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Abstract

The paper is concerned with the quantitative characterisation of the effective coef-

ficient of thermal expansion for a particulate composite containing spherical inclusions

surrounded by an interphase zone, whose properties are graded in the radial direction.

A thermo-elastic problem of uniform heating is studied for a single hollow spherical in-

clusion embedded in a finite matrix assuming power-law variation of the thermo-elastic
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properties. An exact solution of the problem is derived using hypergeometric functions.

The effective coefficient of thermal expansion is determined in closed form for compos-

ites with graded interphase zone around hollow and solid inclusions, as well as for the

case of void in a graded matrix. Numerical results highlighting the effect of the inter-

phase properties on the coefficient of thermal expansion for different volume fractions

of inclusions are presented and discussed.

Keywords: Elasticity; Particle reinforced composites; Thermal properties; Spherical inclu-

sions.

1 Introduction

Properties of particulate composite materials are greatly affected by the degree of adhesion

at the interface between inclusions and the matrix, as is often evidenced by experimental ob-

servations. The mismatch of properties between the composite’s phases may lead to creation

of microcracks, impurities, local porosities and stress concentrations around inclusions.

To describe the effect of these phenomena on composite’s properties, a number of different

micromechanical models have been proposed in the literature, with some authors introducing

an interphase zone between inclusions and the matrix, with properties that differ from those

of both main phases.

For spherical inclusions and all phases being homogeneous isotropic, experimental results

showed, in particular for polymeric materials and concrete, that properties of the interphase

zone are not uniform but vary radially outward from the centre of the inclusion (i.e. Holliday

and Robinson, 1973; Sideridis and Papanicolau, 1988; Lutz et al, 1997). A number of

researchers adopted this model and tried to predict the mechanical properties of particulate

composites, assuming a specific profile for the properties of the interphase zone and employing

various methods.

In 1991, Hashin proposed a three-phase sphere model (Hashin, 1991) which assumes a thin

interphase zone surrounding each inclusion, with uniform elastic properties that are different
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from the properties of both matrix and inclusion. He proposed replacement technique to

calculate the properties depending on the volume fraction of inclusions. Several authors

have extended this method to the graded interphase zone; this was done by subdividing

the interphase zone into a number of concentric homogeneous layers, each having different

properties, and using them to simulate a specific profile of the graded interphase (n-layered

sphere model) (Herve, 2002; Lombardo, 2005; Gusev, 2014).

A different methodology was proposed by Shen and Li (2003, 2005). The authors adopted

an effective interphase model (EIM) and a uniform replacement model (URM) to study the

effect of an homogeneous interphase with elastic properties that vary in radial direction.

The basic idea of this approach is to replace the inclusion with its surrounding multi-layered

interphase with a homogeneous inclusion and to increase the thickness of the interphase

in an incremental, differential manner with homogenisation at each step. Sevostianov and

Kachanov (2007) utilized the Shen and Li’s methodology to study the effect of interphase

layers on the overall elastic and conductive properties of matrix composite and introduced

modifications to the previous methodology to better describe composites with nanoinclusions.

In 1996, Lutz and Zimmerman proposed to model the interphase zone around an inclusion

as a matrix material with properties that vary in the radial direction according to the power

law and asymptotically approach the value of the homogeneous matrix at infinity (Lutz and

Zimmerman, 1996). Later, Zimmerman and Lutz (1999), studied thermo-mechanical prob-

lems in an uniformly-heated functionally-graded cylinder. They were the first to show that

thermo-mechanical-problems involving radially inhomogeneous materials could be solved us-

ing hypergeometric functions.

Adopting Lutz and Zimmerman’s interphase model, Sburlati and Cianci (2015) deter-

mined the bulk modulus of particulate composites with solid and hollow spherical inclu-

sions. A closed-form solution was obtained using hypergeometric functions, and an explicit

expression for the effective bulk modulus was obtained following (Christensen, 2005). A

detailed parametric investigation of this expression for non-dilute inclusions was presented

in (Sburlati and Monetto, 2016).
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In the present paper, we study the effect of size and properties of the interphase zone on

the coefficient of thermal expansion (CTE. CTE plays a critical role in design of composite

materials for extreme thermal environments (Sevostianov, 2011). The paper approaches the

problem of determining CTE along the lines developed in the previous work by the authors

(Sburlati and Cianci, 2015). However, in order to explore the influence of the size of the

interphase zone, we consider the graded interphase zone of finite size, with thermo-elastic

properties that vary according to the power law and match properties of the matrix at its

interface with the matrix, while remaining distinct from the properties of the inclusion at

its interface with the inclusion. In the last aspect, the graded interphase model used in

the present paper differs from the graded interlayers investigated by the authors previously

(Kashtalyan et al, 2009; Sburlati and Kashtalyan, 2016), the properties of which exactly

match those of adjacent layers.

