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Abstract

The sensitive dependence of periodicity and chaos on parameters is investi-

gated for three-dimensional nonlinear dynamical systems. Previous works have

found that noninvertible low-dimensional maps present power-law exponents

relating the uncertainty between periodicity and chaos to the precision on the

system parameters. Furthermore, the values obtained for these exponents have

been conjectured to be universal in these maps. However, confirmation of the

observed exponent values in continuous-time systems remain an open question.

In this work, we show that one of these exponents can also be found in differ-

ent classes of three-dimensional continuous-time dynamical systems, suggesting

that the sensitive dependence on parameters of deterministic nonlinear dynam-

ical systems is typical.
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1. Introduction

The final asymptotic behavior of nonlinear dynamical systems can be severely

affected by small perturbations in their control parameters [1]. The so-called

parameter sensitivity has been experimentally observed in different areas of
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knowledge [2, 3, 4, 5]. The cause of this sensitivity is the existence of bifur-5

cation sets in parameters spaces that, regardless of any scale, provoke several

topological changes in the system dynamics. One of the most drastic example

is the conversion of stable periodic into chaotic behavior, or vice-versa. The pa-

rameter sensitivity in this case dramatically limits the ability of someone surely

set the parameters of a system to oscillate either in a chaotic or in a periodic10

behavior.

Following works studying the sensitivity of multiple attractors on the initial

conditions and parameters [6, 7], the sensitive dependence of periodicity and

chaos on parameters has been first addressed in 1985 by Grebogi et al. [8]. The

authors have defined a scaling exponent, α, such that for α lower than 1, the15

system asymptotic solutions, periodic and chaotic, are regarded to be sensitive

dependent on the system‘s parameters. By varying the unique parameter of

an one-dimensional discrete-time system, the quadratic map, the authors have

found the scaling exponent α to be equal to 0.413(5), indicating the parameter

sensitivity in this system. Also, in 1985 [9], J.D. Farmer has proposed a different20

coarse-grained measure to quantify the parameter dependence of periodicity

and chaos, and use it to confirm sensitive dependence on parameters in the

quadratic and sine maps. In these works this exponent reflects the topology

of the boundary between parameter regions leading to chaotic and periodic

behavior. On the other hand, Hunt et al. [10] have theoretically estimated25

the scaling exponent, α, but only based on the topological properties of the

boundaries between parameter regions describing large chaotic attractors (to

be defined subsequently) and parameter regions describing periodic orbits of

the quadratic map. In their analyses, they have found the scaling exponent

α to be equal to 0.51(3). This value of α obtained by Hunt et al. indicates30

a low parameter sensitivity when only large chaotic attractors are considered.

This issue has been addressed in 2014 by Joglekar et al. [11], who found a

general relationship between the two scaling exponent values previously defined.

Moreover, they conjecture that these two values for the scaling exponent, α, are

universal for one-dimensional quadratic maps.35
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However, a question that remains open at this point is whether these scal-

ing exponents also apply to higher-dimensional systems, such the ones whose

the dynamics is described by continuous-time equations, and more than one

parameter is available to induce sensitivity.

In this work, we address the sensitive dependence on parameters of periodic-40

ity and chaos in two-dimensional parameters sets of continuous-time dynamical

systems. Specifically, we quantify the sensitive on parameters of these sys-

tems by calculating the fraction of parameters that changes their corresponding

asymptotic dynamical behavior under a given perturbation. We observe that

such fraction of uncertain parameters scales as a power-law with the magnitude45

of the perturbation, and therefore, yields the scaling exponent, α. Moreover,

we verify that the scaling exponent value, measured considering any chaotic

attractor, is roughly the same within the three different classes of continuous-

time systems here investigated, agreeing with the value obtained for the one-

dimensional, sine, and quadratic maps. This result suggests that the scaling50

exponent α is a universal measure for the sensitive dependence of periodicity

and chaos on parameters of nonlinear dynamical systems.

