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SUMMARY

A novel method for simulating multi-phase flow in porous media is presented. The approach is based on a
control volume finite element mixed formulation and new force-balanced finite element pairs. The novelty
of the method lies in (i) permitting both continuous and discontinuous description of pressure and saturation
between elements; (ii) the use of arbitrarily high-order polynomial representation for pressure and velocity
and (iii) the use of high-order flux-limited methods in space and time to avoid introducing non-physical
oscillations while achieving high-order accuracy where and when possible. The model is initially validated
for two-phase flow. Results are in good agreement with analytically obtained solutions and experimental
results. The potential of this method is demonstrated by simulating flow in a realistic geometry composed of
highly permeable meandering channels. © 2016 The Authors International Journal for Numerical Methods
in Fluids Published by John Wiley & Sons Ltd
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1. INTRODUCTION

Numerical modelling of multi-phase flows in porous media has applications in a wide range of dis-
ciplines, including hydrocarbon and groundwater production, safety assessment of deep geological
disposal of radioactive waste, and carbon capture and storage [1–4]. Such applications often include
complex geometries with irregular (and often internal) boundaries between rock types with contrast-
ing porosity and permeability. Accurately capturing these complex geometries is a key challenge
when simulating such flows.

Finite difference methods have been extensively used for modelling fluid flows in porous media
[5–7]. However, they are strongly dependent on mesh quality and orientation, and cannot easily rep-
resent complex geometries. In addition, finite difference methods can produce excessive numerical
dispersion in heterogeneous porous media flows [8].

The geometrical flexibility of finite element methods (FEM) has been shown to overcome these
deficiencies. Among FEM-based formulations for porous media, the control volume (CV) FEM
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(CVFEM) is increasingly popular as it can guarantee local mass conservation, it has the potential to
be high-order accurate and is able to use tetrahedral, geometry-conforming elements [9–12]. Huber
and Helmig [13] demonstrated that the vertex-centred, finite volume FEM (or box scheme) can
achieve similar goals (see also [14]).

Durlofsky [15, 16] compared the performance of a mixed FEM formulation (piecewise linear in
velocity and piecewise constant in pressure) and the classical CVFEM for single phase Darcy flows.
It was concluded that the latter is computationally more efficient and numerically more accurate
than the former for problems involving a (relatively) small number of degrees of freedom. More-
over, for complex heterogeneous problems with sharp changes in material properties, the mixed
FEM formulation often led to physically unrealistic solutions. Cumming et al. [17] demonstrated
that a CVFEM-based discretisation could be used to solve the Richards equation (coupled mass
conservation and Darcy equations) in heterogeneous porous media with relatively small compu-
tational overhead, compared with traditional, coupled velocity pressure-based formulations. Mass
balance was enforced as described by Kirkland et al. [18] (see also [9, 19]). However, CVFEM
often requires high-resolution meshes in regions where material properties vary abruptly, such as
permeability contrasts at (for example) fracture-matrix interfaces, or boundaries between different
rock types. CV boundaries span FEs where material properties are defined; therefore, some aver-
age value of the permeability must be calculated across CV interfaces. This often leads to excessive
numerical dispersion, especially in highly heterogeneous media [20, 21].

Discontinuity-capturing schemes (e.g. shock waves, contact surface or material discontinuities
[22, 23]), were originally developed to resolve sharp changes in solution fields such as velocity
or saturation. Related discontinuity-capturing schemes include the discontinuous Galerkin FEM
(DGFEM) scheme in which continuity of the solution is not explicitly enforced, allowing sharp
changes in the solution fields to be captured. The DGFEM scheme is stabilised, locally conservative
and designed to achieve high-order accuracy. DGFEM solution fields are allowed to be discontinu-
ous at the element faces; thus, the solution is able to handle discontinuities in material properties at
internal boundaries. In addition, DGFEM is well suited to deal with interface problems by incorpo-
rating specially designed interface fluxes. These properties have attracted the attention of the porous
media flow community over the past 15 years (see [24–26]) and are utilised here.

