 78290 ) : (6)

3.1. The inviscid model, i.e., v = 0. The condition for the linearised system (6)
with v = 0 to be hyperbolic, i.e. with perturbations that decay back to stability, is

Theorem 3.1. The system (6) with v = 0 is hyperbolic if ¥'(ps) > 0 or

'(ps) <0 and

Proof. We examine the hyperbolicity of the above system by looking at the eigenva-
lues A of the matrix A, (ps, 0s). Neglecting the subscript s of (ps, 6s), the equation
|A; — AId| = 0 gives

P <f/(p) + czﬁg))> cos 0N + 17/(pl)f)(p)(c2 cos? @ — dsin® ) = 0, (7)

where the discriminant

. 2 e
A, = (f/(p) - CQU(pp)> cos? 0 + 4®<p2:)(p)dsin2 6. (8)

If ¥'(p) > 0, in other words, if pv(p) is an nondecreasing function, the system (6)
with v = 0 possesses two real eigenvalues and is hence always hyperbolic. Otherwise
we obtain two real eigenvalues if

. (o) \ 2
(0 -e")
> tan” f. (9)

A 20 _4d17'(P)17(P)
p

O

Remark 1. An analogous relation can be derived for a perturbation in only the y-
direction, where the right-hand side of the inequality (9) is replaced by cot? §. The
conclusion here is that the result above is generic, i.e. independent of the direction
of perturbation, if we define 6§ as the angle between the direction of perturbation
and the direction of €2.
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3.2. The viscous case, i.e., v # 0. We have the following result:

Theorem 3.2. The system (6) is stable around the zero solutions if ¥'(ps) > 0 and
unstable otherwise.

Proof. We apply a Fourier transform from position variable z to wave number £ to
(P, 00):

1 OOA ifx . A > —i€x
palant) = o [ palene® s with po(e) = [ paetye

— 00

ea(x,t):% / O, (6, 8)e™ de  with  6,(€,t) = / 0, (2, t)e 6" da.

—0o0

The system of (§,,6,) in a matrix form is
o( 7 ) +icaconnn (7 ) =0 (10)
¥ (ps) cos O —0(ps) sin g )

Aglps, 05) = ( —d—f’/g’zs) sinf, —iv€ + co (ps cos b,

>

where

The stability of the system (6) is equivalent to requiring that Im\, the imaginary
part of the eigenvalues of A¢, and & have the opposite signs, so that the decay
constant of the perturbation is negative. Note that the eigenvalues A can be written
as

1
)\:2{( "(ps) + 2 (p >)cose + ReVA + i(+ImVA — )}, (11)
where the discriminant A is
0(ps) ? 0(ps)v' (ps)
A= [(ﬁ’(ps) _ 8P )cos@s +wg] +4d# sin? 6,

and VA denotes the square root of the complex number A.
Next we examine the sign of Im\ by comparing the values |[Imv/A| and |v¢|.

Im\ = Sign(¢) ( + ImVA| - |4¢]),

where Sign(-) is the sign function for any real number. We introduce several nota-
tions:

- ~ ~/
a= ( "(ps) — C2v(p5)) cosfy, b=, e= 4dM sin” 0,
Ps Ps

and VA = o+ 3.
Using the expressions for A and /A, we obtain the equalities for the real and
imaginary parts of A:
- +e=a®>-p% and ab=ap.
There exist three cases:
(i) B =0. Then VA = . Hence the system possesses two real eigenvalues and

is alway stable.
(ii) B # 0 and a = 0. It follows that a = 0 and b*> — e = 2. Moreover, a = 0

v(ps
ps

7(p) 2 ()0=e2 (<) 0= [b] = (<) |BI-

implies that ¥'(ps) — ) = 0 or cosf, = 0. In either case, we have
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(iii) B # 0 and a # 0. We have

b| |« "k of )2 o o]0l
‘BHG\ and - e=p (‘ﬁ’ ~) (o] -1 = *‘”(’g‘ 1),
If o'(p) > 0, then e > 0 and [b| > |5]. If ¥'(p) < 0, then e < 0 and |b| < ||

To summarize, if ¥'(p) > 0, £|8| — |b] < 0 for any £ and ImA has a different sign
from &. If ¥'(p) < 0, there is always one eigenvalue A that Im\ has the same sign
as ¢ and sustains the unstable eigenmode, and hence the overall system will be
unstable. O