To this end, a single composite sphere of a particulate composite with hollow spherical

inclusions is considered. The exact analytical solution to the thermo-elasticity problem of

uniform heating is derived using hypergeometric function theory (Erdelyi et al, 1953). The

exact CTE expressions are obtained for solid and hollow inclusions in terms of the interphase

zone properties and inclusion volume fraction following (Christensen, 2005).

The obtained solution can be also used to describe voids with imperfect interfaces in

porous materials (Hatta et al, 2010), two-phase composites with graded inclusions (Lom-

bardo, 2005) and thin-walled hollow inclusions with damages in their walls, i.e. syntactic

foams (Tagliavia et al, 2010).

When the properties at the interface with the inclusion are taken equal to the properties

of the matrix, the exact expression for the CTE obtained in the present paper approaches

the CTE expression obtained by Levin (1967) for a composite with two homogeneous phases.

Numerical results for solid inclusions, hollow inclusions and voids, at a range of phase

volume fractions, are presented, and the effects of size and properties of the interphase zone

on the CTE are established and discussed.

It is important to emphasise that recent interest to such models is triggered not only
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by desire to predict the effective properties of particulate composites more accurately, but

also by the drive to improve performance of nanocomposites, in which thin inhomogeneous

coatings around nanoparticles can be used to increase thermo-mechanical properties of the

nanocomposites. It was shown that for nanocomposites thin coatings at the interfaces be-

tween constituents of a composite material can make a substantial difference to their func-

tional characteristics and reliability (Sevostianov and Kachanov, 2006; Zappalorto et al,

2011; Anisimova et al, 2016).

2 Problem formulation

Figure 1 shows a single hollow composite sphere embedded in a finite matrix, in according to

decribe the composite spheres model for a nondilute elastic suspension of spherical particles

(Hashin, 1962; Christensen, 2005; Nemat-Nasser, 1993). Let the outer radius of the compos-

ite sphere be R, and the inner and outer radii of the inclusion be a and b. In this way, a solid

inclusion and a void can be viewed as particular cases of a hollow inclusion, when a = 0 and

a = b respectively. The solution for a void in a matrix may be also adopted to describe a

two-phase composite sphere with a functionally graded hollow spherical inclusion.

The inclusion and the matrix are assumed to be homogeneous isotropic, and referred to

a spherical co-ordinate system (0; r, θ, φ). The elastic properties of the inclusion are denoted

as λi, µi, while the coefficient of thermal expansion (CTE) as αi. Corresponding properties

of the matrix are denoted λm, µm and αm.

In order to investigate the interphase zone between the inclusion and the matrix, let us

introduce a layer of radius c around the spherical inclusion. We assume that the elastic and

thermal properties of this layer vary in the radial direction, exactly matching properties of

the matrix, in which the inclusion is embedded, at the interface r = c. At the same time, the

interface r = b between the inclusion and the interphase zone remains distinct and clearly

defined. The elastic and thermal properties of the interphase zone at r = b are denoted as

λip, µip and αip. The elastic and thermal properties of the interphase zone at its interface
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with the matrix are the same as those of the matrix.

Assuming power-law variation in the radial direction, the elastic and thermal properties

of the graded interphase zone are described as follows

λ(r) = λ1 + λ2

(

b

r

)β

, µ(r) = µ1 + µ2

(

b

r

)β

, α(r) = α1 + α2

(

b

r

)β

, (2.1)

where

λ1 =
bβλip − cβλm

bβ − cβ
, λ2 =

cβ (λm − λip)

bβ − cβ
,

µ1 =
bβµip − cβµm

bβ − cβ
, µ2 =

cβ (µm − µip)

bβ − cβ
,

α1 =
bβαip − cβαm

bβ − cβ
, α2 =

cβ (αm − αip)

bβ − cβ
,

(2.2)

and

λip = λ (b) , µip = µ (b) , αip = α (b) ,

λm = λ (c) , µm = µ (c) , αm = α (c) .

(2.3)

The inhomogeneity parameter β control the profile of the power law associated with the

graded interphase zone; we assume that it is the same for elastic and for thermal properties

since we suppose that the same physical inhomogeneity will control both the thermal and

the mechanical behaviour.

