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Abstract

Nitric oxide (NO) and salicylic acid (SA) are impant signaling molecules in plant system.
In the present study both NO and SA showed a piivéemle against arsenite (Apstress in
rice plants when supplied exogenously. The appinabf NO and SA alleviated the
negative impact of AS on plant growth. Nitric oxide supplementation tg'Atreated plants
greatly decreased arsenic (As) accumulation indbes as well as shoots/ roots translocation
factor. Arsenite exposure in plants decreased th@ogenous levels of NO and SA.
Exogenous supplementation of SA not only enhancebgenous level of SA but also the
level of NO through enhanced nitrate reductase (ARivity, whether AY was present or
not. Exogenously supplied NO decreased the NR igctand level of endogenous NO.
Arsenic accumulation was positively correlated witte expression level oDsLsil a
transporter responsible for Asuptake. The endogenous level of NO and SA weréipely
correlated to each other either wher Agas present or not. This close relationship indsa

that NO and SA work in harmony to modulate the aligy response in Asstressed plants.
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I ntroduction

Arsenic (As) poses a serious threat to human bgiihgs associated with several
health risks such as skin lesions, cancer, andiasascular and renal diseases (Ratnaike
2003). Contaminated water is the principal sourEeAs exposure. Rice is particularly
efficient in As accumulation and toxic concentraticof As in rice grains has been reported
(Ma et al. 2008)As rice is a traded commodity it thus, serves asrdry route for As in the
food chain for regions where there is no As contetidon (Mondal et al. 2010). Arsenic
exposure to plants causes oxidative stress thaagesntissue through enhanced production
of reactive oxygen species (ROS). Although the exaechanism is not known, there are
increasing evidences to suggest that As leads destarbed cell redox state (Dixit et al.
2015). To cope with increased ROS in cells, plamstesn is protected by various radical
scavengers, such as antioxidant enzymes as welhoas enzymatic compounds like
glutathione, ascorbate, carotenoids ancopherol (Mittler 2002; Gupta & Ahmad, 2014,
Kumar et al. 2015).

Nitric oxide (NO) is a short lived gaseous signglmolecule, which have a variety of
functions in plants, including abiotic stress albraat (Arasimowicz & Floryszak-Wieczorek,
2007; Neill et al. 2008)Two mechanisms have been postulated for NO-medistiexs
mitigation. The first mechanism is that NO is afradical, therefore, it can directly scavenge
ROS (Lamattina et al. 2003). Second, it can seweargioxidant inducer by triggering
antioxidant gene expression or activating antioxidenzymes (Griin et al. 2006; @ret al.
2013) by post translational modification of thes@aidant enzymes (Grennan 2007; Tanou
et al. 2009). Application of exogenous NO donord{sm nitroprusside, SNP) has been
shown to confer resistance to various abiotic seesuch as salt (Tanou et al. 2009) and

heavy metals (Zhang et al. 2011, Singh et al., POMIiric oxide has also been shown to



improve internal iron (Fe) availability by forminige-nitrosyl complexes (Graziano et al.
2002).

Salicylic acid (SA) is a phenolic compound, it ssnas a growth regulator and has a
crucial role in various physiological processeshsas germination, flowering and heat
production in thermogenic plants (Rivas-San Viceael Plasencia 2011). Salicylic acid
mediated defense signaling has been widely studigtants during the last decade, largely
against biotic stresses (Yang et al. 2004; Cheal.e1993). Various reports indicated that
exogenously applied SA mitigated the Hg and Cd atedi toxicity in plants (Zhou et al.
2009: Metwally et al. 2003). Rice shoots has exéignhigh level of SA (5-3Qug g* fresh
weight) in comparison to other plants so endogeneusl of SA in shoots is largely
insensitive to exogenous SA but rice roots haveléxel of endogenous SA that makes them
sensitive to exogenous application of SA (Yand.e2@04; Chen et al. 1997 ).