Remark 2. Usually, diffusive models are stable for large values of £ because dif-
fusion becomes stronger. Note that this is not the case here. Indeed, when the
system is unstable, i.e., ?'(ps) < 0, the unstable mode associated with the eigenva-
lue A (where £ImA > 0) grows with an exponential rate £ImA. Moreover,

~ ~/ . 92
lim £Tm) = — 20(2s)7'(ps) sin” 0,
§—o0 YPs

(12)

In order to prove the above limit as £ — 0o, we study the Taylor expansion of VA
around i. We employ the notations introduced in the proof of Theorem 3.2 and
write A in the polar representation:

A = [(a? + e — 7€) + da2y2¢2 b e,

where

2a¢
0a = arct _ .
A arcan<a2+e_72£2)+7r

Then

Rov/& = £[(a? + ¢ = %6 + 4a%¢7] cos ().

ImVA = £[(a® + e — y%2)? + 4a®42¢?] 7 sin (92A> .

We are only interested in the imaginary part as & — oo. The Taylor expansion at

%gives
2—e (1)? 1 2 /1\° 1
5 (¢) “9(53)] [1232@ “9(53)]

“spesee(s))

For the unstable mode, we have

e 1

In addition, Eq. (12) tells us that in the limit we already took, £ImA is increasing
with respect to 65 for p, fixed.

As £ — 0, note that Imv/A is approaching zero as well, which indicates a slow
growth rate of the unstable modes for the long wavelength.

ImVA = +¢
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4. Numerical results of the microscopic and macroscopic models. The
particle model is solved using the circle method that updates the angle of w; at
each discrete time step; the reader can refer to [20] for details. The challenge in
the numerical resolution of the SOH model is caused by the geometric constraint
|©2] = 1 and hence the non-conservative nature of the system (1). The splitting
scheme proposed in [20] solves the relaxation problem of (1) in the sense that the
norm of €2 is initially not restricted to be 1, but then takes the zero limit of an
expansion parameter 1 which realizes the geometric constraint on 2. We will extend
this idea to the SOH model, starting with the following proposition of the relaxation
model.

Proposition 1. Let 1 be a scalar parameter and (p", Q") the solutions to the re-
lazation model

Op" + Vg - (crv(p™)p"Q") =0, (13a)
Or(p"2") + Vg - (cav(p™)p"2" @ Q) + dV z(v(p")p")
Ui
AL (") = (1 - jr?)an. (13b)
n

Then (p", Q") converges to the solutions of the SOH model (1) as n goes to zero.

Proof. The main idea is based on the fact that the right-hand side of (13b) is parallel
to 7. Then the proof is analogous to the one in [20]. O

The numerical method, the so-called splitting scheme, is based on the work in
[20] and details are provided in Appendix B.

We test the particle model and the SOH model on a rectangular domain [0, L] x
[0,L,] with L, = L, = 10 and impose periodic boundary conditions in both di-
rections. We choose a time step At = 0.001 to discretize time. For the function
v(p), we consider a monotonically decaying power law with exponent « inspired by
experimental and numerical results, and with an lower density threshold p*: below
p*, the velocity is essentially constant, and then it rapidly decreases with power law
a,

v(p) =B <p* + 1) with three positive parameters p*, a, 5.
p
Note that ( )

. P+ (1—a)p

v'(p) = —————""v(p).

p+p

The parameters (p*, «, 8) will be carefully chosen to place the system in the different
regimes of stability derived in Section 3, in order to validate the corresponding
stability results on the SOH model.

4.1. Validation of the SOH models. In this section, the SOH model parameters
are given as

c1 = 0.9486, co = 0.8486, -~ = 0.11857, (14)

and d = 0.1, which are computed using the formulas derived in Appendix A.2 with
the parameters of the particle model: N = 10°,» = 100,D = 10,R; = Ry = 0.1,
so that we can perform the comparison between the two types of models. Indeed,
this choice of parameters would correspond, after the scaling of Appendix A.1, to
a value of € = 0.01. The three parameters for the velocity function are chosen as
(p*,, B8) = (0.12,10,1) which results in a stable model. This choice is only made
for demonstration purposes.
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The domain is uniformly partitioned using two integers N, and N, which repre-
sent the mesh size for the numerical integration in two dimensions. We apply the
splitting method to the SOH model starting with the same initial condition and
iteratively calculate the numerical errors with gradually decreasing mesh spacing
(Az = %,Ay = 1%) Fig. 1 is the profile of the errors as a function of mesh
spacing Az in log scale and indicates that as expected the method is accurate to
the first order.

