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Abstract

There is no established approach for dealing with the active acoustic detection of biological targets in

highly dynamic aquatic environments where intense physical interference means that standard techniques

are unsuitable. This is a particular problem in ecologically important environments with emerging industrial

significance such as marine energy extraction sites. We developed an automatic processing method which

allows effective target detection with high sensitivity throughout variable acoustic conditions. The method is

based on scale-dependent adaptive filtering of data and morphological analysis of short-scale backscatter con-

tributions for the exclusion of intense turbulent features and isolation of biological targets. Echosounder plat-

form deployments around marine energy infrastructure in a tidal channel provide test data which

demonstrate the effectiveness of the proposed approach. Target validation and assessment is carried out by

the analysis of multifrequency characteristics and direct inspection. The results deliver effective, quantitative,

and repeatable assessment of ecological interactions and target distributions with clear implications for envi-

ronmental assessment in high energy sites and promising applications in other contexts.

Target detection in turbulent environments is a challenge

in many applications of hydroacoustic analysis. Beyond the

operational difficulties of collecting data in demanding con-

ditions, there is no established approach for the processing,

analysis, and interpretation of hydroacoustic data at high

turbulence levels. Turbulence in marine environments can

lead to high magnitudes of acoustic backscatter due to the

suspension of sediments (Thorne and Hanes 2002), entrain-

ment of air (Plueddemann et al. 1996; Trevorrow 1998), and

steep gradients in water density (Lavery et al. 2003; Moum

et al. 2003). This can lead to effective operational turbulence

limits for acoustic analysis and data gaps in time or space for

particularly dynamic conditions and sites.

Maintaining consistent functionality of hydroacoustic

instrumentation is a particular problem for the monitoring

requirements of marine energy devices. A particular challenge

is investigating the unknown effects of tidal stream generator

technologies on ecological interactions in high energy sites

(Scott et al. 2014; Benjamins et al. 2015). Effective environ-

mental impact assessment requires continuous high resolu-

tion monitoring and automated data processing around

marine energy installations (Polagye et al. 2014). These instal-

lations are naturally built in the most energetic environments

available for maximum energy yield, although the strong tidal

flows lead to extreme turbulence at a range of scales (Lu et al.

2000; Thomson et al. 2012). The use of standard biological

sampling techniques such as nets and trawls is impractical in

such conditions, and the use of cameras for optical monitor-

ing is impossible most of the time due to the low effective

range. Thus, despite the difficulties, hydroacoustic analysis is

the only practical means of continuous ecological monitoring

around marine energy installations.

Tidal channels are some of the most dynamic and chal-

lenging environments for hydroacoustic work, and have led

to the rise of many recent innovative approaches in data col-

lection and analysis using moving vessels (Jacques 2014;

Melvin and Cochrane 2015), moored boats (Viehman et al.

2014), and bottom-mounted platforms (Jacques 2014; Wiese-

bron 2015; Williamson et al. 2015). Although ship based

echosounder surveys are the general approach in fisheries

research for most applications, the use of stationary plat-

forms can have distinct advantages (Joslin et al. 2014; Wil-

liamson et al. 2015). A major advantage is the ability to

monitor a specific point in space over longer time scales

than could be achieved with the operational limitations of a

vessel in the high tidal flows. The use of a platform mounted

on the seabed also removes problems associated with vessel
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noise and behavioral impacts from the ship during the anal-

ysis and interpretation of hydroacoustic data.

Many types of acoustic instruments are available for plat-

form deployments including: passive acoustic hydrophones,

acoustic cameras, single beam echosounders, multibeam

echosounders, and multifrequency split beam scientific

echosounders. Acoustic cameras offer advantages in resolution

while multibeam echosounders provide greater coverage.

However, the multifrequency scientific echosounder is the

focus here since it is the only technology which can currently

provide calibrated measurements of backscatter over the

entire depth of a typical tidal channel over multiple useful fre-

quencies. These characteristics are essential to classify species

and to understand the full vertical distribution and behavior

of targets in these sites.

The use of hydroacoustics to monitor biological targets

generally relies on established calibration, processing, and

analysis techniques. For the delineation of fish schools in sci-

entific echosounder data, this generally involves using stan-

dard image processing techniques (Barange 1994) and expert

scrutiny to identify and classify backscattering bodies against

background noise and interference from other biological

sources and physical effects (Horne 2000; Reid et al. 2000).

This process is further informed using multifrequency infor-

mation and prior knowledge of the backscattering character-

istics and behavior of the targets of interest to separate fish

from plankton (Kang et al. 2002; Sato et al. 2015) or to iden-

tify specific fish species when possible (Kloser et al. 2002;

Logerwell and Wilson 2004; Korneliussen et al. 2009).

These established approaches rely on applying a mini-

mum backscatter strength threshold on available data from a

particular frequency or some combination of frequencies to

delineate pixels of interest (Simmonds and MacLennan

2005). This simple approach is widely used in the initial

processing of echosounder data as it is functional in the

majority of fisheries applications where the background con-

ditions are acoustically stable. However, in highly dynamic

and turbulent aquatic environments, the background acous-

tic characteristics can be extremely variable (Fig. 1) leading

to the failure of standard processing approaches for target

detection. The fundamental difficulty in reliable target detec-

tion is dealing with turbulent sources of backscatter which

can be of comparable backscatter strength (Melvin and

Cochrane 2015) as the biological targets of interest and over-

lapping in time and space.

