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Deficiencies of micronutrients, including essential trace elements,
affect up to 3 billion people worldwide. The dietary availability of
trace elements is determined largely by their soil concentrations.
Until now, the mechanisms governing soil concentrations have been
evaluated in small-scale studies, which identify soil physicochemical
properties as governing variables. However, global concentrations of
trace elements and the factors controlling their distributions are
virtually unknown. We used 33,241 soil data points to model recent
(1980–1999) global distributions of Selenium (Se), an essential trace
element that is required for humans. Worldwide, up to one in seven
people have been estimated to have low dietary Se intake. Contrary
to small-scale studies, soil Se concentrations were dominated by
climate–soil interactions. Using moderate climate-change scenarios
for 2080–2099, we predicted that changes in climate and soil organic
carbon content will lead to overall decreased soil Se concentrations,
particularly in agricultural areas; these decreases could increase the
prevalence of Se deficiency. The importance of climate–soil interac-
tions to Se distributions suggests that other trace elements with sim-
ilar retentionmechanismswill be similarly affected by climate change.
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Micronutrients are essential for maintaining human health,
and although they are needed in only trace amounts, de-

ficiencies reportedly affect 3 billion people worldwide (1, 2). One
such micronutrient is selenium. Inadequate dietary Se intake af-
fects up to 1 in 7 people and is also known to affect livestock health
adversely (3, 4). Because dietary Se intake depends largely on Se
content in soil and bioavailability to crops (5–7), understanding the
mechanisms driving soil concentrations and predicting global dis-
tributions could help prevent Se deficiency (8). However, global
soil Se concentrations and the factors affecting Se distributions are
largely unknown (9). Apart from soils, Se is present in all other
environmental compartments [i.e., the lithosphere, hydrosphere,
biosphere, and atmosphere (9)], which all play a role in global Se
biogeochemical cycling and distribution (7, 10).
The factors driving soil Se concentrations [e.g., increased sorption

with decreased pH and soil reduction potential (Eh) and increased
clay and soil organic carbon (SOC) content; see Table S1 and refs. 7
and 11 for a review of the previously reported drivers of soil Se]
have been evaluated primarily through small-scale experimentation
(e.g., soil columns; see ref. 12); however, broad-scale distributions
cannot be inferred from such studies. For example, soils in small-
scale experiments are often manipulated [e.g., by carbon amend-
ments (12)] to achieve desired conditions, obscuring the natural
processes that may influence Se retention capacity. Additionally,
climate variables, which likely affect soil Se concentrations directly
as a source (e.g., deposition; see refs. 8 and 13) or indirectly by
affecting soil retention of Se (e.g., sorption), are ignored in small-
scale experiments. Therefore, to predict the global distributions,
broad-scale analyses of soil Se drivers are essential.
Here we report on the influence of soil and climate variables on

worldwide Se distributions in soils 0–30 cm deep. Our objectives

were (i) to test hypothesized drivers of soil Se concentrations, (ii) to
predict global soil Se concentrations quantitatively, and (iii) to
quantify potential changes in soil Se concentrations resulting from
climate change. To achieve these objectives, several regional- to
continental-scale datasets reporting total soil Se concentrations [n =
33,241 data points (5, 14–29); see SI Materials and Methods for
dataset details] and 26 environmental variables describing climate,
soil physicochemical properties, irrigation, water stress, erosion,
runoff, land use, soil type, lithology, bedrock depth, vegetation/
canopy characteristics, and population density (30–42) (see Table
S1 for details of variables) were assessed to make global predictions
of soil Se concentrations for recent (1980–1999) and future (2080–
2099) periods. Predictions were made using three machine-learning
tools: one randomForest (RF) model and two artificial neural
network models, herein referred to as “predictive models.” Addi-
tionally, structural equation modeling (SEM) was used to evaluate
potential mechanisms independently and to quantify complex in-
teractions between Se and the relevant predictor variables.