-2.5
-3
=3
o B35 —— p
e
i
=1 -4
o —— u
-4.5
5 _— slope=1| |

35 -3 25 -2 15 -1 -0.5 0
log(A x)

FIGURE 1. The accuracy test at ¢ = 1 shows that the splitting
scheme is of first order. The initial data is given by py = ps(1 +
0.1sin(mz)),00 = 0s(1 + 0.1sin(7z)) with (ps,0s) = (0.01, %) and
the mesh sizes are iteratively N, = N, = 32, 64,128, 256.

We show that the SOH model agrees with the particle model using the following
example. We construct an initial configuration with pg(z,y) = 0.01 and a velocity
field given by the Taylor-Green type function

Qp(z,y) = (sin (%m) cos (gy> , — COS (gx) sin (%’) )T

Fig. 2(a) shows the contours of the density p and the velocity field € at ¢t =
0.5, which are the average of 40 simulations using the particle model with N =
10°,v = 100, D = 10, R; = Ry = 0.1. This ensemble average is necessary due to the
stochastic nature of both the initial particle positions and the angular dynamics.
Fig. 2(b) is the numerical solution produced by the SOH model with (14) and
d =0.1. As explained at the the beginning of Section 4.1, the parameters for both
the Vicsek and SOH models are consistent. The agreement is fairly good.

4.2. Numerical results for the stability of the models. We vary the three
parameters in the function v(p) to demonstrate the stability of the models around
uniform steady states. The model parameters are given by (14). We choose an
initial condition with a sinusoidal perturbation along x in both density and an-
gle, in phase with each other, py = ps(1 + osin(wz)), 0y = 05(1 + o sin(nzx)) with
(ps,0s) = (0.01, ). The model stability will be measured by the Root Mean Square
Fluctuation (RMSF) of (p, ), i.e. the L? norm of p — ps and 6 — 0s:

1

2

Ly Ly
RMSF<p>—pps|Lz—</o / (p(x,wps)?dxdy),

and RMSF () is defined in a similar way.
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0.015

0.01

0.005

(a) t = 0.5: the particle model. (b) ¢ = 0.5: the SOH model.

FIGURE 2. Comparison between the particle (left) and SOH mod-
els (right). For the particle model, N = 10°,v = 100, D = 10, Ry =
Ry = 0.1. The result is the average of 40 simulations. For the SOH
model, N; = N, = 100.

4.2.1. The inviscid models. For this numerical test, let (p*, o, 8) = (0.005,2,1) and
d = 10. Again, these choices are only made for demonstration purposes. Note
that 9'(p) < 0 and the inequality on the right-hand side in (9) does not hold.
Therefore the resulting model is unstable and RMSF of (p, ) must grow in time,
which is demonstrated in Fig. 3 with RMSF in log-scale with respect to time t.
An exponential growth of the perturbation, like we expect, would translate to a
straight line in these graphs.

logo(RMSF of p)
logo(RMSF of 6)

-2.2 -0.4

(a) log (RMSF(p)) for 0 <t < 5. (b) log (RMSF(6)) for 0 <t < 5.

FI1GURE 3. Stability test of the SOH model with v = 0 and o = 0.1.
The profiles show the RMSF of p and 6 in log-scale with respect
to time t. The numerical solutions evolves from the steady states,
and locally high concentrations develop.

4.2.2. The viscous models. For the viscous models, we will provide a set of com-
parative examples for the stable and unstable results. The parameters are taken as
(14) and d = 0.5. For the velocity function, fix = 2 and 8 = 5. Then the sign of
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¥'(p) will depend on the values of p*. From the analysis in Section 3.2, we predict
that the model around the constant steady state is stable if p* is large enough. Fig.
4 shows the RMSF of the numerical solutions (p,6) computed with p* = 0.02 and
o = 0.01. They are decreasing all the time up to ¢ = 20.