When the interphase zone is absent, we have: λ1 = λm, µ1 = µm, α1 = αm and λ2 =

µ2 = α2 = 0.

We remark that, at the external radius r = c of the finite interphase region, we exactly

match the mechanical and thermal properties of the sphere with the mechanical and thermal

properties of the matrix. The radius R > c, which disappears in the final results, plays

essentially only an auxiliary role limiting the single composite sphere where we are working.

In order to obtain the thermoelasticity solution needed for determination of the CTE, we

study a thermoelastic problem of the composite sphere subjected to a uniform temperature

T . We assume that the inner r = a and the outer r = R boundaries are stress free

σ
(i)
r (a) = 0, σ

(m)
r (R) = 0. (2.4)
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and that perfect bonding exists at all interfaces, therefore continuity conditions for the

radial stress and displacement are satisfied at the interface between the interphase zone and

inclusion r = b and the interphase zone and matrix r = c

σ
(i)
r (b) = σ

(ip)
r (b), u(i)(b) = u(ip)(b),

σ
(ip)
r (c) = σ

(m)
r (c), u(ip)(c) = u(m)(c).

(2.5)

3 Governing equations

In this section, we derive the exact solution to the thermoelasticity problem of the composite

sphere (Figure 1) undergoing an isothermal radially symmetric deformation due to a uniform

temperature T.

Since the deformation is radially symmetric, the strain-displacement relations are

ǫr(r) =
du(r)

dr
, ǫθ(r) = ǫφ(r) =

u(r)

r
, (3.1)

and the equilibrium equation have the form

dσr(r)

dr
+

2 σr(r) − σθ(r) − σφ(r)

r
= 0. (3.2)

The Duhamel-Neumann constitutive relations for radially inhomogeneous material un-

dergoing radially symmetric deformation are given by (Love, 1944) as

σr(r) = 2µ (r) ǫr(r) + λ (r) (ǫr(r) + ǫθ(r) + ǫφ(r)) − (3λ (r) + 2µ (r))α (r) (T − T0) ,

σθ(r) = σφ(r) = 2µ (r) ǫθ(r) + λ (r) (ǫr(r) + ǫθ(r) + ǫφ(r)) − (3λ (r) + 2µ(r))α (r) (T − T0) ,

(3.3)

where T0 is the reference uniform temperature at which the solid is stress free when all

external forces are zero.

Given that Lamé moduli and the thermal expansion coefficients were defined as (2.1) and

(2.2), the thermo-elastic equation in terms of displacements takes the form

(

(r

b

)β

− L

)

d2u

dr2
+

(

2
(r

b

)β

+ (β − 2)L

)

1

r

du

dr
−

(

2
(r

b

)β

−NL

)

u

r2
+

+

(

(

b

r

)β

g1 + g2

)

L

r
(T − T0) = 0,

(3.4)
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where

L = −
λ2 + 2µ2

λ1 + 2µ1
, N =

2 (λ2 (β + 1) + 2µ2)

λ2 + 2µ2
,

g1 = −
2 (3λ2 + 2µ2)α2 β

λ2 + 2µ2
, g2 = −

(3λ2 + 2µ2)α1 β

λ2 + 2µ2
−

(3λ1 + 2µ1)α2 β

λ2 + 2µ2
.

(3.5)

When L = 0, the equation (3.4) reduces to that for a homogeneous material.

4 Solution method

The solution of the equation (3.4) is sought in the following form (Sburlati et al, 2015; Erdelyi

et al, 1953)

u (r) =

(

A1

r2
Θ1(r) +A2 rΘ2 (r) +

(

g3 −
g4
rβ

)

r

)

(T − T0) (4.1)

Here A1 and A2 are two unknown constants, and

g3 =
((λ2 + 2µ2) (3λ2 + 2µ2)α1 + 4 (λ1µ2 − λ2µ1)α2)β

(3λ2 + 2µ2) ((λ2 + 2µ2)β − (3λ2 + 4µ2))
+

−
(3λ2 + 4µ2) (3λ2 + 2µ2)α1 + 2 (µ2 (3λ1 − 2µ1)− 6λ2µ1)α2

(3λ2 + 2µ2) ((λ2 + 2µ2)β − (3λ2 + 4µ2))
,

g4 =
(3λ2 + 2µ2)α2b

β

(λ2 + 2µ2)β − (3λ2 + 4µ2)
.