Recent work to identify targets in tidal channels has used a

variety of approaches. Viehman and Zydlewski (2014) relied

on manual processing of acoustic camera data employing a

frame-by-frame analysis for fish identification, characteriza-

tion, and behavioral interpretation. Similarly in the

echosounder work of Melvin and Cochrane (2015), the identi-

fication of fish and isolation of turbulence effects were based

on the authors’ experience. In the mobile surveys of Jacques

(2014) and Jacques and Horne (2014), the standard school

detection algorithm used in Echoview (Myriax Software,

v.5.4.91) and based on the work of Barange (1994) was

employed to identify turbulent features as apparent “schools”

that intersect a line three meters from the echosounder trans-

ducers mounted on the ship. Other groups have opted to

exclude the near surface environment altogether, for example,

in the single beam work of Staines et al. (2015) and Viehman

et al. (2014) the upper 10 m of the water column was excluded

due to interference from entrained air. This highlights anoth-

er advantage of collecting data from the near-seabed region, as

measurements are taken below the intense backscatter

observed in the near-surface turbulent layer and so are free

from this short-range interference. However, even with sta-

tionary bottom-mounted platform surveys, backscatter from

the turbulent surface layer can dominate the water column. In

analysis undertaken by Wiesebron (2015) a constant backscat-

ter threshold was applied and analysis constrained to a bot-

tom layer 25 m thick in an area of 55 m total water depth.

Similarly, in the recent work of Viehman and Zydlewski

(2015), the echosounder beam was oriented horizontally and

restricted to a 40 m range giving a maximum height of 10 m

from the seabed at the far limit in 25–30 m deep water. Vieh-

man and Zydlewski (2015) used a single target detection algo-

rithm (Ona and Barange 1999) available in Echoview (Myriax

Software, v.6.1) which cannot identify individuals within

schools or aggregations.

Processing approaches which seriously limit the depth

range or temporal continuity of analysis cannot possibly

give a full understanding of the behavior of fish and other

targets of interest at highly dynamic sites. Target detection

approaches which tolerate false contributions from physical

backscatter sources or which use inflexible algorithms that

exclude substantial true targets, will inevitably lead to inac-

curate environmental assessments and biased results. Similar-

ly, manual processing approaches can never be practical for

the long datasets available from platform deployments

which are necessary to investigate behavior over the full

range of tidal scales with seasonal influences, nor can manu-

al processing ever provide a systematic tool for comparison

between different research groups studying different sites.

The challenge here was to extract the maximum possible

reliable information from hydroacoustic data in these diffi-

cult environments regardless of depth and conditions. We

are primarily concerned with detecting aggregations of resi-

dent fish. Although marine mammals and diving birds are

also detectable in the data used here, fish targets are frequent

enough to design and assess an optimized detection method.

Similarly, the detection of persisting ecological layers linked

to seasonal or daily trends is not the concern of this paper.

Instead, the main goal of this paper relates to the detection

of discrete aggregations of fish capable of independent

movement in the strong flows, which we call targets.

To achieve this overall goal, we present a flexible method-

ology capable of target detection over the challenging
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conditions encountered in marine renewable energy sites.

This paper describes the development of an automatic, repeat-

able, and sensitive approach for target detection based on

scale-dependent adaptive filtering and the morphological

exclusion of turbulent backscatter. This provides an effective

and timely method applicable to emerging requirements and

other hydroacoustic applications in turbulent aquatic

environments.

Materials and procedures

The data presented in this article and the initial motiva-

tion for the development of the proposed method come from

echosounder platform deployments in a tidal channel (Wil-

liamson et al. 2014). To establish an effective processing

approach for the detection of targets, various standard and

novel techniques for target detection were explored. The

strengths and weaknesses of different techniques generally

depended on the physical conditions and varied significantly

in complexity, sensitivity, and flexibility. Although some of

these techniques are briefly discussed, we mainly focus on

the description of a proposed method which uses the sim-

plest and most effective approach. This proposed method is

outlined in Fig. 2 which serves to guide the method described

step-by-step in the following sections.

Data collection

Deployments of the FLOWBEC-4D platform (FLOw, Water

column and Benthic ECology 4-D) were performed at the

European Marine Energy Centre (EMEC) test sites, UK (Wil-

liamson et al. 2014). These deployments gathered multifre-

quency echosounder data with synchronized multibeam

echosounder measurements (Williamson et al. 2015) and

were further supported by hydrodynamic model data for the

sites (Waggitt et al. 2016). This paper uses datasets collected

Fig. 1. Comparison of volume backscattering strength (Sv) data and statistics recorded by an upward facing stationary platform at the Fall of War-
ness, UK, in June 2013. (a) Calm weather and low flow conditions where there are limited physical sources of Sv and detection of biological targets is
relatively straightforward. An aggregation of fish is clearly visible at 25 m range persisting for approximately 30 s. Mean, median, and standard devia-

tion are calculated through time across each row of Sv data and show relatively stable behavior with depth except in the presence of targets. (b) Tur-
bulent conditions during high winds and high tidal flow where elevated Sv and unstable statistics are present across the entire water column and

particularly near the sea surface making effective detection of biological targets challenging. Prior processing approaches would lead to the nondetec-
tion of the clear target in (a) in some cases, and the inclusion of the much of the turbulent backscatter in (b) as valid targets in other cases.
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in a tidal channel during two platform deployments at the

full scale tidal test site at the Fall of Warness, UK (59870 to

598110N, 28470 to 28500W), at approximately 35 m depth dur-

ing summer 2013. The first deployment was positioned 20 m

downstream (during the flood phase) from an Atlantis AK-

1000 turbine tripod base and piling and recorded data from

June 3rd to June 15th. The second deployment was posi-

tioned nearby in the same site for recording control data

out of the wake of any turbine structures from June 18th to

July 5th.