-3.5

-4.5

-5.5

logyo(RMSF of p)
&
log,o(RMSF of 6)

-6.5

(a) log (RMSF(p)) for 0 <t < 20. (b) log (RMSF(6)) for 0 < ¢ < 20.

FIGURE 4. Stability test of the SOH model with d = 0.5, ¢ = 0.01
and p* = 0.02. RMSF of the density and angle are decreasing with
time.

Let p* = 0.005 where we have ¥’(p) < 0 at the initial time. Hence the numerical
solutions are expected to evolve away from (ps,0s), indicating the instablility of
the model. Fig. 5 shows the RMSF of the numerical solutions (p, §) for the time
interval ¢ € [0,5]. One can observe that they grow significantly; compare with the
numerical solutions in Fig. 4 whose RMSF decreases to zero.

22 12

2.4
5 26 5
[} [}
= =
[ o
= 28 ]
g g

3
32
0 3 6 9 12 15
t t
(a) log (RMSF(p)) for 0 <t < 15. (b) log (RMSF(6)) for 0 < t < 15.

FIGURE 5. Stability test of the SOH model with d = 0.5, 0 = 0.01
and p* = 0.005. The RMSF of the numerical solutions grows grad-
ually and high local concentrations develop. The linear scaling of
the log of RMSF implies an exponential growth of the perturbation
as a function of time t.
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4.3. Growth rate of the instability. The modal analysis of the hydrodynamic
system (10) shows that the magnitude of p, possesses an exponential growth rate
EImA. In this section, we will examine the numerical solutions provided by the
particle and SOH models and compare the numerical growth rate of the perturbation
to the modal analysis result of the viscous system (10). For the sake of convenience,
we perform a Discrete Fourier Transform (details can be found in Appendix C).
The initial configuration is taken as:

pO(z7y) = ps(l + o‘pg(:c,y)), 00<x’y) = 99(1 + 090(1771/))’
where ¢ = 0.01, and ps; = 0.01 is fixed. p, takes the form

10

po(@) =3 {al(f) cos (Tf(x - A2””)) + as(€) sin (2;5 (x— A;)ﬂ ,

£=0

and 6, is given in a similar way. Here a1 (€), a2(&) in p, and 6, are different random
numbers generated from a uniform distribution on the interval [0, 1].

The parameters of the SOH model are fixed as ¢; = 0.975, ¢ = 0.925,d = 0.05
and v = 0.12188. They correspond to the particle parameters where N = 10°, v =
100,D = 5, and Ry = Ry = 0.1. The three parameters for v(p) are chosen as
(p*,, 8) = (0.005,2,5) in which case the viscous model is unstable. The steady
state for the density is chosen as ps = 0.01. We vary the steady state orientation
0, in the interval [0, 5] and plot the growth rate {ImA as a function & € [0, 6] for
both the linearized and SOH models in Fig. 6. Fig. 6(a) is computed using the
fomula (11). To obtain Fig. 6(b), we proceed for each 6, in the following way. We
compute the numerical solutions of the SOH model up to time ¢ = 1, and perform
the Discrete Fourier transform on the perturbed part p, = p — ps to get p, (€, 1).
With different initial data, i.e. different a; and as, we collect Ng,, samples of
Po(&,t) and apply a simple linear regression to the averaged quantities

1 PolE,1)
Nsam Nsa‘ln pU (67 O)

with respect to time ¢. This will generate the growth rate for each &; Fig. 6(b) shows
the results for £ = 0,1,...,6 with Ngam = 100. The motivation here is as follows:
by choosing random coefficients for the different modes we generate a set of initial
conditions that have statistically equal weight for each mode. The growth rate is
interpreted as the slope of the function t — p,(§,t) in log scales. The similarity of
these two sets of contours is the increase of the growth rate with respect to both &
and 0. The difference is that the fully nonlinear SOH model rapidly develops much
larger growth rates compared to the linearised solution. There are also fluctuations
at certain 65 and ¢ likely due to finite size effects.