In this paper, a novel CVFEM formulation, which is conservative and consistent is presented.
The continuity equations are embedded into the pressure equation to enforce mass conservation and
the exact force balance. The PnDG-Pm[DG] family of triangular and tetrahedral FE pairs is used to
discretise velocity and pressure in space. For this element type, the velocity field is represented by
nth-order polynomials that are discontinuous across elements, while the pressure field is represented
by mth-order polynomials that may be continuous (termed PnDG-Pm) or discontinuous (termed
PnDG-PmDG) across elements. CVs are dual to the pressure mesh. The formulation employs an
implicit algorithm with respect to time that is less restrictive than the implicit pressure–explicit
saturation (IMPES) scheme often adopted in porous media flow problems (e.g. [5, 11]).

The method is demonstrated using two families of element pairs: the PnDG-Pm pair which can
allow the velocity to exactly represent the pressure gradients in the flow solution for homogeneous
material properties; and the PnC1DG-PnDG pair, which has similar properties to the PnDG-PnC1
element pair, but allows a representation in which pressure, saturation and other solution variables
are discontinuous across FE boundaries. This solves the long-standing problem described earlier
with respect to the use of traditional CVFEM to capture sharp changes in material properties.

Results using this method in simple geometries have been previously reported in the literature
(e.g. [27, 28]). However, the method has not been described in detail or thoroughly validated, and its
potential has not been explored. The remainder of this paper is organised as follows. The governing
equations and numerical methods employed to solve them are introduced in Section 2. Model set-up
and results including comparison against reference data are given in Sections 3 and 4, respectively.
Finally, concluding remarks are presented in Section 5.
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2. GOVERNING EQUATIONS AND NUMERICAL FORMULATION

2.1. A novel representation of multi-phase Darcy flows

Darcy’s law for immiscible multi-phase flow may be written in the form

q˛ D �
Kr˛K
�˛

.rp˛ � su˛/ ; (1)

where q˛ is the ˛-th phase Darcy velocity, K is the absolute permeability tensor of the porous
medium, Kr˛ .S˛/ is the phase relative permeability, which is a function of the phase saturation
S˛ .r; t /. �˛ , p˛ , �˛ and su˛ are the phase dynamic viscosity, pressure, density and source term,
which may include gravity and/or capillarity, respectively.

Introducing a saturation-weighted Darcy velocity defined as u˛ D q˛=S˛ , then Equation (1) may
be rewritten as

v˛ D �
˛

u˛ D �rp˛ C su˛; (2)

where �
˛
D �˛S˛ .Kr˛K/�1 represents the implicit linearisation of the viscous frictional forces.

The force per unit volume v˛ , defined as �
˛

u˛ , is used as a prognostic variable in this approach, as
explained in Section 2.3.

In order to discretise Equation (2), a FE representation for v˛ and p is assumed, expressed in
terms of their FE basis functions Qj and Pj , respectively, as

v˛.r; t / D
NuX
jD1

Qj .r/v˛;j .t/ and p.r; t / D

NpX
jD1

Pj .r/pj .t/: (3)

Here, Nu and Np are the total number of degrees of freedom for the FE force and pressure repre-
sentations. Each component of the weak form of the force balance (Equation (2)) is tested with the
v˛ basis function space to obtain

X
E

Z
�E

Qi .v˛ Crp � su˛ / dV C
I
�E

Qin .p � Qp/ d� C
I
��

Qin .p � pbc/ d� D 0; (4)

where�E and �E are the volume and boundary of element E, respectively, and �� is the boundary
of the computational domain. The numerical pressure Qp appearing in the jump condition (second
term in Equation (4)) is the arithmetic mean of the potentially discontinuous pressure across the
elementE. This term vanishes when a continuous formulation is used to discretise the pressure field.
The last term in Equation (4) is used to weakly enforce the pressure level to pbc on a computational
domain boundary.