The relationship between NO and SA signaling hanlstudied under biotic stress
conditions. Nitric oxide treatment was shown touoe substantial increase in the levels of
total SA, while NO activity have been also showrb&dependent endogenous level of SA
(Song and Goodman 2001). Salicylic acid may indid®ssynthesivia calcium and casein
kinase 2 pathway (Zottini et al. 2007). Thus, thappears a complementary relationship
between NO and SA.

In rice roots, arsenite (A9 is known to be transported through silicic (8oid
transporter, OsLsil. While another transporter @shsediates efflux of A% and Si towards
the xylem (Ma et al. 2008). Recent reports havewnsldothat the mechanism of Fe uptake
correlates with the As accumulation and affectgrassport in plants (Tiwari et al. 2014).

There have been a large number of transporterdifieéenin plants that have the
ability to transport iron. Natural Resistance Asaterl Macrophage Protein (NRAMPS),

primarily identified as Fe transporters, also retaansport ability for other heavy metals.
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OsNRAMPS is polarly localized at the distal sidebwoith exodermis and endodermis cells,
and uptakes Fe as well as manganese (Mn) and cadif@a) (Ishimaru et al. 2006).
Recently, overexpression @sNRAMP1in Arabidopsisthaliana has been reported to be
involved in transport of As and Cd (Tiwari et al12).

Graminaceous plants solubilize soil Fe by secrefia@ll) chelators called mugenic
acid (MAs) from their roots. The resulting Fe(IMA complexes are then absorbed into the
roots by Yellow Stripe Like (YSL) transporters (Baset al. 2010; Kobayashi and Nishizawa
2012). However, rice also possesses the abilityransport Fe(ll) through the transporters
OsIRT1 and OsIRT2. Once the Fe is located in ttantph number of transporters are
involeved in transport of the Fe from the rootshe shoots. OsFRDL1, a citrate effluxer,
localized on the roots pericycle cells is requifed efficient Fe translocation to shoots
(Yokosho et al. 2009)0sYSL2 is responsible for long-distance transpbmicotianamine-
chelated Fe and Mn into sink tissues including ésaand grains (Koike et al. 2004). A
number of key regulators of Fe transport have belemtified. For example, OsIRO2
positively regulates various genes responsiblé-étransport@QsNAS1OsNAS20sNAAT]
OsDMAS1TOM1andOsYSL1h OsIRO2 also affects the expression of some Feielecy-
inducible transcription factors, which might beahxed in the indirect regulation @sIRO2
downstream genes (Ogo et al. 2007).

In the present study, the role of NO and SA waduatad in mitigating A% toxicity
in hydroponically grown rice. The dependency of M&d SA on each other during 'As
stress and their effects on As and Fe transpoaedsmineral nutrition were investigated.
Oxidative stress related parameters were analyzedexplore the stress mitigation

mechanisms.

MATERIAL AND METHODS



Growth conditions and experimental design
Seeds oDryza sativacv. Sarjoo52) collected from Masina Research €eifvt. Ltd., Bihar
(India) were surface sterilized using 10% hydrogeroxide for 30 s and washed with double
distilled water. Seeds were germinated in moistgpegilized blotting sheets on a tray in seed
germinator for 4 d at 2& at 65% relative humidity. The 4 d old seedlinggevtransferred to
perforated cups with 10 seedlings/cup. The cupsvpdaced in trays holding 3 L of full-
strength Hewitt nutrient medium prepared in Milliviater. The seedlings were grown for 10
d under 210 p mol cfs?® (16/8 h day/night) white florescent light in a tue room
maintained at 24—28C. After 10 d, A¥ (25uM) as NaAs@ SA (40uM) and SNP (30pM:;
NO donor) were supplemented in the nutrient mediline rice seedlings grown in 25uM of
As" were abbreviated as As40uM of SA as SA and 30uM SNP as NO. Similarfy, 2
As" with 40uM SA as A8+SA and 25uM A% with 30pM SNP as A5+NO and seedlings
grown in Hewitt nutrient medium served as contiidie nutrient media was changed after
every 48 h. The treated seedlings were harvestedrfalysis after 7 d of exposure to the
treatments. All the chemicals were purchased fragm& Aldrich (USA) or as mentioned
separately.