The conditions at the Fall of Warness were the most chal-

lenging encountered during platform deployments and data

analysis so far. This tidal channel is characterized by excep-

tionally strong tidal flows exceeding 4 m s21. The complex

coastline and bathymetry lead to powerful shear features in

the wake of headlands and islands, with large eddies, upwell-

ing boils, and overturning turbulent motions across the site.

Periodic tidal dynamics combine with variable meteorologi-

cal conditions to generate complex wave-current interactions

and intense surface dynamics especially during windy

periods.

The platform uses a multifrequency split beam Simrad

EK60 scientific echosounder with 38, 120, and 200 kHz

transducers. These are orientated directly upwards with

Fig. 2. Conceptual outline of proposed target detection methodology. This shows an overview from the input of raw multifrequency data through
the processing steps and validation process to provide effective target detection. All parameters and processes are defined fully in subsequent sections.

Fraser et al. Target detection in turbulent environments

187



overlapping 78 conical beams. All EK60 transducers ping

simultaneously at 1 Hz using a 1024 ls pulse length and

were calibrated using a 38.1 mm tungsten carbide sphere fol-

lowing standard procedures (Foote et al. 1987).

Preprocessing

Initial data inspection and quality control were per-

formed using Echoview (Myriax Software, v5.3). Thereafter,

all processing and analysis were done in the MATLAB

(MathWorks, R2013a) programming environment using cus-

tom scripts. Initial data conversion into a MATLAB readable

format used the readEKRaw MATLAB toolkit (by Rick Tow-

ler, NOAA Alaska Fisheries Science Center). This facilitated

full flexibility in data handling beyond the tools available in

Echoview.

Calibrated raw backscatter values are expressed in the log-

arithmic measure of volume backscatter strength (Sv in dB re

1 m21) for each of the three frequencies (Sv38, Sv120, and

Sv200). Backscatter data are plotted in echograms generally

over the range 270 dB to 237 dB which is a useful viewing

range for the detection of targets and visualization of turbu-

lence. The apparent range resolution of each ping is depen-

dent on the pulse length and the resulting echosounder

vertical sampling thickness, so for the data here is approxi-

mately 0.19 m. Near field effects (Simmonds and MacLennan

2005) are removed using a frequency dependent constant

range. This sets an effective minimum range for target detec-

tion for each frequency which was approximately 6.3 m for

38 kHz, 2.1 m for 120 kHz, and 1.2 m for 200 kHz. The 200-

kHz dataset is the focus of many of the subsequent process-

ing steps due to its superior performance at low range.

Surface detection

The first stage of data processing was the identification of

the strong returns from the sea surface and exclusion of pix-

els at and beyond the sea surface range (H). This is achieved

using a line-picking algorithm based on a minimum thresh-

old for surface backscatter. This is similar to bottom-

detecting approaches and data exclusion in downward facing

echosounders in conventional mobile ship based surveys.

However, while the strong backscatter from the seabed

boundary is generally easy to identify, in the case of sea sur-

face detection precise distinction is often difficult. This is

because the energetic conditions can lead to strong wave

action and a disturbed surface obscured by a strongly reflect-

ing turbulent layer of aerated water near the sea surface

(Crawford and Farmer 1987; Deane et al. 2013). The thresh-

old to delineate the surface effectively over the changing

conditions and with minimal exclusion of data is selected

using the Otsu segregation technique (Otsu 1975). This

unsupervised technique defines the optimal threshold to sep-

arate the probability distributions of classes of pixels in an

image by minimizing the combined intra-class variance, and

as shown in Fig. 3 is found to be 232 dB during a 5-d sec-

tion of 200 kHz data between 1.2 m and 37.9 m range. A

line picking algorithm defines H for each ping by identifying

the lowest ranged pixel which is greater than the threshold

232 dB and is contiguous with the pixel identified as having

the highest Sv value (and so assumed to be part of the sea

surface reflection). The resulting surface range for each fre-

quency (H38, H120, and H200) is tested by inspection through-

out the dataset and by power spectrum analysis of the H

time series which shows consistent close agreement between

frequencies. Although the beam width at the surface

(approximately 4 m) acts as low-pass filter for H and the ver-

tical resolution of H is limited by the echosounder sampling

thickness, clear tide and wave behavior is apparent as shown

in Fig. 3. Power spectral density estimates are calculated

using the average of 50% overlapping 30 min H sections

using a Hamming window over one tidal cycle.

The preprocessed data uses the H time series with a 0.5 m

subtraction for safety to exclude any other spurious backscat-

ter contributions from the surface. This gives Sv clean data for

each frequency which is the basis for all quantitative back-

scatter measurements and the next steps of data processing.