Results and Discussion
After variable selection, seven variables were retained and were
considered the most important factors controlling soil Se con-
centrations: the aridity index (AI, unitless) [i.e., the ratio of po-
tential evapotranspiration (PET, mm/d) to precipitation (mm/d)];
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clay content (%); evapotranspiration (ET, mm/d); lithology; pH;
precipitation (mm/d); and SOC (0–30 cm depth, tons of C/ha).
With these variables, the accuracy of the predictive model was
high (average R2 = 0.67, average cross-validation R2 = 0.49, n =
1,000 iterations for each model) (Fig. S1), and the precision was
high [based on a low SD of the modeled prediction (0.032 mg Se/kg)
relative to the mean (0.35 mg Se/kg)] (Fig. S2). For the SEM
analysis, both the standardized root mean squared residual
(SRMR) (0.043) and the comparative fit index (CFI) (0.962) in-
dicated a good fit between the observed and modeled data (43).
All variables retained within the SEM analysis were statistically
significant (i.e., P < 0.05) (Fig. S3), and, based on the predictive
model sensitivity analyses and the SEM regression weights, the
modeling results corroborated each other strongly (see following
section), suggesting that processes driving soil Se concentrations
were described accurately. Because the data were averaged on a 1°
scale, this modeling approach likely captures the broad-scale
mechanisms but potentially misses important local-scale factors.
Soil Se concentrations were determined largely by interactions

between climate and soil variables (Figs. 1 and 2, Figs. S1, S3, and
S4, and Table S2). In the SEM, AI and precipitation had the
greatest direct and indirect effect, respectively, on soil Se concen-
trations (Table S2). Based on averaged relative importance from
the predictive models (Fig. S1), AI was the most important pre-
dictor (100 ± 0.3%) followed by pH (60 ± 0.7%), precipitation (58 ±
1%), ET (50 ± 0.8%), clay content (45 ± 0.4%), lithology (33 ±
0.5%), and SOC (29 ± 0.5%). Sensitivity analyses were performed
on these variables to determine if the mechanisms driving soil Se
concentrations changed in different zones represented by different
environmental conditions (see SI Materials and Methods for a de-
scription). The soil Se patterns were similar between different zones,
suggesting that Se drivers were consistent regardless of the envi-
ronment (Fig. 2 and Fig. S4). This result suggests that the models
can be used to predict soil Se concentrations in other regions of the

world. In sensitivity analyses, soil Se increased with increases in clay
content and with decreases in soil pH (Fig. 2 and Figs. S3 and S4),
both of which are known to increase soil Se sorption (7, 44). Al-
though soil Se is known to partition/complex with organic matter
(7), soil Se was affected only weakly by changes in SOC (Figs. S1,
S3, and S4 and Table S2). Furthermore, changes in lithological
classes resulted in negligible changes in soil Se when other variables
were held constant (Fig. S4). Although lithology was of minor im-
portance in this study, we recognize that it can influence soil Se
concentrations at local scales (45).

Climate Effects on Soil Se.Climate variables (i.e., AI, precipitation,
and ET) were dominant factors driving soil Se concentrations,
likely because they control leaching from soils, and observed pat-
terns within the sensitivity and SEM analyses for all climate vari-
ables are consistent with this hypothesis. High precipitation and AI
negatively affected soil Se concentrations, whereas ET positively
affected soil Se concentrations (Fig. 2, Figs. S3 and S4, and Table
S2). Although AI (i.e., the ratio of PET to precipitation) and
precipitation are inversely related, both variables exerted negative
effects on soil Se, suggesting that separate mechanisms drive these
patterns. Although precipitation increases the transport of dis-
solved Se species in soil solution by increasing vadose zone flow, AI
likely affects leaching by controlling soil redox conditions and thus
Se speciation, sorption, and mobility. It has been reported that as AI
increases (i.e., PET increases relative to precipitation), soils become
drier (46), resulting in more oxidizing soil conditions (47). Oxidized
Se species (e.g., oxyanions) are more soluble and mobile than re-
duced species (e.g., selenides) (7, 11, 12, 48). Therefore, soil drying
likely increases the presence of oxidized/mobile soil Se species,
which can be leached during subsequent rain events.
Soil drying likely increases Se mobility but also can reduce soil