For germination studies, seeds were surface gedilas described aboved and 50
seeds transferred to a Petri plate. Seeds weredagikh the above mentioned treatments in

Milli-Q water for 5 d and germination rate was otveal.

Biochemical analysis

For chlorophyll estimation, 100 mg fresh leavesevemushed in 5 ml 80% ice cold acetone
and centrifuged at 10,000 g for 10 min. Chloropleghtent in supernatant was estimated as
described by the method of Arnon (1949). For thibltaric acid reactive substances

(TBARS) and hydrogen peroxide estimation, 300 mgoots or shoots were crushed in 3 ml
6



of 0.2% trichloroaceitic acid (TCA) (w/v), centrgad at 10,000 g for 10 min, the supernatant
was collected for further estimation. TBARS and fogen peroxide were estimated as
described by Heath and Packer (1968) and Velikowal. €2000), respectively. For analysis
of enzyme activities, leaves or roots (300 mg eaatre ground using liquid nitrogen in a
chilled mortar and pestle and extracted with 3 mice-cold 100 mM potassium phosphate
buffer (pH 7.5) containing 1% (w/v) poly-vinylpydidone (PVP). The homogenate was
centrifuged at 10,000 g for 15 min and the supemtatvas used for enzyme assays. The
activity of superoxide dismutase (SOD) was measwsdg the method as described by
Beauchamp and Fridovish et al.(1971), ascorbatexmase (APX) by Nakano and Asada
(1981), guiacol peroxidase (GPX) by Kato and Shim{x987), CAT by Scandalios et al.
(1983) and NR by Hageman and Reed (1980). Enzyraativities were calculated in per

unit protein estimated by the method of Lowry Igt1851).

Element analysis

The elemental composition of the plants materiahs vdetermined following method of
Mallick et al. (2013). Plants were washed threeenm 1 mM phosphate buffer®@; pH
5.6). Roots and shoots were separated and oveh alrie0°C. Dried plant tissues (leaf and
root, 100 mg each) were digested using HNECIO, (3:1). Digested samples were filtered
(Whatman No 42) and the volume was made up to 10sinlg Milli-Q water. Arsenic was
analyzed by AAS (GBS Avantd, Australia) supported with a hydride generator (MD
2000) using NakBO, and NaOH (3 M) and HCI (3 M) and other elementsananalyzed by

AAS (GBC Avanta}, Australia). The values are presented in pg plygveight.

Super oxide and hydrogen peroxide Staining



Superoxide and hydrogen peroxide were determindaeiteaves by staining using nitro blue
tetrazolium (NBT) and 3,3-diaminobenzidine (DABgspectively, as described previously
by ThordaiChristensen et al. (1997) and Orozco-Céardenas. €1999). Rice leaves were
excised at the base with a razor blade and NBTgmit) or DAB (0.5 mg mI*) solutions

were supplied through the cut ends for 8 h. Leavexe then decolorized in boiling ethanol

(95%) for 15 min. At least 3 leaves were used &mhetreatment.

Nitric Oxide Detection

For NO detection, roots of approximately equalkhi&ss were incubated for 30 min af@5
in the dark with 10 mM DAF-FM-DA (Calbiochem; exaiton at 495 nm, emission at 515
nm) prepared in 10 mM Tris-HCI (pH 7.4) buffer,described by Sandalio et al. (2008). For
negative control, roots were incubated with 1 mM €, a NO scavenger. Then roots were
washed 3 times for 10 min each with the same buifet DAF-FM-T, fluorescence was
visualized by confocal microscopy (Carl Zeiss LSNMI5Meta, Germany). Fluorescence
intensity was estimated by measuring the averagel pntensity. For each treatment,

triplicate analysis was performed.