In the absence of turbulence and strong variations in the

background acoustic conditions the data would now be

ready for standard school detection algorithms. However,

the dominance of turbulent backscatter would lead to over-

whelming numbers of false targets reflecting the effects of

turbulent structures over multiple spatial and temporal

scales. For reliable target detection, turbulence mitigation

measures are essential and described in the following pro-

posed processing steps.

Scale-dependent adaptive filtering

Backscatter in highly energetic sites is dominated by

intense physical processes which vary over length and time

scales leading to extremely unstable conditions in which to

identify biological targets. In particular, tidal conditions and

meteorological effects which vary over the course of hours

lead to broad variations in backscatter statistics through time

and over the water column depth. Applying sensitive (i.e.,

lower) thresholds to the data to detect biological targets,

which would work effectively in calm conditions, would

lead to numerous false targets in turbulent conditions. Con-

versely, applying less sensitive thresholds to the data to

avoid false targets in turbulent conditions will prevent the

detection of many genuine targets. The crude approach

would be to simply remove “bad” data which is deemed too

turbulent or noisy to process; however, in the application

here this would involve excluding the majority of available

data and biasing results.

To investigate the dominant time scales present in back-

scatter data we can use wavelet analysis. Wavelet analysis is

particularly useful for the data here since the relatively

short-scale intermittent presence of targets combined with

broad physical features in the data leads to highly statistical-

ly non-stationary backscatter variations. The potential of
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wavelet analysis for ecological time series has been recog-

nized widely and has been used to look for patterns in time

and frequency domains in a variety of contexts (Cazelles

et al. 2008). However, there is limited work that utilizes

echosounder data (e.g., Bertrand et al. 2008; Jacques 2014).

The wavelet power spectrum used here for the data interpre-

tation follows the approach of Torrence and Compo (1998)

using a Ricker (often referred to as the “Mexican hat”) moth-

er wavelet (Torrence and Compo 1998).

As the largest fish schools recorded persist for approxi-

mately 1 min in the data then on longer time scales (hours)

the wavelet power spectra are dominated by backscatter

from the physical dynamics. However, in Fig. 4 we look

specifically at relatively short time scales (minutes) to inves-

tigate the scales of fish schools and moderate near-surface

turbulence. Wavelet power spectra from a depth averaged

section of Sv200clean shows how the non-stationary contribu-

tions from biological targets can be conceptually separated

from physical backscatter by considering scale. Depth spe-

cific and 2D wavelet transforms are also possible. However,

the capability of a target detection method based on wave-

let results is limited by the physical and biological

backscatter contributions which overlap in scale and the

reduced power of targets with relatively low mean Sv. None-

theless the practical mitigation of long-scale turbulent back-

scatter contributions is possible and scale sensitive filtering

is essential.

We use a moving window operation which acts as a selec-

tive 2D high pass filter to isolate target-scale structures. To

facilitate processing flexibility and reliability, an adaptive

approach is used to suppress backscatter through time and

depth during elevated backscatter. This is equivalent to

adapting the target detection thresholds themselves (Nero

and Magnuson 1989) when necessary to avoid false detec-

tions. This is achieved by the selective subtraction of the

data from a scale-sensitive smoothed “background” version

of the data produced by the filter. Sophisticated wavelet

denoising methods (e.g., Donoho 1995) or Eigenvector filter-

ing (e.g., Baussant et al. 1993) could be used to construct the

smoothed data; however, for simplicity and flexibility a

moving window median operation is the preferred method

here. As the mean is computed for the linear expression of

backscatter (normally considered in logarithmic units) then

mean values are highly sensitive to strong backscattering

Fig. 3. Sea surface delineation and validation by optimal surface threshold line-picking algorithm. (a) The number (n) of Sv samples in 3 dB bins dur-
ing a flood-ebb cycle using 200 kHz data with near field removed. The thick dashed line indicates the threshold used to separate backscatter dominat-

ed by sea surface reflections (on the right of the line) from the remaining water column. (b) The resulting time series for H showing the variable
short-scale surface wave propagation superimposed on top of the dominant long-scale tidal height variation. (c) The resulting power spectrum for H

which shows a clear dominant surface wave frequency of order 0.1 Hz. (d) A short section of H highlighted by the grey dashed line in (b) showing
clear surface wave propagation over the echosounder beam.
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bodies, such as fish aggregations (e.g., Fig. 1), and so the

median gives superior performance. The median is calculated

and assigned to the central element of each overlapping win-

dow to give the smoothed representation of the broad back-

scatter conditions. Elements in the window which extend

beyond the available data array or have been excluded dur-

ing previous processing steps are not included in calculating

the median. Selection of the appropriate window dimensions

for calculating the median is critical to the effectiveness of

this step and must be adjusted for the site dynamics and tar-

gets of interest.

Through wavelet analysis insights and subsequent iterative

experimentation, a moving window of five elements in the

vertical (0.95 m in range) and 135 elements in the horizontal

(135 s in time) was selected. A window as small as possible is

desirable to effectively resolve the physical backscatter varia-

tions. However, the horizontal dimension should be at least

twice the time persistence of the largest targets in the dataset

so that the median does not reflect backscatter characteristics

of targets of interest. Similarly, the vertical dimension should

be small enough so that the full vertical behavior of the back-

ground conditions is well resolved while still providing effec-

tive smoothing performance. Since in the data here the

largest targets are fish schools persisting for around 1 min

and vertical trends are relatively stable within 1 m (Fig. 1),

the 5 3 135 median window operation gives effective perfor-

mance in this case. This operation is performed on the

Sv200clean data to give Sv5x135 as shown in Fig. 5.