Se transport (although these processes likely occur at different
time scales). Leaching is driven by the ratio of ET to precipitation
(also known as the “evaporative index,” EI) (49). As previously
mentioned, precipitation increases the transport of Se through the
vadose zone, but as ET increases relative to precipitation, more
moisture is removed from the soil column. This removal of moisture

Fig. 1. Summary of the processes governing soil Se concentrations. Domi-
nant processes (and bulleted examples) governing soil Se concentrations are
indicated. Text colored in red, green, and blue indicates processes affecting
soil Se losses, retention, and sources/supplies, respectively. Factors re-
sponsible for increases (+) and/or decreases (−) in soil Se as well as processes
not explicitly examined in our analysis (*) are indicated.
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Fig. 2. Univariate and bivariate sensitivity analyses of the predictive models.
(A and B) The independent effects of AI (A) and precipitation (B) were mod-
eled by holding all other variables constant at the zonal averages as defined by
the two-step clustering. (C and D) Similarly, bivariate interactions between AI
and clay (C) and between precipitation and ET (D) are illustrated. These pa-
rameters were allowed to vary between the minimum andmaximum observed
value while all other variables were held constant at the mean value of the
entire dataset (n = 1,642). The dotted line in D indicates the conditions in
which ET = precipitation. Other bivariate interactions are presented in Fig. S3.
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reduces the vadose zone flow, which in turn reduces Se mass
transport. In theory, when ET and precipitation are equal, leaching
should be negligible. Although ET clearly dampens the negative
effects of precipitation in bivariate sensitivity analyses, a negative
relationship existed between precipitation and modeled Se despite
an ET:precipitation ratio of 1 (Fig. 2). This trend potentially could
be explained by plant Se uptake, which has been reported to
increase with ET (6). Therefore, in addition to its positive indi-
rect effect by reducing leaching, ET also may have a direct negative
effect on soil Se by increasing plant uptake. This direct negative
effect was observed in the SEM analysis, but the relationship was
not statistically significant and therefore was removed. Although
this negative effect may exist, it appears to be less important than
the role ET plays in reducing Se leaching. Given the importance of
climate variables in governing soil Se concentrations, the observed
patterns between AI, precipitation, ET, and modeled soil Se con-
centrations strongly suggest that changes in climate will result in
changes in soil Se concentrations in time and space.

Climate–Soil Interactions and Soil Se.Although the direct effects of
precipitation (i.e., leaching) were moderate, its indirect effects (i.e.,
those mediated through other variables) were approximately three-
fold larger (Table S2). Precipitation is known to affect soil forma-
tion (i.e., pedogenesis), and in our analyses it strongly affected AI,
pH, ET, and clay content, which subsequently affect soil Se re-
tention (Fig. S3 and Table S2). Although there was a negative direct
effect between precipitation and soil Se, the sum of direct and in-
direct effects resulted in precipitation having a net positive effect
(Table S2). Thus it is important to examine both direct and indirect
effects, because interpreting only total effects can lead to erroneous
conclusions about the mechanisms driving spatial patterns.
In bivariate sensitivity analyses, both synergistic and antagonistic

interactions were observed and were strongest between aridity,
precipitation, clay content, and pH. In univariate sensitivity anal-
yses, when all other variables were held constant, modeled soil Se
concentrations were highest under low AI (0.83 mg Se/kg), low
precipitation (0.65 mg Se/kg), low pH (0.51 mg Se/kg), and relatively
high clay content (0.47 mg Se/kg) (Fig. 2 and Fig. S4). It is important
to note that, as long as PET is sufficiently low, environments with
low precipitation can have low AI values also. Furthermore,