Salicylic Acid Estimation

Presence of SA in the sample was analyzed by HBliGhéx Ultimate 3000, USA by using
Charomeleon 6.8) using a UV detector at 210 nno¥ahg the method of Pan et al. (2010).
The mobile phase was programmed with linear gradenA (0.1% of formic acid in
methanol) and B (0.1% of formic acid in water) pgogmed as 0-20 min; 30-100% A, 20-22
min; 100% A and then 22-25 min; 100-30% of A. Fleste was maintained at 0.3 ml nijn

the retention time for SA was recorded at 22.4 min.



Gene Expression Analysis Using Quantitative RT-PCR

100 mg roots sample was crushed in liquidaRd RNA were isolated by using RNeasy Plant
Mini Kit (Qiagen) following the manufacturer’s imattion. Quality and quantity of RNA
was assessed by spectrophotometer (Nano Drop, Usphroximately 5ug of RNase free
DNase-treated total RNA isolated from roots of qt@nts exposed to various treatments and
control was reverse-transcribed using SuperScriffiérmentas, USA), following the
manufacturer's recommendation. The synthesized cidA diluted 1:5 in RNase free water
and subjected to quantitative RT-PCR (qRT-PCR)yaiml The qRT-PCR was performed
using an ABI 7500 instrument (ABI Biosystems, USA¥ing gene specific primers
(Supplemental Information Table S1). Each gPCRtieacontained Sul of SYBR Green
Supermix (ABI Biosystems, USA), dl of the diluted cDNA reaction mixture (correspomgli

to 5 ng of starting amount of RNA) and 10 pM of le@gcimer in a total reaction volume of 10
ul. gPCR reactions were performed under the follgnéonditions: 10 min at 95°C and 40
cycles of the one step thermal cycling of 3 s at®530 s at 60°C in a 96-well reaction plate.
The riceActinl gene was used as an internal control to estinhateedative transcript levels
of the target gene. Specificity of amplicons geteztan qPCR reactions was verified by
melting curve analysis. Each gPCR reaction waopaed in triplicate (technical replicates)
for each biological replicate (three for each tmeatt). Relative gene expression was

calculated using**CT method (Livak and Schmittgen 2001).

Statistical analysis
Analysis of variance (ANOVA), Duncan’s multiple @ test (DMRT) and Pearson’s
correlation analysis were performed to determine 8ignificant difference between

treatments at the 95% confidence level.



RESULTS

M or phological changes

In the absence of A's SA or NO has no significant effect on seed geatiim. Arsenite
treatment drastically reduced the seed germingtaiantial. Nitric oxide or SA treatment of
the seeds decreased the negative impact thdt Asn seed germination potential
(Supplemental Information Fig. S1). Nitric oxideda8A treatment enhanced the shoot, root
length and total chlorophyll content in comparigoncontrol. A more prominent growth
response was observed in SA treated plants tha(ildle -1 and Supplemental Information
Fig. S2 and S3). Exposure to '"Aslecreased the shoot and root length by 27% and 47%
respectively, compared to the control. Arsenitatireent also had a similar affect on total
biomass. The chlorophyll content was decreasediby ith the AS' exposed plants. Root and
leaf growth was decreased undel''Aseatment (Supplemental Information Fig. S4 anjl S5
Nitric oxide and SA supplementation along with"Apartially restored over all plant growth,
particularly shoot length. Growth of root, leaf aotal chlorophyll content were completely
restored upto control levels. In absence of' ASA was more responsive for growth

enhancement, while in presence of'ASIO performed better.

Oxidative stress and antioxidant enzymes

Arsenite exposure increased hydrogen peroaidE TBARS concentrations in roots by ca. 4
and 2.5 fold and shoots by ca. 2 and 2.5 fold coetp#@o the controls (Fig. 1A, B and
Supplementalnformation Fig S6 A, B). Salicylic acid treatmesignificantly increased the
level of hydrogen peroxide in the roots compareth®controls. Supplementation of SA or
NO along with AY' resulted in significantly decreased the productibiydogen peroxide
and TBARS in comparison to Asalone treated plants (Fig. 1A, B and Supplemental

Information Fig S6 A, B). Histochemical stainingsalshowed higher level of superoxide
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radicals in A8 stressed plants than '"Asand NO treated or Asand SA treated plants
(Supplemental Information Fig. S7).