In parameters sets of nonlinear dynamical systems, the sensitive dependence

of periodicity and chaos can be investigated by the way that their corresponding

parameter subsets are arranged. The parameters leading to chaos is interwoven55

with continuous sets of parameters leading to periodic stable behavior, called

periodic windows. Periodic windows are parameter sets, which in this work

is assumed to contain parameter sets corresponding to a periodic orbit and

its eventual bifurcated harmonic solutions. On the other hand, we consider

complex structures, i.e., regions of parameter sets that contain scale-free ac-60

cumulations of periodic windows and also parameters corresponding to chaos.

More specifically, as a system parameter is varied, the periodic trajectory with

the lowest period, p, appearing for a parameter inside a periodic window, un-

dergoes a cascade of period-doubling bifurcations resulting in a “small” p-band

chaotic attractor. Subsequently, such chaotic attractor goes through an interior65

crisis, at which the complex structures, containing chaos and periodicity, ter-
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minates giving place to a large chaotic attractor that is larger than the p-band

chaotic one (small chaotic attractor) [12, 11]. Furthermore, the chaotic regions

describing attractors that become chaotic via period-doubling occurring inside a

complex structure is also interwoven with other high-order complex structures70

that also contain parameters leading to chaos appearing via period-doubling

cascades. The parameter region describing small chaotic attractors inside a

lower-order complex structure becomes a region describing large chaotic attrac-

tors surrounding higher-order one. This hierarchical arrangement is repeated

over and over again in all scales of parameter sets, generating the sensitive75

dependence on parameters in deterministic dynamical systems.

In Figure 1, we show a typical complex structure commonly observed in the

two-dimensional parameter sets of several systems [13, 14, 15, 16, 17, 18, 19, 20,

21, 22]. The white regions are periodic windows and represent parameters lead-

ing to periodic solutions, gray represents the parameters leading to the small80

p-band chaotic attractors, and black represents the parameters leading to large

chaotic attractors. Thus, in Figure 1, one can see a complex structure that

is formed by the white and gray color while the regions outside the complex

structure is black. Since this complex structure has the terminator boundary

curve at a border collision crisis (upper part), it is a primary complex structure.85

The inset box whose amplification can be seen in the upper right corner shows

other periodic windows laying on a region dominated by multi-band chaotic

attractors, the gray region. Each one of these cascading higher-order periodic

windows forms a higher-order complex structure, if its neighboring multi-band

chaotic attractors are taken into consideration. Our analysis to measure the90

scaling exponent will be made considering such regions, where cascades of peri-

odic windows accumulates into a primary complex structure.

In the last 20 years, the complex structures shown in Figure 1 have been

numerically observed in parameter sets of a large numbers of systems ranging

from discrete-time biological oscillator to continuous-time lasers and chemical95

reactions models [13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. Furthermore, more

recently, such periodic arrangements are being observed in parameter sets of
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electronic circuits in lab experiments [23, 24, 25, 26, 27], increasing the interest

in the sensitive dependence on parameters.

Figure 1: Typical two-dimensional a× b parameter set of nonlinear dynamical systems. The

white color indicates the parameters leading to periodicity (periodic windows). The gray color

indicates parameters corresponding to chaos via period-doubling bifurcation, and black color

indicates parameters corresponding to chaos outside the windows (large chaotic attractors).

The magnification shows a sequence of periodic windows immersed in a parameter region of

chaos via period-doubling.

2. Results100

Our numerical results are based on simulations of three different classes of

continuous-time dynamical systems. In our calculations, we address parameter

sets composed by sequences of high-order complex structure [28], as in the inset

of Fig. 1, sequences occur for parameters inside a complex structure in the

border with the large chaotic attractors located outside the complex structure.105

In our computations, we consider chaotic attractors of all sizes, and we did

not consider systems for which the parameters spaces are Riddled or Wada as

discussed in Refs. [29, 30].

To represent the class of oscillators for which the Shilnikov theorem can be

applied [31, 32, 33, 34, 35, 36], we consider the Rössler oscillator. This system

is described by the following set of nonlinear differential equations:

ẋ = −y − z,
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ẏ = x+ ay, (1)

ż = (b+ z)x− cz.

and we study the parameter plane a × c. The other parameter b of Eq. (1) is

fixed at b = 0.3 [17].110

The class of nonlinear forced oscillators are represented by the Morse oscil-

lator which is governed by the following nonlinear differential equation [37]:

ẍ+ dẋ+ 8e−x(1 − e−x) = 2.5 cos(ωt), (2)

and we study the parameter plane ω × d.