In matrix form, Equation (4) is

Mv D �CpC su; (5)

where v and p solution vectors are defined as

v D
��
vx; vy ; v´

�
1;1
;
�
vx; vy ; v´

�
2;1
; : : : ;

�
vx; vy ; v´

�
N˛ ;Nu

�T
and

p D
�
p1; p2; p3; :::; pNp

�T
:

N˛ is the number of phases, and vx , vy and v´ are the components associated with the x, y and
´ dimensions, respectively. Finally, the mass matrix M, gradient matrix C and source vector su are
defined as
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Figure 1. Two-dimensional (2D) representation of the element pairs presented in this work. Shaded areas
denote CVs (in which saturation is stored), black points represent the pressure nodes, and white points the

velocity nodes. Note that in (b) velocity and pressure nodes overlap in the triangles’ vertices.
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where i and j are dimensions and k and l are the degrees of freedom of element E. Here,
n D .n1; n2; n3/

T is the outward-pointing normal vector of the domain �. n.E;l/ is the normal
to the boundary of element E and is outward-pointing if Pl takes support on E, and inward-
pointing otherwise.

The saturations are computed in CV space, whereas the permeability tensor .K/ is assumed piece-
wise constant in FE space. Thus, the viscous-friction damping tensor �

˛
is piecewise constant within

the sub-CVs defined through intersections between the elements and CVs (Figure 1).

2.2. Control volume finite element types

In the formulation presented here, pressure, velocity, permeability and porosity are represented FE-
wise; however, saturation, relative permeability and fluid properties such as viscosity and density
are represented CV-wise. Figure 1 displays the two families of element types presented in this paper:
Figure 1(a) shows the PnDG-PnC1 element type, with n D 1, in two dimensions (2D). Here, the
velocity field is linear and discontinuous (between elements) while pressure has a quadratic and
continuous (between elements) representation with the CV’s span various elements. Figure 1(b)
shows the PnC1DG-PnDG element type, with n D 1 (also in 2D). Here, the velocity field is quadratic
and discontinuous (between elements) whereas pressure has a linear and discontinuous (between
elements) representation and the CV’s do not span elements.

2.3. Finite element representation of velocity

From Equation (1), it can be seen that the velocity field depends, among other fields, on the absolute
permeability, which is FE-wise, and the relative permeability, which is CV-wise. This means that
the velocity representation is different in each CV. However, the quantity v˛ is homogeneous within
an element, and this is stored using FE representation. To obtain the velocity u˛ in a particular CV
within a FE, Equation (2) is used.
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2.4. Saturation and global mass conservative equations

Here, the saturation conservation equations are discretised and the global mass balance equation is
derived. In this work, fluids are assumed incompressible. The saturation equation can be written as

�
@S˛

@t
Cr � .u˛S˛/ D scty;˛; (6)

where � is the porosity and scty is a source term. Equation (6) is discretised in space by testing with
CV basis functions Mi and with the 	-method in time

Z
�

Mi

�
�
SnC1˛i � S

n
˛i

�

t

dV C

I
�CVi

h
	nC

1
2n � unC1˛ SnC1˛ C

�
1 � 	nC

1
2

�
n � un˛S

n
˛

i
d�

D

Z
�

Mis
nC�
cty;˛dV;

(7)

where n is the outward-pointing unit normal vector to the surface (�CVi ) of the CV i and n is the
current time level. More details on the numerical methods used to solve Equation (7) can be found
in [29].

The global continuity equation is obtained by summing Equation (7) over all phases

NX̨
˛D1

´Z
�

Mi

�
�
SnC1˛i � S

n
˛i

�

t

dVC

I
�CV i

h
	nC

1
2n � unC1˛ SnC1˛ C

�
1 � 	nC

1
2

�
n � un˛S

n
˛

i
d�

�

Z
�

Mis
nC�
cty;˛ dV

³
D 0:

(8)
Equation (8) is also bounded by the constraint

NX̨
˛D1

Sn˛ i D 1; 8n: (9)

Solving for unC1 in matrix form, Equation (8) becomes

BTvnC1 D sp: (10)

Matrix BT and vector sp are not explicitly given because they are extremely lengthy in definition
and detract from the clarity of the explanation.