(4.2)

The hypergeometric functions Θ1(r) and Θ2(r) are written as (Abramovitz, 1965)

Θ1(r) = 2F1

(

1

2
−G+

3

2β
,
1

2
+G+

3

2β
; 1 +

3

β
;
bβ

rβ
L

)

,

Θ2(r) = 2F1

(

1

2
+G−

3

2β
,
1

2
−G−

3

2β
; 1−

3

β
;
bβ

rβ
L

)

,

(4.3)

where

G =
1

2

√

1−
2

β
+

4N + 1

β2
. (4.4)
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From equations (3.3), (2.1) and (4.1), the stresses are

σr (r)

T − T0
=

((

λ1 + 2µ1 + (λ2 + 2µ2) b
βr−β

)

q1b
ββr−(3+β)Θ3 (r) − 4

(

µ1 + µ2b
βr−β

)

r−3Θ1 (r)
)

A1+

+
((

3λ1 + 2µ1 + (3λ2 + 2µ2) b
βr−β

)

Θ2 (r) +
(

λ1 + 2µ1 + (λ2 + 2µ2) b
βr−β

)

q2b
ββr−βΘ4(r)

)

A2+

+
(

3λ1 + 2µ1 + (3λ2 + 2µ2) b
βr−β

)

g3 −
(

3λ1 + 2µ1 + (3λ2 + 2µ2) b
βr−β

) (

α1 + α2b
βr−β

)

+

+
((

λ1 + 2µ1 + (λ2 + 2µ2) b
βr−β

)

β − (3λ1 + 2µ1)− (3λ2 + 2µ2) b
βr−β

)

r−βg4,

σθ (r)

T − T0
=

((

λ1 + λ2b
βr−β

)

q1b
ββr−(3+β)Θ3 (r) + 2

(

µ1 + µ2b
βr−β

)

r−3Θ1 (r)
)

A1+

+
((

3λ1 + 2µ1 + (3λ2 + 2µ2) b
βr−β

)

Θ2 (r) +
(

λ1 + λ2b
βr−β

)

q2b
ββr−βΘ4(r)

)

A2+

+
(

3λ1 + 2µ1 + (3λ2 + 2µ2) b
βr−β

)

g3 −
(

3λ1 + 2µ1 + (3λ2 + 2µ2) b
βr−β

) (

α1 + α2b
βr−β

)

+

+
((

λ1 + λ2b
βr−β

)

β − (3λ1 + 2µ1)− (3λ2 + 2µ2) b
βr−β

)

r−βg4,

(4.5)

where

q1 =
4µ2

(λ1 + 2µ1) (β + 3)
, q2 = −

3λ2 + 2µ2

(λ1 + 2µ1) (β − 3)
, (4.6)

for β 6= 3 and

Θ3(r) = 2F1

(

3

2
−G+

3

2 β
,
3

2
+G+

3

2 β
; 2 +

3

β
;
bβ

rβ
L

)

,

Θ4(r) = 2F1

(

3

2
−G−

3

2 β
,
3

2
+G−

3

2 β
; 2−

3

β
;
bβ

rβ
L

)

.

(4.7)

We recall that

d

dr
Θ1 (r) =

q1 b
ββΘ3(r)

rβ+1
,

d

dr
Θ2 (r) =

q2 b
ββΘ4(r)

rβ+1
. (4.8)

The analytical solution (4.1) and (4.5) is applicable to the graded interphase zone of

Figure 1.

For homogeneous material, the Navier equation (3.4) takes the usual form

d2u(r)

dr2
+

2

r

du(r)

dr
−

2 u(r)

r2
= 0. (4.9)

9



For the inclusion, the solution of this equation is written as

u(i) (r) =

(

B1

r2
+B2r

)

(T − T0) ,

σ
(i)
r (r) =

(

−
4µiB1

r3
+ (3λi + 2µi)B2 − (3λi + 2µi)αi

)

(T − T0) ,

σ
(i)
θ (r) =

(

2µiB1

r3
+ (3λi + 2µi)B2 − (3λi + 2µi)αi

)

(T − T0) .

(4.10)

Similarly, for the matrix it is written as

u(m) (r) =

(

C1

r2
+ C2r

)

(T − T0) ,

σ
(m)
r (r) =

(

−
4µmC1

r3
+ (3λm + 2µm)C2 − (3λm + 2µm)αm

)

(T − T0) ,

σ
(m)
θ (r) =

(

2µmC1

r3
+ (3λm + 2µm)C2 − (3λm + 2µm)αm

)

(T − T0) .

(4.11)

When the interphase zone is absent, the solutions (4.1) and (4.5) reduce to that for the

homogeneous material. Actually, in this case we have q1 = q2 = 0, g4 = 0 and L = 0, which

in turn implies Θi(r) = 1 for i = 1, 2, 3, 4.