We also work with a loss-modulated CO2 laser described by a rate-equation

with a time-dependent parameter:

u̇ =
1

τ
(z − k(t))u,

ż = (z0 − z)γ − uz, (3)

where k(t) = k0(1 +a cos 2πft). We study the a× f parameter plane. All other

parameters are fixed: τ = 3.5 × 109 s, γ = 1.978 × 105 s−1, z0 = 0.175, and

k0 = 0.1731 [15].

We numerically integrate Eq. from () to () using a Fourth-order Runge Kutta115

method and obtainthe two-dimensional parameter spaces of those systems. In

those parameters sets, we select N = 3.0× 104 pairs of random parameters, say

(a0, b0), uniformly space distributed and compute the largest Lyapunov expo-

nents of the trajectory of the considered systems for these random parameters

to determine if the correspondent state is periodic (λ < 0) or chaotic (λ > 0).120

To evaluate the parameter sensitivity is enough to consider only one direction

in the parameter space. Hence, each pair of parameters is perturbed by an

error ε along one parameter, which we regard as the horizontal direction. This

process generates 6.0× 104 pairs (a0 ± ε, b0) of parameters. We also obtain the

Lyapunov exponent of states corresponding to the perturbed parameter pairs.125

We then compare the parameters to their two correspondent perturbed pairs

along the horizontal direction. If at least one of them has changed the final
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behavior (chaotic to periodic, or vice-versa), the pair (a0, b0) is counted as an

uncertain pair for the error value ε. If u(ε) denotes the number of uncertain

parameter pairs as a function of ε for a selected region in the parameter set,130

then the fraction of uncertain parameters is calculated by f(ε) = u(ε)/N .

In Figure 2(Left), we show the parameter spaces for the three systems con-

sidered, for which f(ε) is calculated. The black regions indicate the set of

parameters leading to chaos, while the white regions correspond to parameters

leading to periodic stable behavior. In these figures, complex structures, and135

periodic windows, are aligned along sequences accumulating in periodic regions

of parameter sets. In Figure 2(Right), for the correspondent parameter space

shown in Figure 2(Left), we show the fraction f(ε) of uncertain periodic pa-

rameters as a function of the error ε. The straight line is a power-law fitting

between f(ε) and ε which provides the uncertainty exponent α.140

We observe in Figure 2 that the exponent α is in the same confidence interval

given by α = 0.40(4) for the different classes of dynamical systems considered

here. The standard deviation of α has been obtained by considering that the

occurrence of uncertain parameters are random events. The results are shown

in Table 1. The numerical value found for the exponent α relates the fraction of145

uncertain parameters to the accuracy in measuring them. For example, for the

parameter set of the Rössler oscillator and with ε = 0.005 approximately 81%

of the parameters are uncertain. If one increases the accuracy by factor 10, i.e.,

for ε = 0.0005, approximately 32% of the parameters are still uncertain. The

implication is that a high accuracy on parameters may be necessary to predict150

reliably the chaotic or periodic asymptotic behavior of a chaotic oscillator.

Dynamical System α

Rössler Oscillator 0.41 ± 0.04

Morse Oscillator 0.40 ± 0.04

CO2 Laser 0.40 ± 0.04

Table 1: In this table, for all dynamical systems investigated, we show in the first column the

values of α obtained from the fitting shown in Figure 2(Right).
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Figure 2: (Left) Two-dimensional parameter spaces of the three considered dynamical sys-

tems. Black regions represent the chaotic parameter set. White regions represent the periodic

parameter set. (Right) The uncertain fraction f(ε) of the chaotic sets shown in (Left) scales

as power-law with the error ε.
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3. Discussion

In conclusion, we have verified that the scaling exponent, α, applies for

high-dimensional continuous-time systems, yielding a reliable measure for the

sensitive dependence of periodicity and chaos on parameters of those systems.155

Moreover, our estimative for the scaling exponent agrees to the values argued to

be universal in one-dimensional quadratic map. Therefore, our findings extend

the universality of the scaling exponent α to a larger class of nonlinear dynamical

system.