2.5. Velocity at control volume interfaces

The velocity to be used at the interface between CV’s in the saturation conservation (Equation (7))
and global continuity (Equation (8)) equations needs to be determined. On the CV faces, there is
no information about the flow direction as the velocity is discontinuous at the CV boundaries. The
discontinuities occur between (i) CVs within each FE and (ii) between elements when using the
PnC1DG-PnDG element pair.

In order to calculate the velocity across CV’s within a FE, an average velocity at the interface of
CVs i and j is defined as

Qu˛ D
1

2

�
u˛i C u˛j

�
: (11)

From this, the interface velocities at either side of the interface can be obtained from

Qu˛k D �
�1

˛k
Qv˛; k D ¹i; j º: (12)
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These velocities have the same direction and differ only in magnitude, so using them to define
an upwind direction is not ambiguous. If an upwind method for calculating the interface velocity is
applied then,

Qu˛ D Qu˛k; (13)

where k D i if n � u˛ > 0 (CV i outgoing information), and k D j if n � u˛ < 0 (CVi
incoming information).

However, upwind methods yield dissipative solutions; therefore, in order to obtain a high-order
approximation of the velocity at the interface, the saturation at the interface QS˛ is calculated using a
FE representation of the saturation following the upwind direction. Q�˛ can then be calculated using
second-order Taylor series

Q�
˛
D �

˛k
C
�
QS˛ � S˛k

�  @�
˛

@S˛

!
k

C
1

2

�
QS˛ � S˛k

�2
2
64
�
@�
˛

@S˛

�
k
�
�
@�
˛

@S˛

�
l

.S˛k � S˛l/

3
75 ; (14)

where k D i and l D j , if n � u˛ > 0 and, k D j and l D i , if n � u˛ < 0. Therefore, the final
interface velocity (Equation (13)) can be obtained from

Qu˛ D Q��1
˛

�
1

2

�
v˛i C v˛j

�	
; (15)

The interface velocity obtained from Equation (15) is bounded to ensure that its normal compo-
nent Qu˛ � n lies between Qu˛i � n and Qu j̨ � n. The result of this is also bounded between the velocities
v˛i � n and v˛j � n.

In a fully discontinuous formulation with PnC1DG-PnDG element pairs, the interface veloc-
ity (now between neighbour elements) can not be calculated using Equation (15) due the elliptic
nature of the discretised non-symmetric pressure equation, Equation (5). This means that informa-
tion is propagated in all directions across the (discontinuous) domain, and hence, taking the upwind
velocity as commonly performed within an element is not an adequate strategy.

For two neighbouring CV’s i and j with common FE interface (e.g. Figure 1(b) for P2DG-P1DG
element pair), Qu˛ can be calculated by using a volume-weighted harmonic mean. However, the
volume V of the CV and �

˛
act on the velocity in a very similar way. Hence, the velocity at the

interface is expressed as

Qu˛ D
�
Vj�

j̨
u˛i C Vi�

˛i
u j̨

� �
Vi�

˛i
C Vj�

j̨

��1
: (16)

2.6. Weak enforcement of boundary conditions

Suitable boundary conditions for velocity can be applied by the discontinuous formulation earlier
as well as by the upwinding in the continuous formulation. In fact, exactly the same boundary
condition implementations, as used in the discontinuous formulation, can be applied across the
boundaries of the domain by taking information from ‘just outside’ the domain rather than from the
neighbouring elements.

Saturation boundary conditions are relatively straightforward. One typically takes the saturation
from ‘just outside’ the domain (S˛;bc) and the flux becomes .n � u˛/ S˛;bc, if n � u˛ < 0. If the
velocity is also specified (u˛;bc), then this becomes part of the incoming flux .n � u˛;bc/ S˛;bc.

In case of specified pressure for outflow boundaries . n � u˛ > 0 /, the flux is n � u˛S˛ , in which
neither u˛ nor S˛ are specified.