To remove long-scale contributions to Sv200clean the data

samples are selectively modified when the Sv53135 matrix

exceeds the threshold, k. This threshold is set for the condi-

tions where false target detection occurs due to elevated lev-

els of backscatter. This of course depends on the acoustic

properties of the targets of interest and ultimately the

Fig. 4. Wavelet analysis on short-scale backscatter features. (a) Echogram from the Fall of Warness showing 30 min of Sv200clean data containing clear

fish school targets and moderate near-surface turbulence. (b) Depth averaged Sv time series for the data in (a). (c) Wavelet power spectrum for (b)
showing dominant scales in the time domain. The non-stationary Sv contributions from fish schools give intermittent features at shorter scales than
the dominant physical scales which dominate global power spectra; however, there is clear scale overlap with some turbulent backscatter. The white

dashed line indicates the cone of influence where edge effects of the finite-length time series analyzed are significant.
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detection thresholds applied to the modified data. For the

isolation of targets shown in the following sections and fig-

ures k is set at 273 dB following iterative experimentation

with the desired detection thresholds, and the suppression

process works for each available data sample as follows:

Sv53135 � k ! Sv suppress5 Sv clean (1)

Sv53135 > k ! Sv suppress5 Sv clean2 Sv531351k (2)

As demonstrated in Fig. 5, this selective suppression effec-

tively stabilizes long-scale trends in depth and time to give

Fig. 5. Smoothing and suppression using moving window operator. (a) Five days of continuous Sv200clean data recorded at the Fall of Warness. Broad
variations in backscatter are apparent relating to the changing tidal and meteorological conditions. (b) Median smoothed data using a 5 3 135 win-

dow gives Sv53135 data which represents the long-scale backscatter contributions due to the physical dynamics without including biological targets.
(C) Selective subtraction of (b) from (a) gives the stabilized data set Sv suppress which forms the basis of subsequent processing. Long-scale trends are

removed when necessary leaving only backscattering structures at the scales of interest. (d) Detail of (a) showing large fish school. (e) Detail of (b)
showing the same section as (d), the broad physical variations in backscatter are well resolved, however, crucially the fish school is not represented
forming the basis of scale selectivity. (f) Detail of (c) showing the same section shown in (d) with target unaffected but broad trends in depth and

time suppressed.
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Sv suppress data. Target detection on Sv suppress data would

show much better performance using standard Sv and size

thresholding methods for target detection by still giving sen-

sitivity to strong targets in high backscatter conditions (>k)

without reducing sensitivity during low backscatter condi-

tions (�k). However, some false targets will still persist where

turbulent backscattering structures are of a comparable scale

to the targets of interest. The removal of these features moti-

vates the use of additional filters based on morphological

characteristics as described below.

Morphological filtering

The previous processing step will not mitigate the effects

of turbulent backscattering features that are of a comparable

scale to the targets of interest. In particular, vertical mixing

can drive wave generated clouds of air bubbles from the near

surface into extended intense backscattering structures

which can vary over short timescales. These features must be

excluded from analysis or false targets will still be present

and so an additional filter is required. Intense turbulent

structures are morphologically isolated based on their con-

nectivity with physical boundaries (e.g., the sea surface) and

again an optimal threshold is derived to exclude the mini-

mum data possible from further analysis. Tracing algorithms

generate detailed boundary lines for these intense physical

backscattering structures which are used to remove them

from further target detection steps.

Effective morphological exclusion is challenging when

targets are within or close to boundaries or intense turbu-

lence (e.g., Fig. 6). Various edge detection algorithms were

explored to exclude short-scale turbulent structures without

the loss of genuine targets. A promising approach is the use

of a backscatter gradient metric to delineate turbulence and

targets based on the first derivative of Sv values. To assign a

gradient value to each Sv element a Sobel filter is a useful

isotropic discrete differentiation operator with minimum

smoothing which uses two weighted 3 3 3 kernels to com-

pute the first derivative around each pixel (Petrou and Pet-

rou 2010). This filter can be applied to a section of data to

characterize boundaries in the echogram by the absolute gra-

dient (Fig. 6).

Simple line-picking and tracing algorithms based on some

threshold are readily available in echosounder processing

applications and can also be used to identify turbulent

boundaries with reasonable effectiveness. However, intense

near-surface turbulence can form complex arcing structures

which confound methods designed to identify a simple sur-

face. Instead, using a threshold defined binary representation

Fig. 6. Morphological filtering approaches to exclude short-scale turbulent backscatter in the near surface. (a) Section of Sv200clean data showing

intense near-surface turbulence and fish school. (b) The gradient magnitude computed using a Sobel filter for each data point for visualizing and spec-
ifying turbulent structures and target boundaries. (c) Binary image generated by alternative thresholding approach, connectivity to the sea surface
boundary defines the turbulence boundary shown in red. (d) Turbulence exclusion gives Sv morph data, the range to turbulent structures zturb is shown

in black and defined by the minimum value per ping for the red line in (c).
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of the data to define complex boundaries with high resolu-

tion gives improved performance (Fig. 6). Here we calculate

an optimal threshold of 259 dB in the same manner as for

the sea surface detection (Otsu 1975) for minimal data exclu-

sion. This approach is used to define a boundary line by the

minimum range to turbulent structures (zturb) which is the

basis of morphological exclusion based on connectivity of

intense backscatter to a boundary (here the sea surface) to

give Sv morph.