In the AS' treated plants, the activity of antioxidant enzgnD, CAT, GPX, APX
and GR were significantly increased in both thetscand shoots compared to the control
plants. Salicylic acid treatment decreased the @&iivity (40%) in the roots while in the
shoots it remained unaltered in comparison to tidrol. Nitric oxide decreased CAT and
APX activity in both the roots and the shoots digantly compared to the control. Nitric
oxide or SA supplementation to Astreated plants decreased the activity of all the
antioxidant enzymes in roots and shoots compareth@oAs' treatment. However, GR
activity was enhanced in roots at"AsSA treated plants in comparison to"Aalone. (Fig.

1C-G and Fig S6C-G).

Endogenous levels of NO, SA and NR activity

The endogenous level of NO in roots did not chasigaificantly by exogenous application
of NO but exogenous application of SA enhancedehdogenous level of SA. Arsenite
stress, however, caused a significant reductiorthan concentration of NO which was
decreased to half of the control. Nitric oxide aBA supplementation along with As
enhanced the level of endogenous NO by 35% and #&§pectively compared to Asalone
exposed roots, although the levels were still lotv&an control (Fig.2A and Fig.3). The
endogenous level of SA showed a significant in@dasexogenous application of both NO
and SA (56 and 250% respectively) in roots. IH'/&xposed roots, endogenous SA level was
decreased by 63% than control roots. Nitric oxidpptementation along with Asdid not
change endogenous SA level while SA supplementatidranced the endogenous SA level

by 324% than AS stressed roots (Fig. 2B).
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NR plays a crucial role in NO synthesis in plansteyns. In NO treated plants, NR
activity decreased by 6 fold while SA treatment arded the activity by around 9 fold
compared to the controls. In Astressed roots, NR activity enhanced by ca. 2dotdpared
to controls. Salicylic acid supplementation furtlethanced the NR activity by ca. 2 fold
while NO supplementation decreased the NR actizity 5 fold compared to Astreated

roots (Fig. 2C).

Accumulation of arsenic and other elements
Arsenite exposed plants accumulated significantbhér amount of As. Most of the As
(90%) was confined to roots, approximately 10% tvassported to shoots (Table 2 A, B and
C). Nitric oxide supplementation along with'Asignificantly decreased As accumulation in
roots (35%) and shoots (61%) compared to plantstade with just As. Salicylic acid
treatment to Aslll stressed plants, decreased thackumulation in the shoots (27%) while it
showed no significant impact on roots As accumafathan A8 alone treated plants. Nitric
oxide treatment also reduced the shoots/roots ltreaison factor (TF; 0.06) by ~50% in
comparison to A8 alone treated plants (TF; 0.1).

In the Ad' treated plant roots, Fe accumulation was enha®@86, however, the
level of Fe in shoots remained unaltered compawecbhtrol. Nitric oxide or SA alone did
not altered Fe accumulation significantly in theteowhile in the shoots, Fe accumulation
was enhanced by NO (15%) and SA (18%) comparedhéo cdontrols. Nitric oxide
supplementation to Astreated plants caused a significant reduction (2il%#)e level of Fe
in the roots, while increased Fe (21%) in shootsdmpared to the plants treated with"As
only. Thus, NO supplementation to 'Adreated plants enhanced the shoots/roots TF than

As" treated plants (Table 2C). Whereas, SA supplertientto As' treated plantsdid not
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affect the level of Fe in roots significantly, wdilin the shoots it enhanced the Fe
accumulation as well as increased the shoots/fdoia comparison to A alone treatment.
Nitric oxide and SA treatment alone did not sigrafitly alter the level of Ca and Zn
in shoots and roots. Arsenite also showed no sogmf effect on Ca and Zn accumulation
both in roots and shoots, except the Ca accumalatas lowered in the roots of Adreated
plants compared to the control plants. AccumulatibMn was enhanced significantly in the
roots by NO and SA treatments but there was no étnga Mn accumulation in shoots. 'As
alone or in combination with NO or SA have no siigaint impact compared to the controls

on Mn accumulation.