However, for inflow boundaries with specified pressure . n � u˛ < 0 /, the flux is n � u˛;bcS˛;bc, in
which u˛;bc is calculated using

u˛;bc D �
�1

˛;bc
�
˛

u˛; (17)

where �
˛;bc

is calculated using S˛;bc.
It should be noted that this flux condition must be used in both the discretised saturation and

global continuity equations, because the latter is a summation of the former. The specified pressure
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condition becomes a surface flux condition in the force balance equation (Equation (4)), which
effectively relaxes the pressure p to its face value counterpart pbc at the boundaries.

2.7. Solving the linear equations

The global mass balance equation (Equation (10)) and force balance equations (Equation (5)) are
solved by substituting v and solving the system of equations for pressure. At time level n C 1,
Equations (5) and (10) can be rewritten as´

MvnC1 D CpnC1 C snC1u

BTvnC1 D snC1p ;

respectively. Application of a discontinuous FEM for v leads to a block-diagonal M matrix that can
be readily inverted, each block being local to an element. Multiplying Equation (5) by BTM�1 and
summing up with Equation (10), vnC1 vanishes and the pressure equation is obtained

BTM�1CpnC1 D snC1p � BTM�1snC1u : (18)

Equation (18) is solved for pressure and then the velocity is obtained via Equation (5). The computa-
tionally demanding effort to solve the pressure matrix equation arising from the fully discontinuous
FEM formulation is achieved using a multigrid-like approach [30]. In this case the ‘fine’ mesh is
the one obtained by the discontinuous system, whereas the ‘coarse’ mesh is obtained by creating a
continuous system (from the discontinuous system) by collapsing the pressure nodes. As in multi-
grid, the coarse mesh solution is used to accelerate the convergence of the fine mesh solution by
calculating the error of the current approximation.

3. MODEL SET-UP

The numerical model is evaluated using four two-phase flow test cases (Sections 4.1–4.4). The
modified Brooks–Corey model [31, 32]

krw .Sw/ D k
ı
rw



Sw � Swirr

1 � Swirr � Snwr

�nw
; (19)

krnw .Sw/ D k
ı
rnw



Snw � Snwr

1 � Swirr � Snwr

�nnw
; (20)

where subscripts w and nw indicate wetting and non-wetting phase. kırw and kırnw are end-point
relative permeability to wetting and non-weting phases, Sw and Snw are the wetting and non-wetting
phase volume fractions, respectively. The exponents nw and nnw are both set to 2 for all test cases.

The length of all computational domains is 1 non-dimensional length unit. Computational
domain height, boundary conditions, exponents for the wetting nw and non-wetting nnw phases
in the Brooks–Corey model, along with the irreducible wetting phase saturation Swirr , residual
non-wetting phase saturation Snwr and mobility M 0 for each test case are shown in Table I.

In all test cases, the domain is initially saturated with the non-wetting phase at .1 � Swirr/: The
wetting phase is then injected through the left boundary, displacing the non-wetting phase towards
the opposite boundary. The wetting phase is injected at a uniform, constant velocity (uin) from
the left boundary for test cases 4.1 and 4.2. In test case 4.2, the inlet velocity is weighted by the

Table I. Model set-up for test cases 4.1–4.4.

M 0 � K1 K2 K3 Swirr Snwr uin 
p Height

4.1 10 0.2 1.0 N/A N/A 0.2 0.3 0.2 N/A N/A
4.2 10 0.4 1.0 2.5 N/A 0.1 0.2 1.0 N/A 1.0
4.3 10 0.5 1.0 102 N/A 0.0 0.0 N/A 1.0 0.1
4.4 4 0.2 1.0 2.0 10 0.2 0.2 N/A 1.0 0.1

© 2016 The Authors International Journal for Numerical Methods
in Fluids Published by John Wiley & Sons Ltd

Int. J. Numer. Meth. Fluids 2017; 83:431–445
DOI: 10.1002/fld



438 J. L. M. A. GOMES ET AL.

Table II. Summary of the test cases performed in Section 4.