sensitivity and SEM analyses suggest that the direct (i.e., non-
mediated) effect of precipitation drives Se leaching from soils (Fig. 2
and Figs. S3 and S4), thus explaining why low values resulted in high
soil Se, even though the net effect is positive (Table S2). In bivariate
sensitivity analyses, soil Se concentrations exceeded these values
when low AI was modeled with low pH (1.12 mg Se/kg), when low
precipitation was modeled with high clay content (0.86 mg Se/kg),
and when high clay content was modeled with low pH (0.56 mg Se/kg)
(Fig. 2 and Fig. S3). Although Se concentrations were typically en-
hanced in low-AI or low-precipitation environments, both variables
could suppress the effects of other variables in high-AI or high-
precipitation environments (Fig. 2 and Fig. S3). These results
demonstrate the dependence of soil Se concentrations on soil–
climate interactions. Based on these analyses, low-Se soils are
most likely to occur in arid environments and in areas with high
pH and low clay content. Conversely, areas with low to moderate
precipitation but relatively low aridity (e.g., cool and moist climates)
and high clay content are likely to have higher soil Se concentrations.

Predicted Global Soil Se Distributions. Global predictions were
made using models trained largely using temperate/midlatitude
datasets (Fig. S2). Although the available data adequately described
similar regions, data from tropical, extremely arid, and polar regions
were almost entirely absent (to the best of our knowledge, no broad-
scale soil geochemical surveys are available from these regions). As
a result, predictions that were made for environments that fell
outside our dataset’s domain were excluded (Fig. S5). Therefore, Se
predictions for 1980–1999 were retained for only 70% of land sur-
faces. The majority of croplands and rangelands, which are areas of
primary interest, given that soil Se concentrations and bioavailability
in these regions largely drive the Se status in humans and livestock,
fall largely within the retained areas.
Based on predictive models, the global mean soil Se concen-

tration for 1980–1999 was 0.322 ± 0.002 mg Se/kg (Fig. 3), similar
to reported values (mean = 0.4 mg Se/kg; typical range 0.01–2 mg
Se/kg) (50). Using this estimate, ∼13.1 million metric tons of Se
are stored in the top 30 cm of soil within the predicted area [i.e.,
∼70% of world’s land surface (1.04 × 107 km2); see SI Materials
and Methods for the calculation]. Compared with other regions,
predicted soil Se concentrations were generally higher (typically
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Fig. 3. Geographical representation of the pre-
dictive modeling on a 1° scale. Maps illustrate the
modeled soil Se concentrations (1980–1999) (A) and
percentage change in soil Se concentrations be-
tween recent and future (2080–2099) conditions (B)
as a function of projected changes in climate (RCP6.0
scenario) and SOC content (ECHAM5-A1B scenario).
Predictions represent the average of the predictive
models and were based on the AI, soil clay content,
ET, lithology, pH, precipitation, and SOC.

2850 | www.pnas.org/cgi/doi/10.1073/pnas.1611576114 Jones et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1611576114/-/DCSupplemental/pnas.201611576SI.pdf?targetid=nameddest=ST2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1611576114/-/DCSupplemental/pnas.201611576SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1611576114/-/DCSupplemental/pnas.201611576SI.pdf?targetid=nameddest=ST2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1611576114/-/DCSupplemental/pnas.201611576SI.pdf?targetid=nameddest=ST2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1611576114/-/DCSupplemental/pnas.201611576SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1611576114/-/DCSupplemental/pnas.201611576SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1611576114/-/DCSupplemental/pnas.201611576SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1611576114/-/DCSupplemental/pnas.201611576SI.pdf?targetid=nameddest=ST2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1611576114/-/DCSupplemental/pnas.201611576SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1611576114/-/DCSupplemental/pnas.201611576SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1611576114/-/DCSupplemental/pnas.201611576SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1611576114/-/DCSupplemental/pnas.201611576SI.pdf?targetid=nameddest=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1611576114/-/DCSupplemental/pnas.201611576SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1611576114/-/DCSupplemental/pnas.201611576SI.pdf?targetid=nameddest=STXT
www.pnas.org/cgi/doi/10.1073/pnas.1611576114