To determine the six unknown constants A1, A2, B1, B2, C1 and C2 in equations (4.1),

(4.5), (4.10) and (4.11), we employ the boundary and interface conditions (2.4) and (2.5).

The constants are found explicitly as

B1 =
(3λi + 2µi) a

3
(

Θ1 (b)A1 + b3Θ2 (b)A2

)

4 b3µi + (3λi + 2µi) a3
+

−
(3λi + 2µi) a

3b3
(

b−βg4 − g3
)

4 b3µi + (3λi ++2µi) a3
−

(3λi + 2µi)αia
3b3

4 b3µi + (3λi + 2µi) a3
,

B2 =
4µi

(

Θ1 (b)A1 + b3Θ2 (b)A2

)

4 b3µi + (3λi + 2µi) a3
+

4µib
3
(

g3 − b−βg4
)

4 b3µi + (3λi + 2µi) a3
+

+
(3λi + 2µi)αia

3

4 b3µi + (3λi + 2µi) a3
,

(4.12)
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C1 =
(3λm + 2µm)R3

(

Θ1 (c)A1 +Θ2 (c) c
3A2

)

R3(3λm + 2 1µm) + 4 c3µm

+

−
(3λm + 2µm)R3c3

(

c−βg4 − g3
)

R3(3λm + 2 1µm) + 4 c3µm

−
(3λm + 2µm)R3c3αm

R3(3λm + 2 1µm) + 4 c3µm

,

C2 =
4µm

(

Θ1 (c)A1 +Θ2 (c) c
3A2

)

(3λm + 2µm)R3 + 4 c3µm

−
4 c3µm

(

c−βg4 − g3
)

(3λm + 2µm)R3 + 4 c3µm

+

+
R3αm (3λm + 2µm)

(3λm + 2µm)R3 + 4 c3µm

.

(4.13)

The remaining two constants can be presented as

A1 =
MP12 −QP22

P11P22 − P12P21
, A2 = −

MP11 −QP21

P11P22 − P12P21
, (4.14)

where the quantities M,Q,P11, P12, P21, P22 are explicitly given in Appendix (A).

5 Thermal expansion coefficient (CTE) expression

To obtain the effective thermal expansion coefficient αeff for the composite sphere of Figure

1 we employ the following equation (Christensen, 2005)

αeff =
V − V0

3V (T − T0)
, (5.1)

where V −V0 is the change of the total volume of the composite sphere due to the temperature

variation from (T0 − T ). Since

V − V0 = 4πR2u(R), (5.2)

we obtain

αeff =
u(R)

R(T − T0)
. (5.3)

Substituting u(R) = u(m)(R) from equation (4.11), we determine the effective CTE as

αeff =
C1

R3
+ C2, (5.4)

with constants C1 and C2 given by (4.13) and (4.14).
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Introducing auxiliary quantities

η =
b3

R3
, A =

a

b
, and Γ =

c

b
, (5.5)

the effective coefficient of thermal expansion can be written in the following compact form

αeff (η) =
(

(3λm + 2µm)αm + 3 (λm + 2µm)Θ1 (c) Ā1 (η) η
)

F (η) +

+Γ3
(

3 (λm + 2µm)Θ2 (c) Ā2 (η) + k̄4
)

F (η) η.

(5.6)

Here, function F (η) is

F (η) =
1

4 Γ3 η µm + 3λm + 2µm

, (5.7)

and the coefficient

k̄4 = − (3λm + 2µm)αm − (3λm + 6µm)

(

j̄4
Γβ

− ḡ3

)

, (5.8)

where

j̄4 =
(αip − αm) (3λip − 3λm + 2µip − 2µm) Γβ

((λip − λm + 2µip − 2µm) β − 3λip + 3λm − 4µip + 4µm) (Γβ − 1)
(5.9)

ḡ3 =
g31β + g32 + Γβ ( g33β + g34)

(Γβ − 1) g35
, (5.10)
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where

g31 = 4 (λipµm − µipλm)αm + (3λip
2 + 8λipµip + 4µip

2)αip+

+
(

3λm
2 − 2 (3λip + 2µip − 4µm)λm + 4µm

2 − 4 (3λip + 2µip)µm

)

αip,

g32 =
(

6 (3λip + µip − 3µm)λm − 9λm
2 − 8µm

2 + 12 (2λip + µip)µm

)

αip+

+
(

12µipλm + 2 (−3λip + 2µip)µm − 6λipµip − 4µip
2
)