Dimensionality
Test case Element pairs and mesh Main features

4.1 (Buckley– P1DG-P1, 2D and 3D Assessment of model
Leverett) P1DG-P2 and (structured/ accuracy against analytic

P2DG-P1DG unstructured) solutions.
4.2 (Immiscible P1DG-P2 and 2D Qualitative analysis of the
displacement) P2DG-P1DG (coarse and fine) model against lab-experiments.
4.3 (Permeability P1DG-P2 and 2D Numerical dispersion in
constrast and aspect ratio) P2DG-P1DG (coarse and fine) high-permeability contrast.
4.4 (Channel model) P1DG-P1DG 3D Application of the method

and P2DG-P1DG to a realistic geometry.

2D, two-dimensional; 3D, three-dimensional.

Figure 2. Wetting phase volume fraction for the Buckley–Leverett test case using the P1DG-P2 element pair
in two-dimensional (2D) (a) and three-dimensional (3D) (b).

permeability. For test cases 4.3 and 4.4, the flow is driven by a pressure difference (
p) between
the inflow (left) and outflow (right) boundaries of the computational domain. The pressure level at
the outflow boundary is set to 0 for all test cases.

For the test cases considered here, porosity � is assumed uniform and, for 4.1 K is also uniform.
However, for test cases 4.2–4.4, K is non-uniform and regions of constant K are used (subscript
denotes region identities – Figures 5 and 8). For all cases, K is assumed isotropic.

In Section 4, four sets of numerical simulations are performed using the formulation introduced
in Section 2. The main aims of these simulations (Table II) are to (i) assess numerical convergence
and accuracy; (ii) validate the model against analytic (quantitative) and lab-experiments (qualitative)
solutions; (iii) numerically investigate the performance of P1DG-P2 and P2DG-P1DG element pairs
in multi-phase flows behaviour in highly heterogeneous media (i.e. large permeability gradient) and
(iv) finally, apply it to a realistic, three-dimensional (3D), high-aspect ratio geometry.

4. RESULTS

4.1. The Buckley–Leverett test case

The Buckley–Leverett problem (non-wetting phase displaced by a wetting phase [33]) is simulated
here. Despite the one-dimensional nature of the problem, 2D and 3D simulations are performed to
evaluate the multi-dimensional capabilities of the model (Figure 2). The P1DG-P1, P1DG-P2 and
P2DG-P1DG element pairs are used for these simulations.

Figures 3(a)–(c) show phase volume fraction profiles of the wetting phase for four meshes in 2D
at non-dimensional time t D 0:2. All meshes are structured and have four elements perpendicular
to the flow and 60, 120, 240 or 480 elements parallel to the flow (Figure 2(a). The geometry centre-
line is used to plot these profiles. All element pairs satisfactorily capture the discontinuity in the
phase volume fraction, and as the number of elements is increased, the error is reduced. Figure 3(d)
shows results obtained for a Buckley–Leverett test case in 3D. A 1207-element fully unstructured
mesh is used for these simulations. All the element pairs are again capable of accurately capturing
the discontinuity in the phase volume fraction.
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Figure 3. Wetting phase volume fraction along the geometry centre-line at non-dimensional time t D 0:2
for the Buckley–Leverett test case. Two-dimensional (2D) results with the P1DG-P1, P1DG-P2 and P2DG-
P1DG element pairs are shown in (a), (b) and (c), respectively. Three-dimensional (3D) results for an
unstructured mesh are shown in (d). The one-dimensional (1D) analytic solution is shown for comparison in

all plots.

Figure 4(a) shows convergence rates for the results presented in Figure 3(a)–(c). The L2 error
norm of the wetting phase volume fraction is used here. Because of the discontinuity in the solution
variable, a first-order convergence rate is achieved even when the high-order element pair is used
(Figure 3(b). This is because high-order methods switch to first-order upwinding at the discontinuity.
Figure 4(b) shows the convergence rate of the same high-order element pair simulation (Figure 3(b)
at non-dimensional time t D 0:3. At this time level, the phase volume fraction field is smooth
because the discontinuity has been advected out of the computational domain, and for this reason, a
second-order convergence rate is achieved.