Impact of NO and SA on Fe and Astransporters
In NO treated plantsDsLsilexpression level was lowered by 20%, while the tBfated
plants had enhanced expression (~2 foldDsEsilcompared to the control plants. In"As
exposed plantg)sLsilexpression was higher than control plants. NO kupenatation to
As" treated plants decreased the expressio®sifsi], whereas, SA supplementation in
combination with AY significantly enhanced the expression @$Lsil compared to the
plants treated with just Als

In NO treated plants the expression leveDst.si2was enhanced by more than 2 fold
while SA treatment have no significant impact@sLsi2compared to the control plants. In
As" treated plantsDsLsi2 expression level was also more than 5 fold gretitan the
control. Nitric oxide and SA supplementation to"Aseated plants decreased tBeLsi2
expression when compared to the plants just tresibdAs" , although more reduction was
observed in SA treated plants (Fig. 4A, B).

Both NO and SA treatments enhanced the expresdicall adhe Fe transporters

studied, excepOsFRDL1which was not enhanced in response to NO. OsIRQ®sitive
13



transcription regulator, was unaltered by NO and t8xatments. Arsenite treatment alone
significantly enhanced the expressiona#IRT1andOsYSLZ11 and 10 folds, respectively)
and inhibited the expression ©6FRDL1(77%) in comparison to the control. When NO was
applied along side A5 the expression levels dPsIRT1, OsIRO2 and OsYShgere
decreased, wherea®sFRDL1and OsNRAMPS5remained unaltered compared to the plants
just treated with A% . When SA was used in conjunction to thé' Aseated plants there was
a reduction in the expression @sIRT1 OsYSL2and OsIRO2 expression levels but

OsFRDL1was enhanced in comparison td"Asnly treated plants (Fig. 4C-G).

Discussion
The present study analyze the effect of SA and NOrioe plants exposed to a toxic
concentration of A8. Under A§' stress, NO and SA levels sharply declined. Plamivth
was also significantly hampered. Nitric oxide anl $how a protective role against'As
toxicity in rice plants and enhanced the plant ghovieExogenously supplied NO decreased
the As accumulation in roots and its transporttoass. Arsenite treatment inhibits seed
germination and growth, shoots, roots length ardl tohlorophyll content (Dixit et al.
2015a,b; Kumar et al. 2014a,b, 2016) these werdlyn@stored by NO and SA application
(Table 1; Supplemental Information Fig. S1, S2, &8.and S5). The roots are the first organ
which come in contact with AS it was observed that Asinhbited the growth of roots and
root hairs. However, NO and SA supplementation detefy restored the root length and
root hair growth (Table 1 and Supplemental InfoiorafFig. S2, S4).

Nitric oxide treatment not only significantly redes As accumulation in roots, but
also restricts its translocation from roots to shod@his is the first report on Asand NO
interactions in plants and may be the crucial fafo NO-mediated protection against'As

stress. Both NO and SA are reported to activate AB@sporters that are responsible for
14



heavy metal sequestration to vacuole and restgigt;rentry into shoots (Grun et al. 2006;
Eichhorn et al. 2006). However, in our study, SA dot affect the accumulation of As in
roots but decreased its accumulation in shootgg{Set al. 2015). This might be due to the
activation of ABC transporters in the roots henegugstering more As in root vacuole while
restricting its entry to the shoots. Nitric oxidedtment, however, drastically decreased As
accumulation in the roots as well as its translooato shootsOsLsikxpression which is
responsible for internalisation of Asalso showed a positive correlation with As
accumulation in the roots (R=0.98(@05) while OsLsi2expression, that is responsible for
roots to shoots transport, was also positivelyadated with As accumulation in the shoots
(Supplemental Information Table S2).