αm+

−
(

9λip
2 + 12λipµip + 4µip

2
)

αip ,

g33 = 4 (λipµm − µipλm)αip −
(

3λip
2 + 8λipµip + 4µip

2
)

αm+

+
(

(6λip + 12µip − 8µm)λm − 3λm
2 − 4µm

2 + 4 (λip + 2µip)µm

)

αm,

g34 =
(

6 (µip + µm)λm + 4µm
2 − 4 (3λip + µip)µm

)

αip+

+
(

9λm
2 − 6 (3λip + 4µip − 2µm)λm + 4µm

2 − 6 (λip + 2µip)µm

)

αm+

+
(

9λip
2 + 18λipµip + 8µip

2
)

αm,

g35 = (λip + 2µip − λm − 2µm)β − 2µip + 2µm.

(5.11)

Furthermore, functions Ā1(η) and Ā2(η) are written using notations (5.5) as

Ā1 (η) = −

(

(m1 + ηm2) p121 − Q̄ p221
)

F (η)−m3 p121 + p222 Q̄

(p121 p211η − p111 p221)F (η) + p111 p222 − p121 p212
,

Ā2 (η) =

((

m2 p111 − p211Q̄
)

η +m1p111
)

F (η)−m3 p111 + p212Q̄

(p121 p211η − p111 p221)F (η) + p111 p222 − p121 p212
,

(5.12)

where quantitiesm1,m2,m3, Q̄, p111, p121, p212, p211andp222 introduced in (5.12) are given

in Appendix (B).

We note that in absence of the interphase zone, equation (5.6) reduces to the CTE

expression for a two-phase composite containing isotropic spherical inclusions surrounded by

an isotropic matrix as

αeff = αm+

+
(αi − αm)

(

A
3 − 1

)

(3Km + 4µm) Ki µi η

((3Km + 4µi)A3Ki + 4 (Km −Ki)µi)µm η + (3 (µi − µm)A3Ki − (3Ki + 4µm)µi)Km

.

(5.13)

Here,Ki andKm, are the bulk moduli for the inclusion and matrix materials, respectively.
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Expression (5.13) is valid for hollow inclusion (0 < A < 1) and solid inclusion (A = 0) as

given by Levin (1968). For the case of void, we have A = 1 and consequently αeff = αm.

6 Numerical results and discussion

In this section, we present and analyse several numerical examples. First, we investigate

the exact thermo-elasticity solution obtained in Section 4 for hollow and solid inclusions,

as well as voids, assuming a ceramic inclusion in a metallic matrix. Next, we analyse in

detail the effect of geometric and physical parameters associated with the interphase zone on

the coefficient of thermal expansion for different wall thicknesses in terms of the volumetric

fraction ratio η.

The single sphere of the particulate composite is assumed to be made of metallic ma-

trix (aluminium) containing ceramic inclusions (alumina), with the following thermo-elastic

properties: λi = 90GPa, µi = 124GPa, αi = 8 10−6
K

−1, λm = 51GPa, µm = 26GPa,

αm = 2 10−5
K

−1. We assume that the interphase zone is softer that the matrix material in

order to simulate, for example, an imperfect interfacial adhesion between the phases or to

model presence of pores or other microstructural defects, such as cracks, around the inclusion

that occur as a consequence of the elastic mismatch between the metallic material of the

matrix and the ceramic material of the inclusion. In accordance with (2.1), we assume the fol-

lowing properties of the interphase zone: λip = 36GPa, µip = 19GPa, αip = 3 10−5
K

−1.

From a geometric point of view, we consider the following cases: a = 0 (solid inclusion),

a/b = 0.8 (hollow inclusion) and a/b = 1 (void) which will be shown in the figures with red,

blue and black lines, respectively. Continuous (solid) lines are used for composite without

the interphase zone, dashed lines for composites with the interphase zone. For the graded

interphase zone, the value of the inhomogeneity parameter is taken as β = 10.

Figures 2a and 2b show the normalised Lamé modulus λ̄(r) = λ(r)/λi and the coefficient

of thermal expansion ᾱ(r) = α(r)/αi as a function of the radial co-ordinate. Numerical

results obtained in the presence of the interphase zone (dashed lines) are compared to the
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two-phase model that is a homogeneous inclusion in a homogeneous matrix (continuous

lines).

Figure 3 shows variation of the normalised radial displacement ūr = ur/((T − T0)αi b)

for two inclusion types: solid inclusions and hollow inclusions, both with and without the

interphase zone. We observe an increase of the normalised radial displacement around the

interface, due to the interphase material being softer than both matrix and inclusion mate-

rials, while in the inclusions a small decrease is observed, due the inclusion material being

stiffer.