The implication is that a high accuracy on parameters may be necessary160

to predict reliably the chaotic or periodic asymptotic behavior of a chaotic

oscillator.
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(2015) 062905.

[22] D. R. da Costa, C. P. Dettmann, E. D. Leonel, Transport and dynamical

properties for a bouncing ball model with regular and stochastic perturba-

tions, Commun. in Nonlinear Sc. and Num. Sim. 20 (3) (2015) 871.220

[23] D. M. Maranhão, M. S. Baptista, J. C. Sartoreli, I. L. Caldas, Experimental

observation of a complex periodic window, Phys. Rev. E 77 (2008) 037202.

[24] R. Stoop, P. Benner, Y. Uwate, Real-world existence and origins of the

spiral organization of shrimp-shaped domains, Phys. Rev. Lett. 105 (2010)

074102.225

[25] E. R. Viana, R. M. Rubinger, H. A. Albuquerque, A. G. de Oliveira, G. M.

Ribeiro, High-resolution parameter space of an experimental chaotic circuit,

Chaos 20 (2010) 0231101.

[26] E. R. Viana, R. M. Rubinger, H. A. Albuquerque, F. O. Dias, A. G.

11



Oliveira, G. M. Ribeiro, Periodicity detection on the parameter-space230

ofaforced chua’s circuit, Nonlinear Dynamics 67 (1) (2011) 385.

[27] C. Cabeza, C. A. Briozzo, R. Garcia, J. G. Freire, A. C. Marti, J. A.

Gallas, Periodicity hubs and wide spirals in a two-component autonomous

electronic circuit, Chaos, Solitons and Fractals 52 (2013) 59.

[28] E. S. Medeiros, R. O. Medrano-T, I. L. Caldas, S. L. T. de Souza, Torsion-235

adding and asymptotic winding number for periodic window sequences,

Phys. Lett. A 377 (2013) 628.

[29] Y.-C. Lai, R. L. Winslow, Riddled parameter space in spatiotemporal

chaotic dynamical systems, Phys. Rev. Lett. 72 (1994) 1640.

[30] Y. Zhang, G. Luo, Unpredictability of the wada property in the parameter240

plane, Phys. Lett. A 376 (2012) 3060.

[31] P. Gaspard, R. Kapral, G. Nicolis, Bifurcation phenomena near homoclinic

systems: A two-parameter analysis, J. Stat. Phys. 35 (1984) 697.

[32] R. O. Medrano-T, I. L. Caldas, Periodic windows distribution result-

ing from homoclinic bifurcations in the two-parameter space, ArXiv e-245

printsarXiv:1012.2241.

[33] R. Barrio, F. Blesa, S. Serrano, A. Shilnikov, Global organization of spiral

structures in biparameter space of dissipative systems with shilnikov saddle-

foci, Phys. Rev. E 84 (2011) 035201(R).

[34] R. Vitolo, P. Glendinning, J. A. C. Gallas, Global structure of periodicity250

hubs in lyapunov phase diagrams of dissipative flows, Phys. Rev. E 84

(2011) 016216.

[35] H. A. Albuquerque, P. C. Rech, Spiral periodic structure inside chaotic

region in parameter-space of a chua circuit, Int. J. Circ. Theor. Appl. 40

(2012) 189.255

12

http://arxiv.org/abs/1012.2241


[36] R. Barrio, F. Blesa, S. Serrano, Topological changes in periodicity hubs of

dissipative systems, Phys. Rev. Lett. 108 (2012) 214102.

[37] C. Scheffczyk, U. Parlitz, T. Kurz, W. Konp, W. Lauterborn, Comparison

of bifurcation structures of driven dissipative nonlinear oscillators, Phys.

Rev. A 43 (1991) 6495.260

13


	Introduction
	Results
	Discussion