Fig. 7 shows the growth rate of the perturbation p, given by the particle model.
The number of particles is N = 10°. The parameters are given as v = 100, D =
5 Ry = Ry = 0.1. And they match the parameters for the SOH model in Fig.
6. The three parameters for v(p) are chosen as (p*,a, 8) = (0.005,2,5) to match
the SOH model. For each 6, the growth rate is computed using the average of
10 simulations, in order to reduce the effects of noise. Although the contours do
not exhibit the monotonic behaviour of the growth rate of the SOH model with
respect to the steady state angle #; and the eigenmode & due to the nonlinearity
and stochastic effects, one can observe the stronger instability for larger 6, and &.
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(a) The linear prediction. (b) The SOH model.
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FIGURE 6. Growth rate of the perturbation p,. The parameters
are ¢c; = 0.975,¢co = 0.925,d = 0.05 and kg = 0.125. The three
parameters for v(p) are chosen as (p*,a, ) = (0.005,2,5). The
steady state for the density is fixed at p; = 0.01 and the final time is
t = 1. (a) is computed using the fomula (11). In order to obtain (b),
we compute the numerical solutions of the SOH model and perform
a simple linear regression on the Discrete Fourier transform of the
perturbed part, i.e. p, = p — ps. The growth rate is interpreted as
the slope of the function t — p, (&, ).

FIGURE 7. Growth rate of

08 the perturbation p, given by

07 the particle model with N =

P 06 10°. The parameters are

. | v = 100,D = 5 R, —

< 04 Ry = 0.1. The three param-
03 eters for v(p) are chosen as

02 (p*,a, B) = (0.005,2,5). For

each 6,, the growth rate is
computed using the average
of 10 simulations, in order to
reduce the effects of noise.

5. Conclusion. We have studied a Vicsek model where the velocity depends on
the local density and then derived the corresponding SOH model. At the hydro-
dynamic scale, we analyse the stability of the two-dimensional inviscid and viscous
models around their steady states. In summary, the stability of the SOH mod-
els is determined by the behaviour of the mass flux pv(p). The theoretical results
are illustrated by the numerical simulations with different choices of the velocity
function. In general, we find good agreement between the theoretical prediction of
the onset of instability and the numerical results. In the unstable regime, while
our numerical results are qualitatively compatible with the predictions, the strong
non-linearities present in the SOH model and especially the particle model quickly
dominate the response. The SOH model we have developed here is a useful model
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to describe the semen flow in the experiments designed in [7]. These experiments
record the correlation between the averaged velocity and the density of the sperm
cells, and the velocity as a function of the density was fitted using the SOH model.
Further study of vortices observed in the collective behaviour of the semen flow is
under way.

Appendix A. Derivation of the SOH model with nonconstant velocity.
The SOH model can be explicitly coarse-grained from the particle model introduced
in Eq. (2). For completeness, we provide the main steps here and readers are
referred to [12] for details.

A.1. The mean field model. We consider the limit of the system when N — oc.
Introduce the empirical distribution fV(z,w,t) defined as

PN (@, w,t) = % POUCES HOE)) (15)

where w € S"~!, the unit sphere in R" and the distribution §(w,w’) is defined as
(§(w,w"), p(w)) = p(w') for any smooth function ¢.

Sending N — oo and scaling out to obtain dimensionless parameters, the formal
mean-field system for the probability distribution function f(x,w,t) on R x S*~1 x
(0, 00) is given by

Ouf +Va - (v(mp)wf) + Ve - (Gf) = DAL, (16)
where A, denotes the Laplace-Beltrami operator on the sphere and

o _ o jf(xat)
Gzx,w,t) =P, w(x,w,t) =P, ————,
et (Bt =P 7 )

Ty(a,t) = / K (“’ - y') wf (g, ) dydo,
R xSn—1 R

1

my(x,t) = ! K (|m - y|) fly,w,t) dydw.
1B, | Jrnxsn—1 Ry

Here we assume that K; and K5 only depend on the distance between particles,

characterized by the dimensionless parameters Ry and R,. We also assume that

both of the ranges of the interaction kernels K; and K are small.