Samples removed by the morphological exclusion in

Sv morph are also removed from the scale selective filtering

results in Sv suppress to give a processed data version (Sv stable),

appropriate for standard target detection methodologies.

This stabilized data version has mitigated the overwhelming

effects of long-scale variations in the background acoustic

conditions and short-scale intense turbulent structures so

that biological targets are now clearly identifiable.

Target delineation

Target detection is performed on the Sv stable data using Sv

and area thresholds. The thresholds depend on the acoustic

characteristics of the target of interest. For the detection of

fish, such as aggregations of gadoids and clupeids, we use a

255 dB threshold for each pixel and a minimum 10 pixel

connected region to identify a target. These requirements

represent a sufficiently cautious Sv threshold (Burgos and

Horne 2007) and sensitivity to small aggregations, while still

providing a useful number of pixel samples for the character-

ization of each target. To maintain the highest resolution

and identify small targets where possible, no connectivity

criterion is specified and no amalgamation operation is

performed.

The target boundaries derived from the processed data are

overlain onto the Sv clean data for each frequency to extract

acoustic properties from unmodified backscatter data. Inde-

pendent concurrent model flow velocity information for the

site is used to transform target persistence (time) into

approximate target length (distance) by the simple multipli-

cation of depth-averaged flow speed with the length of time

each target is present. The mean volume backscattering

strength (MVBS) is calculated for each frequency over all pix-

els which pass the Sv threshold within each target. Target

MVBS values are computed by taking the logarithm of the

averaged linear expressions of target pixel Sv values. Various

other acoustic, statistical, morphological, and contextual

characteristics are computed for each target in line with the

definitions in Korneliussen et al. (2009) and Horne (2000).

These characteristics form the basis of subsequent validation,

characterization, and analysis. The target delineation process

and some selected simple target characteristics are presented

in Fig. 7 for the fish school shown in Fig. 6.

Target validation

The validation of targets ensures that chosen discriminat-

ing characteristics are in the range of values expected from

prior knowledge. This step is again particular to the nature

of the targets of interest. For example, frequency differencing

is a common technique for the isolation of particular fish

species (Kloser et al. 2002; Logerwell and Wilson 2004). Simi-

larly, contextual and morphological characteristics relevant

to specific behavior can also be used in species identification

approaches. However, these characteristics have been shown

to vary with location, depth, age, and season and so caution

must be exercised when making direct comparisons to target

characteristics made in relatively stable aquatic environ-

ments to the characteristics recorded in the turbulent and

highly dynamic environments discussed here. Nonetheless

some intrinsic physical properties of targets are comparable

and so effective target validation is possible.

Taking the isolation of fish schools as an example, we can

set theoretical limits on the frequency difference, DMVBS

(e.g., MVBS2002MVBS38), which we anticipate given known

Fig. 7. Target delineation and characterization of the fish school shown in Fig. 6. The image shows the thresholded Sv stable data used to define the
target boundary highlighted by the black line. Some simple target characteristics are presented which are used for target validation and characteriza-

tion. Acoustic properties are computed using Sv clean data and morphological characteristics follow the definitions given in Korneliussen et al. (2009).
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physical properties (such as size and composition) of the tar-

gets of interest. Small objects, such as air bubbles and plank-

ton, can have a high variation in Sv over the frequencies

used here due to size-dependent Rayleigh and resonant scat-

tering effects (Lavery et al. 2007). In contrast, the frequency

response of fish species at the frequencies used here is domi-

nated by simple geometric backscatter and is relatively con-

stant (Kang et al. 2002). Therefore, we can validate potential

fish school targets by inferring target identity from the

observed frequency differences. Frequency difference results

for all targets using the detection thresholds described above

(255 dB and 10 connected pixels) for a platform deployment

are presented in Fig. 8.

As we are not aiming to isolate just one particular species

of fish we tolerate a relatively large frequency difference

band (210 dB<DMVBS < 10 dB) similar to the range used

for fish isolation in Benoit-Bird et al. (2011). This can be

adjusted and made more specific to isolate more specific taxa

bearing in mind the uncertain nature of target characteristics

in the site. If any available DMVBS results for each detected

target are beyond the tolerated frequency band they are

rejected as false targets attributed to small scatterers such as

plankton or the spurious inclusion of air bubbles or sus-

pended sediment. The majority of targets are accepted in

this case, which is desirable given the wide range of target

species of interest and turbulence mitigation steps. The fre-

quency combinations of MVBS2002MVBS38 and

MVBS1202MVBS38 are generally used in frequency difference

work (Kang et al. 2002; Korneliussen et al. 2009; Benoit-Bird

et al. 2011; Sato et al. 2015) as 38 kHz data can include sig-

nificant resonant effects for small scatterers, and consequent-

ly demonstrate higher variation in the results here (Fig. 8).