4.2. Immiscible displacement in heterogeneous porous media

This test case is designed to demonstrate the numerical robustness of the method for modelling
heterogeneous porous media and it is based on the physical experiment presented by Dawe and
Grattoni [34]. As shown in Figure 5, the permeability field is non-uniform.

Two sets of simulations are performed using coarse (402 elements) and fine (3714 elements)
meshes; in the first set, the P1DG-P2 element pair is used, while in the second one, the P2DG-P1DG
element pair is used. The time step sizes for the coarse and fine mesh simulations are 5 � 10�3 and
10�3 non-dimensional time units, respectively.

Figure 6 shows the wetting phase volume fraction maps at time t D 0:16 for all four simulations.
Results for the P1DG-P2 element pair set of simulations is shown in the top row. Results for the
P2DG-P1DG element pair set of simulations is shown in the bottom row.

A physical experiment with similar set-up was performed by Dawe and Grattoni [34] to inves-
tigate miscible and immiscible displacement in heterogeneous permeability and wettability cases.
For immiscible displacement, the wetting phase was uniformly injected at rate of � 1ml/min in a
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Figure 4. Error metrics versus number of elements for the Buckley–Leverett test case for element pairs
P1DG-P1, P1DG-P2 and P2DG-P1DG in two-dimensional (2D).

Figure 5. Schematic of the computational domain along with the material properties and boundary
conditions for the heterogeneous permeability test case. Darker areas (K1) represent regions with

high permeability.

Figure 6. Wetting phase volume fraction maps at time t D 0:16 for the heterogeneous permeability test
case. Top row: P1DG-P2 elements. Bottom row: P2DG-P1DG elements. Left column: coarse mesh. Right

column: fine mesh. The meshes used for these simulations are also shown here.
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Figure 7. Wetting phase volume fraction map obtained from the experiment performed by Dawe and Grattoni
(extracted from [34]). Red contour indicates the injected fluid breakthrough. Geometry and permeability

distribution used in this experiment is the same as shown in Figure 5.

Figure 8. Schematic of the computational domain along with the permeability map for the high-permeability
wedge-shaped region test case (a). Snapshots of the wetting phase volume fraction field for a fine mesh
P1DG-P2 simulation (top), coarse mesh P1DG-P2 simulation (middle) and coarse mesh P2DG-P1DG sim-
ulation (bottom) at non-dimensional times t D 0:011 (b) and t D 0:0014 (c). The meshes used for these

simulations are also shown in (b) and (c).

domain of 20 cm�10 cm�0.6 cm. Glass ballotini beads produced porosity of 0.4. The permeability
ratio was 2.5.

Snapshots in Figure 6 show the wetting phase flood ‘fingering’ across the four region intersection,
demonstrating the preferential flow through high-permeability regions. This is in good qualitative
agreement with the experimental results (Figure 7, taken from Dawe and Grattoni [34]).

4.3. High-permeability high-aspect ratio region

Fractures and cracks in porous media are ubiquitous; however, they are not easy to model because of
their high-aspect ratio and small size compared with the reservoir domain. Nonetheless, cracks may
have a dramatic impact in the overall behaviour of the flow as they can channelise the flow through
them. Usually, they are characterised by a thin tip and a high permeability. A simplified 2D wedge-
shaped high-permeability region embedded in a rectangular low-permeability domain is considered
here. The permeability map is shown in Figure 8. The wedge aspect ratio is 1=30, and its maximum
height is 0.025.
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Figure 9. Schematic of the computational domain along with the permeability map and mesh used for the
three-dimensional (3D) fluvial channel case (top). The most permeable channels (K3) are shown in blue,
the least permeable channels (K1) are shown in red and channels with permeability K2 are shown in green.
Wetting phase volume fraction maps at two time levels (left and right). P1DG-P1 element pair results are

shown in the middle row. P2DG-P1DG element pair results are shown in the bottom row.