>0.2 mg Se/kg) (Fig. 3) in temperate and northern latitudes. In
wet equatorial regions, concentrations were typically 0.3–0.5 mg Se/kg.
Relatively low-Se soils (<0.2 mg Se/kg) were predicted for 15% of
modeled areas and were restricted primarily to arid and semiarid
regions in Argentina, Australia, Chile, China, southern Africa, and the
southwestern United States. In some of these countries, low Se
content in crops and livestock has been reported (3), but it is im-
portant to note that many factors contribute to low Se content in
plants (e.g., plant uptake pathways, soil Se speciation, and the
abundance of competing ions such as sulfate) (7).

Over- and Underpredictions of the Model. In an attempt to identify
potential missing variables, we examined the residuals of the
predictive models. Spatial patterns of any missing variable should
match those of the residuals (Fig. S2). Overall, the models
underpredicted soil Se concentrations (average residual = −0.036 ±
0.009 mg Se/kg), suggesting that Se sources may be missing from
the model. On a localized level, soil Se concentrations appear to
be underpredicted in regions adjacent to regions of high marine
productivity (e.g., western Alaska, western Ireland, western Norway,
western England, and Wales) (Fig. S2) (51). Marine environments
are thought to increase soil Se concentrations via wet deposition
(10, 13), and atmospheric deposition of Se thus could explain some
of the model’s underprediction. However, global spatial data do
not exist for Se deposition and thus could not be analyzed. We
included population density as a potential proxy for anthropogenic
emissions, but this was one of the least important variables in
the variable selection procedure. We evaluated a wide variety of
qualitative factors [e.g., specific agricultural soil types (e.g., paddy
soils), specific sedimentary depositional environments (e.g., glacial
deposits), coal power plants, carbonaceous shale deposits, and
others] that may affect soil Se distributions; however, we found no
consistent discernable link between these variables and the broad-
scale distribution of the model residuals.
Despite the underprediction, overall patterns of modeled soil

Se distribution match the actual distribution quite closely (Fig. S2),
and 71% of predicted values were within ±0.05 mg Se/kg of the
observed value, indicating that a majority of the predicted data
were relatively accurate. Furthermore, the sensitivity analysis and
SEM trends closely match hypothesized mechanisms governing soil
Se concentrations reported in the literature (Fig. 2 and Figs. S3 and
S4). This finding suggests that the models are largely accurate and
capture the dominant processes controlling broad-scale Se distri-
butions. Nevertheless, future studies could include additional pre-
dictor variables, especially those that are currently unavailable, to
provide better estimates of broad-scale soil Se. Furthermore, to
overcome some of this study’s limitations, predictions could be
made on more local/regional scales using higher resolution data.

Modeled Losses of Future Soil Se. The interactions between pre-
cipitation and other soil/climate variables strongly suggest that
climate changes could drive changes in soil Se concentrations. To
assess the influence of changes in climate and SOC, soil Se was
modeled for 2080–2099 using moderate climate change scenarios
[Representative Concentration Pathways (RCP) 6.0 for pre-
cipitation, AI, and ET (52) and European Centre/Hamburg
Model (ECHAM) 5-A1B for SOC (33)]. Other climate scenarios
(e.g., RCP 8.5) were not used because SOC data were available
only for A1B scenarios, which are most similar to RCP 6.0.
Future predictions were made for the entire globe, but, based on

the filtering criteria used (SI Materials and Methods), predictions
were retained for ∼48% of the global land area. Based on these
pixels alone, soil Se concentrations were predicted to drop by 4.3%
on average, from 0.331 ± 0.003 mg Se/kg in 1980–1999 to 0.316 ±
0.002 mg Se/kg in 2080–2099, as a result of changes in climate and
SOC concentrations (Fig. 3). For soil at a depth of 0–30 cm, this loss
corresponds to ∼403,763 tons of Se over 100 y, or 4,037.6 tons of Se
lost per year (see SI Materials and Methods for the calculation), an