However, in our case the MVBS2002MVBS120 comparison is

also important as it provides validation for targets within the

38 kHz near field (i.e., between the ranges of 2.1 m and

6.3 m). The results of this validation form the basis of subse-

quent assessment and discussion.

Assessment

The proposed target detection method was applied to the

available data from both 2013 platform deployments at the

Fall of Warness. Using the processing, detection, and valida-

tion parameters described above, 523 fish schools were iden-

tified in the first deployment and 396 fish schools in the

second. Each individual target was inspected manually with

reference to the raw data and the effectiveness of the meth-

od was demonstrated for all conditions encountered. This is

shown for 6 d of continuous data during highly variable

conditions in Fig. 9 demonstrating the effectiveness and flex-

ibility of the method. Visualizing targets is difficult at the

long-time scales where physical variations are clear, however,

reference to a shorter data section (both processed and

unprocessed) and details of individual targets demonstrates

the variety of conditions encountered during processing.

The clear variation in target characteristics and behaviors

further highlights the flexibility of this method. Targets are

identifiable at all depths within the water column and

throughout the entire datasets. This is visible from the target

distributions and bar charts in Fig. 9. Without turbulence

mitigation measures, then false targets dominate detections

and bias results during enhanced backscatter. However, fol-

lowing the processing there is no apparent bias remaining

during turbulent sections compared with calm sections and

there are consistent behavioral differences observed between

flow directions and deployments regardless of the acoustic

Fig. 8. Multifrequency validation of detected targets using frequency differencing. The number (n) of targets is shown in 1 dB bins. The DMVBS is
calculated for each frequency combination to inspect frequency response characteristics. As fish are anticipated to have relatively low DMVBS then tar-

gets are validated based on the tolerated frequency band (210 dB<DMVBS < 10 dB) highlighted by the thick black dashed lines. As fish schools are
the dominant targets using these detection settings then the majority are validated.
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Fig. 9. Target detection and distributions over varying physical conditions. Data are from a continuous 6-d section at the Fall of Warness during

mixed meteorological conditions and varying tidal dynamics. (a) The temporal distribution of targets shows natural variation but no strong correlation
with the background physical conditions demonstrating that processing has been successful with no contributions from false targets. (b) The depth

distribution of targets binned by their mean range demonstrates successful detection throughout the water column and gives behavioral information
on their depth preference. (c) The full data section shown as unprocessed Sv200 data with target boundaries overlain in black lines. The vast majority
of visible backscatter is of physical origin and particularly intense in the near surface environment. Although this scale is too broad to make out individ-

ual target characteristics the overall target distribution through the changing conditions is clear. (d) Expanded sub-section showing target distribution
in black on unprocessed Sv200 data. (e) The same sub-section as (d) with target distributions overlain in black but on processed Sv stable data which is

the basis of target delineation and demonstrates the effectiveness of turbulence mitigation measures. (f) Details for selected targets labeled in (d)
shown in Sv200 data demonstrating a variety of local physical conditions and target characteristics. Rather than plotting target boundaries at this scale
which would obscure target edge pixels the detected targets are highlighted in the center of a black box.
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conditions. The morphological filtering process excludes

only 2.4% of data during this section, suggesting that any

potential effect on target results is limited and demonstrat-

ing a substantial improvement to data coverage compared

with many existing approaches. Detected targets vary from

large schools occupying most of the water column for up to

a minute, to small targets only occupying a few pings at a

very specific depth. Schools are often spatially well-defined

with high MVBS; however, less well-defined aggregations

with lower MVBS are also detected and validated. This range

of target behavior and acoustic properties demonstrates the

sensitivity of this method even with relatively conservative

thresholds.

The processing steps used depend on custom made adap-

tive filters and line picking algorithms to facilitate the use of

standard detection criteria on highly unstable data. Howev-

er, similar tools available in echosounder analysis packages

(e.g., Echoview) can be adapted to emulate these methods

and so this approach could be followed by a wide range of

users with minimal difficulty. None of the above processing

algorithms are inhibitively computationally expensive, and

exporting the Sv stable data facilitates the use of conventional

target detection and analysis methods. Applying more spe-

cific validation requirements allows for the isolation of cer-

tain species or target types.

Success of this method depends on optimized processing

and detection thresholds which are specific to the targets of

interest and dynamics of the site. The isolation of particular

scales depends on considering some maximum target size

which separates ecological contributions to backscatter from

long-scale physical sources. As a result, this technique is not

appropriate for continuous layers of targets. Due to the con-

nectivity requirements for morphological filtering, detection

is also limited within the most intense turbulence structures

and for strong targets with no separation from the surface.

With the impracticality of obtaining comparative direct bio-

logical sampling information the quality control for this

paper is undertaken by direct scrutiny of each target.

This method successfully addresses the challenge of reli-

able target detection across dynamic physical conditions.

Without the novel turbulence mitigation steps then sensitive

target detection results are overwhelmed by false targets dur-

ing turbulent sections. Similarly, simply increasing detection

thresholds to attempt to exclude turbulent backscatter would

remove the vast majority of genuine targets and still fail to

differentiate intense turbulence structures from large fish

schools. With reference to the targets highlighted in Fig. 9,

it is clear that existing approaches which use standard target

detection methods on data with severe restriction in depth

or temporal coverage would lead to substantial losses of data

and the introduction of sampling bias. This method introdu-

ces a new approach which is flexible through time, depth,

and for a wide variety of target characteristics.