Three numerical simulations are performed in total. Two use the P1DG-P2 element pair, and one
uses the P2DG-P1DG element pair. P1DG-P2 element pair simulations are performed using a coarse
(672 elements) and a fine (56 902 elements) mesh. The coarse mesh is used for the P2DG-P1DG
element pair simulation.

Figure 8 shows wetting phase volume fraction maps at non-dimensional times t D 0:011 and
0.014. The P1DG-P2-based solutions disperse the wetting phase into the low-permeability matrix.
This is more pronounced for the coarse mesh simulation. It can be seen how the front of the wetting
phase is considerably delayed compared with the other two simulations. On the other hand, the
P2DG-P1DG solution does not disperse the wetting phase into the matrix and even a very coarse
mesh is sufficient to accurately capture the flow.

4.4. Three-dimensional fluvial channel model

The method is finally applied to a subsurface example of high-permeability fluvial sandstone chan-
nels embedded in a low permeability mudstone background. Such features are often observed
in aquifers and petroleum reservoirs. Because of the importance of these channels to the flow
behaviour, their correct representation and resolution is key to obtain reliable productivity solutions.
An extensive review on how challenging this is for conventional simulators can be found in [27]
and is not discussed here. This problem is chosen precisely because it cannot be easily solved using
traditional methods. In this model, three different sets of highly permeable channels are considered.
The mesh and permeability map for these simulations are shown in Figure 9 (top). The thin chan-
nels have a permeability of K3, the medium size channels K2 and the wide channels K1. It is worth
noting that K3 D 5K2 D 10K1 (Table I).

Two numerical simulations are performed using an 8000-element fully unstructured mesh. Wet-
ting phase volume fraction maps at two time levels are shown in Figure 9. Results for the
P1DG-P1DG element pair are shown in the middle, while results for the P2DG-P1DG element
pair are shown in the bottom row. Results are in reasonable agreement. It is worth noting that the
P1DG-P1 element pair (closest to traditional CVFEM formulation) is numerically more dispersive
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(see Section 4.3 or [28]). Nevertheless, these results demonstrate the potential of the methods
presented here to simulate real-world geometries.

5. CONCLUSIONS

A novel CVFEM formulation based on PnDG-Pm(DG) element pairs with nth-order representation
for velocity andmth-order for pressure has been presented. The main advantages of this formulation
over existing ones is that arbitrarily high-order polynomial representation for pressure and velocity
can be used and it is high-order accurate in space and time. In PnDG�PnC1 element pairs, velocity
is discontinuously defined by polynomials of order n whereas pressure is continuously represented
by polynomials of order n C 1 with CVs spanning various neighbours elements, as exemplified
by Figure 1(a). However, in the novel PnC1DG-PnDG element pair, introduced in this paper, both
pressure and velocity have discontinuous representation with polynomials of order n and n C 1,
respectively. In this family of element pairs, CVs do not span elements (Figure 1(b), which resolves a
long-standing problem associated with the use of traditional CVFEM formulations in heterogeneous
porous media flows.

The new formulation was evaluated using the Buckley–Leverett benchmark and first-order con-
vergence rates were achieved for solutions with discontinuities, which are not common in the
literature [35, 36]. Second-order convergence rates were achieved for solutions without a disconti-
nuity. More numerical simulations were performed to demonstrate the capabilities of the methods
presented under heterogeneous and high-aspect ratio computational domains. It was shown that the
method is able to successfully resolve multi-phase flows under those circumstances. Furthermore,
the PnC1DG-PnDG element pair was shown to completely remove numerical dispersion induced by
heterogeneous permeabilities.

The formulation presented here was implemented in the open-source software framework
Fluidity for multi-phase flows (IC-Ferst) and it has been extended to include/model multi-
component/interface-capturing flows [29, 37, 38], segregation in granular flows [39] and oil
reservoir flows [27, 40, 41].
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