amount that is ∼20–30% of the total estimated Se mass that is cy-
cled yearly through the troposphere [i.e., 13,000–19,000 tons (as-
sumed to be metric tons)/y (10)], although our estimate is only for
48% of the land surface. Our modeling approach is not a mass
balance model, so Se fate could not be investigated. Nonetheless,
changes in Se concentrations in other environmental compartments
are known from the past. For example, marine Se concentrations
throughout various periods of the Phanerozoic eon have been 1.5–2
orders of magnitude lower than current oceanic concentrations (53).
Based on areas with future predictions (7.19 × 107 km2), 58% of

lands were predicted to lose soil Se (i.e., ΔSe less than −2.5%;
mean change = −8.4%); 20% were predicted to undergo minor
changes (i.e., −2.5% < ΔSe < 2.5%; mean change = −0.3%); and
22% were predicted to gain soil Se (i.e., ΔSe > 2.5%; mean change
= 5.7%) as a result of changes in climate and SOC (Fig. 3). Pre-
dicted soil Se losses were driven largely by changes in AI, whereas
soil Se gains were driven largely by changes in precipitation and
SOC (Fig. S1). Compared with the total land surface, croplands
were expected to lose more soil Se. Based on future predictions for
croplands (7.55 × 106 km2), 66% of lands were predicted to lose
soil Se (ΔSe less than −2.5%; mean change = −8.7%); 15% were
predicted to undergo minor changes (–2.5% < ΔSe < 2.5%; mean
change = −0.4%); and 19% were predicted to gain soil Se (ΔSe >
2.5%; mean change = 7.3%) (Fig. 3 and Fig. S6). Global pasture
lands also were predicted to lose soil Se, but to a lesser extent than
croplands, suggesting that Se deficiency in livestock could increase.
Based on future predictions for pasture lands (2.55 × 107 km2),
61% of lands were predicted to lose soil Se (ΔSe less than −2.5%;
mean change = −8.0%); 19% were predicted to undergo minor
changes (−2.5% < ΔSe < 2.5%; mean change = −0.4%); and 21%
were predicted to gain soil Se (ΔSe > 2.5% mean change = 8.2%)
(Fig. 3 and Fig. S6). Areas with notable losses (i.e., ΔSe less than
−10%) include croplands of Europe and India, pastures of
China, Southern Africa, and southern South America, and the
southwestern United States (Fig. 3 and Fig. S6). Areas of notable
gain (ΔSe > 10%) are scattered across Australia, China, India,
and Africa (Fig. 3 and Fig. S6).

Temporal Changes in Soil Se. Although our analysis indicates that
future climate change will likely result in widespread changes in
soil Se, it does not indicate rates of change. To understand the
temporal changes in soil Se concentrations better, we analyzed for
soil Se and SOC in a subset of agricultural samples collected from
the Broadbalk Experiment (Rothamsted, United Kingdom) be-
tween 1865 and 2010. Soil samples were taken from a control plot
(unfertilized since 1843) and two “wilderness” plots (a maintained
grassland and woodland), which were converted from the control
plot in 1882 (SI Materials and Methods, and Table S3). The ac-
cumulation of Se in soil through time was statistically greater in
the wilderness plots than in the control plot [one-way analysis of
covariance (ANCOVA); year: F(1, 31) = 20.7, P < 0.01; plot F(2,
31) = 17.3, P < 0.01]. When controlling for SOC, however, there
were no statistical differences between the plots (ANCOVA;
SOC: F(1, 30) = 10.7, P < 0.01; year: F(1, 30) = 6.0, P < 0.05; plot:
F(2, 30) = 3.2, P > 0.05), indicating that increases in SOC were
driving soil Se accumulation in the model (Fig. S7), as is consistent
with the results of the future modeling (Fig. S1). Natural changes in
soil Se concentrations previously have been hypothesized to occur
over longer time scales (e.g., hundreds to thousands of years) (54);
however, given that SOC and Se began to accumulate on these plots
immediately after conversion, these results suggest that changes in
soil Se will follow environmental changes rapidly, perhaps on an
annual to decadal time scale. Between ∼1880 and 1980, soil Se
concentrations increased by ∼15, 35, and 60% on the control,
grassland, and woodland plots, respectively (Fig. S7), indicating that
the magnitude of changes predicted to occur by the end of the 21st
century is plausible. The rates of change in soil Se concentrations
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following environmental perturbations is largely unstudied and
should be evaluated further to understand soil Se dynamics better.