Let € be a small positive number. We will perform the explicit hydrodynamic
limit by introducing rescaled parameters that individually tend to zero in the limit
€ — 0. Then Ry = ﬁfﬁ, Ry = \/ERQ We also assume that the alignment strength
(a.k.a the social forces), and the diffusion coefficient are large, but of similar mag-
nitude i.e.,

1 D
v=-, Z=d=0().
13 14

For simplicity, we drop the hats and have the following result:
Lemma A.1. The density f¢(x,w,t) satisfies the following equation:
€[0S+ Va - ((pr)wf)] + Vi - [Por (Rpe + Q) ] = dAL [ + O(e?), (17)
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where

Q- = Tr ith Jpe :/ vf* (@, w, t) dw,
|5l sn-1

kY R} [ Ka(|2])] 2] dz
QL = -1 AgJse with £ = LR
! \JfE\Pﬂ# fe = oy T L KA ([2]) de
pre(x,t) = fo(z,w,t) dw.
Snfl

We drop the higher order term of &, O(g?) and define the collisional operator
Q(f*) by

Q(ff) ==V - Por Qe f& +dA, f5. (18)
The rescaled system can be written as
e[0uf* + Va - (v(pge)wf®) + Vi - Pur Q- f7] = Q(f°), (19)
where
st : €
Qe = —— with Jpe = wf(x,w,t) dw, (20)
|Jf5| Sn—1
K R} [ K (J2]) 212 d2
QL = —L-Pqo. AyJse with k) = L =% 21
! |Jf5|7’ﬂfs S T T Ko (2] dz 21)
pren) = [ et (22)

A.2. The hydrodynamics model. This section derives the hydrodynamic model
for the local density py and the local mean orientation 2; which will be valid at
the macroscopic scale by taking the limit of the system (19)-(22) as € — 0.

We first introduce the von Mises-Fisher (VMF) probability distribution Mg (w)
on S”! associated to a given Q € S*1:

1 w- 0 . w - §2
Mgq = 7 €XP (d) with Z = /Sn_1 exp (d) dw. (23)

The main result in this section is the following theorem:

Theorem A.2. Let f° be the solution of (19)-(22). Assume that there exists f
such that

lim f* = f (24)

e—0

pointwise and the limit holds for its derivatives. Then there exist p(x,t) and Q(x,t)
such that

f(@,w,t) = p(x, t) Mozt (w) (25)
and (p, Q) are the solutions of
Oip+ Va - (c1v(p)pf2) = 0, (26a)

P[0 + (c2v(p)R2 - Vo ) + dPqr Va(v(p)p) = YPar Az(pS2),  (26b)
Q] =1, (26¢)
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where
c1(d) = Mg (w)(w - §2) dw,
Sn—l
es(d) = (sin? @ cos Oh) nrg,
(sin2 9h> Ma ’

v =k [(n —1)d + ca].

Here (-)pq, denotes the integration with the weight function Mgq with respect to 0
on the domain [0, 7).

Proof. The proof is divided into three steps: (i) the determination of the equilibria;
(ii) the Generalized Collision Invariants; (iii) the hydrodynamic limit. The three
subsections below give a sketch of the proof.

Step 1. The equilibrium states, i.e., the null space of Q.
Definition A.3. The set £ of the equilibrium of Q is given by
E={feH(S"")|f >0and Q(f) = 0}. (27)

We will prove that the set £ consists of the VMF distribution. More precisely,
we have the following result:

Lemma A.4. Under certain regularity assumptions, the set of the equilibria £ is
given by
E ={f(w) = pMq(w) for arbitrary p > 0}. (28)

Proof. Please refer to [12] for the proof of Lemma A.4. O

Step 2. The generalized collision invariants (GCI).

Definition A.5. A collision invariant (CI) is a function ¥ (w) such that for any
function f(w) > 0 with sufficient regularity we have

Q(f) dw = 0. (29)

Snfl
We denote by C the set of CI, the set C is a vector space.

Due to the lack of physical conservation laws except for the total mass, the set of
CI is not large enough to allow us to derive the evolution of the macroscopic quan-
tities p and €. To overcome this difficulty, a weaker concept of collision invariant,
the so-called “Generalized Collision Invariant” (GCI) has been introduced in [12].
We define the collision operator Q(€2, f) such that for a given vector Q € S*~1, we
have

o(Q, /) =V, - [MQVUJ (f)] . (30)
Mgq
Notice that
o(f) = Q. f). (31)

Then we have

Definition A.6. Given Q2 € S"7!, a Generalized Collision Invariant (GCI) associ-
ated to € is a function ¢ € H*(S"~!) satisfying