The normalised radial stress σ̄r = σr/(3 (T − T0)αiKi) is shown in Fig. 4. We observe

that the soft interphase zone leads to a reduction of radial stress in the inclusion; the reduc-

tion is more significant for the solid inclusion than for the hollow inclusion. In the interphase

zone and in the matrix, this effect is similar for both types of inclusions.

The normalised hoop stress σ̄θ = σθ/(3 (T −T0)αi Ki) is presented in Fig. 5. We observe

that the soft interphase zone increases the stress jump across the interface between the

inclusion and the interphase zone, compared to a two-phase model without the interphase.

A small decrease in stress values is observed in the inclusions.

Figure 6 shows normalised radial displacement u⋆ = ur/((T − T0)αm b) for the case of

voids (a/b = 1). We note that this case is also related to a hollow graded inclusion embedded

in a homogeneous matrix. Figure 7 shows normalised radial and hoop stresses that occur in

the matrix, due to the presence of the graded interphase zone around the void. We observe

that the compressive stress field has developed around the void when a composite is subjected

to the uniform temperature rise (Hatta et al, 2000).

Now, the CTE expression (5.6) is studied numerically as a function of the volume fraction

coefficient η, assuming values for the material properties of the homogeneous inclusion and

matrix as before. The normalised CTE is calculated for solid inclusion (A = 0), hollow

inclusions (A = 0.9, A = 0.98) and void (A = 1), all with and without the interphase zone.

The cases without the interphase zones are obtained from equation (5.13) and the results

are in agreement with those found in the literature (see, i.e. Figure 5 of Gusev, 2014).
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For all cases with the interphase zone (dashed lines), we assume c/b = 1.2. We observe

that the coefficient of thermal expansion increases significantly when the interphase zone is

present, compared to a corresponding case without the interphase zone. This is due to the

high adopted value of the CTE at the interface between the inclusion and the matrix. The

increase becomes more significant as the wall thickness of the inclusion decreases.

7 Conclusions

In this paper, an exact expression for the coefficient of thermal expansion of a particular

composite with spherical inclusions or voids is derived using a three-phase micro-mechanical

model able to take into account the effect of graded interphase zone. The analytical solutions

are obtained in closed form in the framework of the linear elasticity using hypergeometric

functions. Comparative numerical investigations have revealed localised effects due to graded

interphase zone, in terms of the thermo-elastic properties of the phases. This allowed us to

quantify the role played by the wall thickness of the inclusions on the effective CTE.
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Appendix

(A) The explicit form of the quantities M,Q,Pij of section 4 are here written.

M = −
3 (λm + 2µm) (3λm + 2µm)R3g3

R3 (3λm + 2µm) + 4 c3µm

+
3R3αm (3λm + 2µm) (λm + 2µm)

R3 (3λm + 2µm) + 4 c3µm

−

(

4µm (3λm + 2µm) c−β
(

c3 −R3
)

R3 (3λm + 2µm) + 4 c3µm

+
((λm + 2µm)β − 3λm − 2µm)

(

bβc−β − 1
)

bβ − cβ

)

g4,

Q = −

(

(3λip + 2µip + 4µi) (3λi + 2µi) a
3 − 4µi (3λi + 2µi − 3λip − 2µip) b

3
)

g3

(3λi + 2µi) a3 + 4 b3µi

+

+

(

4µi (3λi + 2µi) b
−β
(

a3 − b3
)

(3λi + 2µi) a3 + 4 b3µi

+
((λip + 2µip)β − 3λip − 2µip)

(

cβb−β − 1
)

bβ − cβ

)

g4+

+
3 (3λi + 2µi) a

3αi (λi + 2µi)

(3λi + 2µi) a3 + 4 b3µi

− (3λi + 2µi)αi + (3λip + 2µip)αip , ,

P11 = −
(λip + 2µip) q1βΘ3 (b)

b3
+

+
4
(

(µip − µi) (3λi + 2µi) a
3 + µi (3λi + 2µi + 4µip) b

3
)

Θ1 (b)

((3λi + 2µi) a3 + 4 b3µi) b3
,

P12 = − (λip + 2µip) q2βΘ4 (b)+

−

(

(3λip + 4µi + 2µip) (3λi + 2µi) a
3 − 4µi (3λi − 3λip + 2µi − 2µip) b

3
)

Θ2 (b)

(3λi + 2µi) a3 + 4 b3µi

,

P21 =
12µm (λm + 2µm)Θ1 (c)

R3 (3λm + 2µm) + 4 c3µm

−
(λm + 2µm)

(

bβc−β − 1
)

q1b
ββΘ3 (c)

c3 (bβ − cβ)
,

P22 = −
3 (λm + 2µm) (3λm + 2µm)Θ2 (c)R

3

R3 (3λm + 2µm) + 4 c3µm

−
(λm + 2µm)

(

bβc−β − 1
)

q2b
ββΘ4 (c)

bβ − cβ
.