Discussion

Reliable active acoustic monitoring in turbulent environ-

ments is an essential requirement for understanding ecologi-

cal dynamics in a variety of aquatic environments. In

particular, the recent international progress in marine renew-

able energy technologies has made robust target detection in

tidal channels a priority for the consenting and environmen-

tal impact assessment for the operation of marine energy

devices. Such sites demonstrate extreme spatial and temporal

variations in physically generated backscatter with changes

in the meteorological conditions and tidal dynamics. This

leads to highly unstable acoustic conditions and the failure

of standard target detection algorithms used in fisheries

acoustics.

Existing methods require substantial compromises in data

quality or coverage, or depend on intensive and subjective

human scrutiny. The method presented here improves on

standard techniques by adaptive processing which ensures

high detection sensitivity and data coverage without the

inclusion of false targets or removal of genuine targets. For

example, previous methods would not detect some of the

small and shallow aggregations detectable by this method

which can have significant ecological importance for some

species such as shallow diving seabirds (Speckman 2004).

Similarly, some previous methods would include substantial

contributions from false targets during turbulent sections

leading to the misinterpretation of ecological distributions

and interactions.

The method proposed here isolates biological targets from

physical interference; however, there are still limitations to

this approach which mean that it is unlikely that every

potential target is detected. For example, there is no target

information at ranges less than 2.1 m due to near field

effects inherent to the acoustic system used here. Similarly,

potential targets that are not morphologically discernable

from the most intense turbulent structures would be lost in

the small proportion of data that are excluded. Given the

thresholds and processing parameters used here, it is unlike-

ly that individual fish or highly dispersed aggregations

would be detected.

Detection thresholds and processing parameters are set

according to the nature of the targets of interest and the site

dynamics. Crucially, since this approach is automatic the

results are completely repeatable and so this method is an

important tool for comparative studies in turbulent environ-

ments. Such comparisons are vital for the quantitative assess-

ment of site characteristics and for systematically

establishing the significance of human impacts. In the appli-

cation considered here, comparison of data from different

platform deployments can provide detailed information on

target distributions and interactions in high energy marine

sites and around marine renewable energy infrastructure.

Such comparisons can provide information needed for
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environmental impact assessment of marine energy technol-

ogies, such as evidence of the displacement or attraction of

fish species. Such evidence has implications for the foraging

behavior of predators and associated risks to these species

which require quantification for project consenting.

In general, independent verification of acoustic results is

often provided by direct sampling techniques which are

impractical in high energy sites such as the tidal channel

studied here. This provides an additional difficulty in target

detection as there is a lack of reference data to guide target

composition approximations and species differentiation.

These limitations are accepted in this method by isolating

targets by inherent physical properties and broad validation

criteria based on multifrequency characteristics. Although

this method is automatic, assessing success for this paper is

dependent on manual inspection and scrutiny to verify tar-

get distribution results.

Although the emphasis here has been on the detection of

fish schools, the proposed method can be extended to other

types of targets. For example diving seabirds and their bubble

trails can be detected using multifrequency echosounders

(e.g., Benoit-Bird et al. 2011), and are visible in the data pre-

sented here and confirmed by synchronized multibeam meas-

urements showing clear bird diving tracks (Williamson et al.

In press). However, the number of confirmed bird dives iden-

tified so far is too low to develop an optimized detection

approach. Nonetheless, the same approach used for fish detec-

tion is functional combined with specific validation require-

ments. Example bird bubble trail validation requirements are

a narrow DMVBS band (substantially higher backscatter was

observed in 38 kHz data by Benoit-Bird et al. 2011) and char-

acteristic morphological parameter such as low elongation.

Similar target specific validation requirements could be estab-

lished for marine mammal identification.

The outputs of this method provide information from

data which could otherwise be misinterpreted or discarded.

Such target results are essential for the environmental

impact assessment of emerging marine energy technologies,

and provide vital information on ecological interactions and

distributions in important environments with growing

industrial importance.

Comments and recommendations

Successful implementation of this method, like almost

any method, depends on carefully selected processing

parameters to optimize performance. A reduction in perfor-

mance is likely to lead to the loss of sensitivity or inclusion

of false targets and therefore inspection of processing results

throughout is essential. It is recommended to check closely

in both highly turbulent and relatively calm data sections

with reference to particularly challenging targets. Further ref-

erence to Sv histograms and statistics, as shown, is also

advised. Insights from power spectra and wavelet analysis

can further accelerate processing and verification of results.

The concepts of scale-dependent adaptive filtering and

morphological exclusion can be readily applied to different

instruments and in different contexts. In the case of multi-

beam echosounder and acoustic camera data then scale isola-

tion by applying a smoothing window through both time

and space for adaptive suppression will reduce false target

detections and increase sensitivity for target tracking algo-

rithms. Application of this approach for multibeam monitor-

ing around marine renewable infrastructure is the subject of

ongoing work. Similarly, these methods can be independent

of multifrequency information, and with a limited reduction

in sensitivity, can be applied to single frequency echosounder

datasets. Increasingly used broadband echosounder systems

are also compatible with this approach given appropriate

refinements to the multifrequency validation process. While

this method has been designed for the detection of fish in

tidal channels, the flexibility of the tools described in this

paper may enable the analysis of turbulent data from many

other potential applications.
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