QQ, l(w)dw =0 Vfe H (S"!) with Q; = £Q. (32)
§n—1

The set of GCIs associated to €2 is denoted by Cgq.
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The following lemma characterizes the set of generalized collision invariants.
Lemma A.7. The set Cq is given by
Ca = {hMw-Q)B-w+C where § € R™ with 3-Q =0 and C € R is arbitrary.}, (33)

and the scalar function h(-) is such that h(cosf) = % and g(0) is the unique
solution in the space

V = {g|(n —2)sin220g € L*(0,7),sin%? "' g € H}(0,7)}
of the problem

coso d coso d -2
— sin?® " e “F° 0 (sin"2 fe i d‘Z) + ;11117299 =sin 6. (34)
The set Cq is an n-dimensional vector space.
Proof. Please refer to [12, 18] for the proof of the above lemma. O

Step 3. The hydrodynamic limit.

Integrating Eq. (19) against the collision invariants and taking the formal limit as
¢ — 0 will yield the hydrodynamic system (26) and the formulas for the parameters
c1(d), ca(d) and 7. O

Appendix B. The splitting scheme of solving the relaxation model. We
start from Eq. (13). Dropping the superscript n for simplicity, we implement the
splitting scheme in two steps.

Step 1. Solve the conservative part:
Owp + Vg - (c1v(p)p2) = 0, (35a)
{ 9 (pQ) + Va - (c2v(p)p2 @ Q) + dVz(v(p)p) — 7Az(p82) = 0. (35b)
Step 2. Solve the relaxation part:
Op = 0, (36a)
2p%) = (1 - |9P)0 (36b)

Introduce two functions p and ¢ such that p = pQ2, and ¢ = p€2, where 2, and
Q, are the two components of €. The system (35) can be written in vector form:

Q + 0:(F(Q,0:Q)) + 9,(G(Q, 0,Q)) = 0, (37)
where
p crv(p)p
Q=1 » |, FQaQ = @p*+d(p)p—10wp |,
q c2 " pq — 40,q
c1v(p)q
G(Q,0,Q) = c2 2 pg — 40,p

ca @QQ + dv(p)p — v0yq
The explicit time discretization for Eq. (37) is given by

- ) A

n n mn
i Ag \Fi Fi Ay \Tiits m%)v

it3.d i
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where the numerical flux Fj 1518 defined as

F(Qij) + F(Qit1,5) 1 P2

211

iy = 2 3 5Q(Qw’3 Qi ;) (Qiv1j — Qi)
with
_ i+ Qi i IR R 83: i +6w i .
Qz,g — %7 Oy Q,Lj = %’ 89€Qi,j _ Q N . Q +1,5 .

G j+4 is defined in the similar manner. Here P2(2 Q) is a second degree polynomial

of a matrix at the intermediate state of (Q; ;,0,Q;;) and (Qit1,5,0:Qit1,5); see

[13] for more details.

Appendix C. The discrete Fourier transform for the viscous system (10).
Let N, x N, denote the mesh size over the domain [0, L;] x [0, L,] and (Az, Ay)
the uniform mesh spacing. Each nonoverlapping computational cell is centered at

(zj,yk) = ((j — 7) Az, ( %) Ay) for 1 < j < N, 1 <k < N,. We study the spa-

tial variable x only and apply the Discrete Fourier Transform on (p, (z,1), 0, (x;,t)):

No—1

Ny—1

1 ' ELLEES) 1 . i27E (p._Ax
paleit) = 3 2 (&) 5 2 Al e ),
£€=0 £=0
1 ! ;2 5( -1 1 Nt ome N
eo(xjat) = E 00(67 ) = E 95(£7t)@lﬁ<"‘j_7)7
§=0 £=0
where
j2mG=1e Nz 2m(j—1)¢
Zpg Z‘], Mooy eg(f,t) = Zeg(l‘j,t)€_z Na
j=1

It follows that

where the matrix

( 1?0’ (ps) cos B —c10(ps) sin B )
A= .

d" (”S) sin 0 12”&’ + ¢y (pp cos 0

Let A = p + iv be the eigenvalue of A. Solving |A — AId| = 0 gives

A= % [(clf/(ps) + 626(::)) cos O, + ReVA + z( + ImVA — 27;57)} ,

where v A denote the square root of the discriminant, the complex number A:

v S 2 2 v S v S
A= ((clﬁ’(ps) — CQU(p )> cosly + 1 71'57) + 4(:1dM sin? 6.

Ps L, Ps
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