Outlook
One of our aims was to identify the broad-scale mechanisms
governing soil Se retention. Therefore, at a 1° resolution, the data
used are likely too coarse to evaluate or identify the influence of
many small- to regional-scale factors (e.g., local sources, specific
soil and rock types, and so forth) affecting soil Se retention. To
evaluate small-scale soil Se distributions or to test locally relevant
hypotheses, scale-appropriate models are necessary.
Although some effects of climate change on global food security

are predictable (e.g., decreased food production resulting from in-
creased water stress), the predicted widespread reductions in soil Se
caused by climate change were less foreseeable. Changes in other
factors (e.g., specific Se sources, soil properties, soil and rock
weathering, and others.) will likely have an additional effect on soil
Se, but these factors were not analyzed because future projections
for soil pH and clay content and spatial information on the con-
tributions of anthropogenic and natural sources of Se are currently
unavailable. These variables are likely to have an effect on soil Se
concentrations. For example, given changes in industrial SOx and
NOx emissions (55), soil pH will likely increase (56). Increases in pH
may result in further losses of soil Se concentrations, given that soil
Se and soil pH are inversely related. Therefore, updated soil Se
predictions are likely to change as additional data become available.
Given the importance of climate–soil interactions on soil Se dis-

tributions, it is likely that other trace elements with similar retention
mechanisms will experience similar reductions as the result of cli-
matic change. Coupled with micronutrient stripping from agricul-
tural lands (57), predicted losses of total Se in soils indicate that the
nutritional quality of food may decrease, thereby increasing the
worldwide risk of micronutrient deficiency. However, as stated pre-
viously, total soil Se concentrations are not the only factor de-
termining Se levels in plants. Lower Se levels in soils could
potentially compound the problems associated with the decrease in
the nutritional value of some plants resulting from elevated atmo-
spheric CO2 concentrations (58). Potential micronutrient losses from
agricultural soils could be offset by implementing agricultural prac-
tices that increase their retention [e.g., organic carbon (OC) ad-
justment]; however, such strategies may not increase soil Se in areas
of increasing aridity, given the importance of AI in governing soil Se
concentrations. Where soils cannot be manipulated to increase the
long-term retention of Se, broad-scale micronutrient fertilization
may be necessary to maintain an adequate nutrient content in crops.

Materials and Methods
Total Se concentrations in soils (mg Se/kg soil, reported herein as mg Se/kg;
soils were air dried or oven dried) 0–30 cm deep (n = 33,241 samples) were
obtained from Brazil, Canada, China, Europe, Japan, Kenya, Malawi, New
Zealand, South Africa, and the United States (see SI Materials and Methods
for dataset details and a discussion about which Se datasets were used, Fig.
S8). Samples derived from stream sediments were excluded from this analysis.
In addition, we obtained 26 variables describing factors hypothesized to
control soil Se concentrations and moderate climate change projections (RCP
6.0 for climate and A1B for SOC data; see Table S1 for variable descriptions and
citations). All data within a 1° cell were averaged and represented by a single
value. To minimize the influence of errors and/or outliers within the datasets,
pixels containing fewer than five Se data points were removed from the
analysis (SI Materials and Methods). The final soil Se dataset consisted of n =
1,642 aggregated points. Four techniques for selecting variables [e.g., corre-
lations, principal components analysis (PCA), backward elimination modeling,
and RF node purity analyses; see SI Materials andMethods] were used to retain
the following variables for predictive analysis: AI, clay content, ET, lithology,
pH, precipitation, and SOC at a soil depth of 0–30 cm. Although 16 lithological
classes were present within the raster dataset, classes that were represented by
too few soil Se data points (n < 200) were grouped together instead of being
deleted (Fig. S4 and see SI Materials and Methods for further discussion).