(7.1)
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(B) The quantities m1,m2,m3, Q̄, p111, p121, p212, p211, p222, introduced in (5.12) of sec-

tion 5, are written as

m1 = − (3λm + 6µm) (3λm + 2µm) ḡ3 + 3αm (3λm + 2µm) (λm + 2µm)+

+4µm (3λm + 2µm)
j̄4
Γβ

,

m2 = −4µm (3λm + 2µm)
j̄4

Γβ−3
, , m3 = (β (λm + 2µm)− 3λm − 2µm)

j̄4
Γβ

,

(7.2)

and

Q̄ =
3 (3λi + 2µi)αiA

3 (λi + 2µi)

A3 (3λi + 2µi) + 4µi

− αi (3λi + 2µi) + αip (3λip + 2µip) +

+

(

4µi (3λi + 2µi) (A− 1)
(

A2 +A+ 1
)

A3 (3λi + 2µi) + 4µi

− β (λip + 2µip) + 3λip + 2µip

)

j̄4+

−

(

(3λip + 4µi + 2µip) (3λi + 2µi)A
3 − 4µi (3λi − 3λip + 2µi − 2µip)

)

ḡ3

A3 (3λi + 2µi) + 4µi

.

(7.3)

and

p111 = − (λip + 2µip) q̄1βΘ3 (b)+

−

(

4 (µi − µip) (3λi + 2µi)A
3 − 4µi (3λi + 2µi + 4µip)

)

Θ1 (b)

A3 (3λi + 2µi) + 4µi

,

p121 = − (λip + 2µip) q̄2βΘ4 (b)+

−

(

(3λip + 4µi + 2µip) (3λi + 2µi)A
3 − 4µi (3λi − 3λip + 2µi − 2µip)

)

Θ2 (b)

A3 (3λi + 2µi) + 4µi

,

p212 = Γ−β−3 (λm + 2µm) q̄1βΘ3 (c) , p211 = 12µm (λm + 2µm)Θ1 (c) ,

p221 = −3 (λm + 2µm) (3λm + 2µm)Θ2 (c) , p222 = Γ−β (λm + 2µm) q̄2βΘ4 (c) .

(7.4)

and q̄1 and q̄2, are

q̄1 =
4 (µip − µm) Γβ

(β + 3) (Γβ (λm + 2µm)− 2µip − λip)
,

q̄2 = −
(3λip + 2µip − 3λm − 2µm) Γβ

(β − 3) (Γβ (λm + 2µm)− 2µip − λip)
.

(7.5)

We remark that Θi(b) and Θi (c) are independent from η.
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Figure 1. Micro-mechanical model of the composite sphere

Figure 2. Thermo-elastic property distribution in the radial direction of the composite

sphere (solid inclusion case)

Figure 3. Normalized radial displacement for solid and hollow inclusions with and without

interphase zone

Figure 4. Normalized radial stress for solid and hollow inclusion with and without inter-

phase zone

Figure 5. Normalized hoop stress for solid and hollow inclusion with and without inter-

phase zone

Figure 6. Normalized radial displacement for a void of radius b with and without inter-

phase zone in matrix

Figure 7. Normalized radial and hoop stress for a void with interphase zone in matrix

Figure 8. Behaviour of the normalized effective bulk modulus with and without interphase

zone for different volumetric fractions
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Figure 1: Micro-mechanical model of the composite sphere

Figure 2: Thermo-elastic property distribution in the radial direction of the composite

sphere (solid inclusion)
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Figure 3: Normalized radial displacement for solid and hollow inclusions with and

without interphase zone

Figure 4: Normalized radial stress for solid and hollow inclusion with and without

interphase zone
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Figure 5: Normalized hoop stress for solid and hollow inclusion with and without

interphase zone

Figure 6: Normalized radial displacement for a void of radius b with and without

interphase zone
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Figure 7: Normalized radial and hoop stress for a void with interphase zone

Figure 8: Behaviour of the normalized CTE with and without interphase zone for

different volumetric fractions
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