Predictivemodelingwas performedusing threemachine-learningmodels (one
RF and two artificial neural network models) (SI Materials and Methods). Each

model was iterated 1,000 times using 90% of the data for model training and
10% of the data for cross-validation for each iteration. The training and cross-
validation data were chosen at random for each iteration. Themodel predictions
were averaged to estimate recent (1980–1999) global soil Se concentrations;
however, predictions were considered valid only if the environmental parame-
ters for each pixel fit within the domain of the observed data (Fig. S5).

Sensitivity analyses were performed during each iteration to investigate
the independent effect of each variable on modeled soil Se concentrations.
Based on all input variables, three environmental zones were identified using
a two-step cluster analysis (SI Materials and Methods). Based on the data
from each zone, individual parameters were allowed to vary while all other
variables were held constant at the zonal averages. By using different zones,
we could model the response of soil Se to changes in particular variables
under different environmental conditions. These analyses allowed us to
identify the most likely mechanism driving soil Se concentrations by com-
paring the predictions made by various hypotheses (Table S1) with the
patterns observed in the sensitivity analysis.

Each predictive model was also used to predict future (2080–2099) soil Se
concentrations based on projected climate and SOC changes. Future datasets
did not exist for all variables (e.g., clay content); such variables were included
within the prediction, but their values were identical in the two time points.
Although some variables (e.g., sand, silt, and clay content) are not likely to
change considerably, changes in other variables, such as soil pH, are likely to
result in changes in soil Se concentrations. Therefore, we discuss only po-
tential changes in soil Se concentrations resulting from climate change in-
stead of reporting actual soil Se concentrations. Future predictions were
retained if the SD of the future prediction was <10% of the mean prediction
(i.e., SD < 0.1*mean) or if the three models predicted the same direction
(loss or gain) of change (SI Materials and Methods). Only pixels that over-
lapped between the 1980–1999 and 2080–2099 time periods (∼48% of the
global land surface) were reported in discussions of future changes.

In addition to predictive analyses, we developed a conceptual model de-
scribing broad-scale soil Se concentrations based on mechanistic knowledge
gained from the literature and on climate knowledge gained from predictive
analyses. This proposed model was evaluated using SEM (i) to test different
hypotheses proposed to govern soil Se concentrations, (ii) to evaluate simul-
taneously the relative importance of these different hypothesized mecha-
nisms, and (iii) to evaluate the direct and indirect effects (i.e., mediated
effects) of the variables on soil Se concentrations (the direct effects generated
from the SEM analysis are analogous to the univariate sensitivity analysis of
the machine-learning models). Although SEM is not predictive, it has advan-
tages over the predictive models because it can quantify both the direct and
indirect effects of all variables more easily, and it was used to help identify
important interactions among variables. The SEM was considered a good fit if
the SRMRwas ≤0.8 and the CFI was ≥0.95 (43). Only statistically significant (α =
0.05) variables were retained in the SEM analysis. All error intervals presented
represent 95% confidence intervals unless otherwise noted. All statistical
procedures were performed using the software packages R (v. 3.3.2, R
Development Core Team, Vienna), SPSS (v. 22, IBM. Corp., Armonk, NY), and
SPSS-Amos (v. 22, IBM Corp., Armonk, NY), and all spatial procedures were
performed using the software packages ArcMap [v. 10.2.2, Environmental
Systems Research Institute (ESRI), Redlands, CA] and R.
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