The present study showed that'Aseatment resulted in oxidative stress in terms of
enhanced TBARS, hydrogen peroxatel superoxide radicals. Enhanced production of ROS
and peroxidation of membrane lipids (i.e. increas¢éhe level of TBARS) by As exposure
has previously been reported in rice (Singh et28l5). It was observed that antioxidant
enzymes such as SOD, CAT, APX GPX and GR were aglgam both roots and shoots
under Ad' stress, potentially could be to counteract thedatie stress caused by 'As
Nitric oxide or SA supplementation with Ascaused a substantive reduction in the level of
TBARS and hydrogen peroxide, which indicates theslaorating effect of NO and SA on
As" induced oxidative stress (Singh et al. 2009). armhore NO and SA supplementation
with As", decreased the activity of antioxidant enzymesmared to A4 alone exposed
plants. It again confirms the protective role of M&d SA against AS induced oxidative
stress. Protective role of SA and NO supplementdias been previously observed under Cd
stress inMedicago sativaand under As stress in rice respectively (Zhoal.e2009; Singh et

al. 2009).
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Arsenite stress significantly decreased NO-dependielorescence compared to
control roots (Fig. 3A, 6). Singh et al. (2009)aleported a significant decrease in NO
dependent fluorescence in rice root under As strgssimilar decrease in NO dependent
fluorescence in shoot of pea plant was observe@u@d stress (Rodriguez-Serrano et al.
2009). In contrast, Besson-Bard et al. (2008) destnated an increase in NO dependent
florescence in both roots and shootsdothalinaunder Cd stress. During plant responses to
heavy metal stress, NO may increase or decreasadaras an inducer or inhibitor of stress
tolerance, depending on plant species and expetaineatup (Arasimowicz-Jelonek et al.
2011). In the present study, endogenous NO did inotease by exogenous NO but
exogenous application of SA enhanced the endogdruakof NO. Salicylic acid mediated
enhancement of endogenous NO was reportéd thaliana(Zottini et al. 2007).1t appears
that there is an optimal level of endogenous NQide roots that could not be further
elevated. However, when the endogenous level ofWd® decreased, e.g. under''Astress,
exogenous supplementation of NO or SA caused amease in endogenous NO
concentrations in the roots.

Arsenite exposure in rice significantly decreadssl éndogenous SA level. This is a
contrasting behaviour than biotic stress where gadous SA level are enhanced (Vlot et al.
2009).Enhancement of endogenous SA by application of @xogs SA has been reported
which is termed as “SA dependent amplification wit'c(Xiao et al. 2003)Nitric oxide is
well known to induce SA synthesis (Klessig et &8l0@; Huang et al. 2004). Genomic studies
have shown that NO induces phenylalanine ammormiselfPAL) gene at the transcriptome
level (Huang et al. 2004; Delledonne et al. 199®&)se genes play a crucial role in SA
biosynthesis via cinnamate pathway. However, uAd#r stress there was no increase in SA
level by exogenous supplementation of NO, this datis that A% disturbed the SA

biosynthesis pathway.
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A positive correlation between SA and NO was fqumith As" (R=0.89, §:0.05) or
without As" (R=0.88, p0.05), which means NO and SA work synergistically
(Supplemental Information Table S2). Song and Gadrf2001) also concluded similar
hypothesis that NO is fully dependent on the furctof SA while NO is required for full
functioning of SA in tobacco under biotic stresgog§enous NO supplementation resulted in
a drastic decrease in NR activity. This might be tuthe feedback inhibition of NR activity
in the presence of high level of NO. Though, undist' stress, NR activity was enhanced,
but the level of NO was much lower than controlsisTmight be due to the consumption of
surplus NO (due to enhanced NR activity) in thetraization of AS' induced ROS. In SA
treated plants NR activity was many folds higheanticontrol and also level of NO was
correspondingly higher, indicating that SA treatineduces NO synthesis through NR.

Nitric oxide treatment with or without A'sstress enhanced Fe accumulation in the
shoots, while A8 alone treatment enhanced the Fe accumulationiorihe roots but not in
the shoots. Fe deficiency results in chlorosis ¢daselos and Grusak 2014). In the present
study, AS' stressed leaves becomes chlorotic, though there me change in the
concentration of Fe in shoots in comparison to mdniThus, the reduction in chlorophyll
content may be a result of its inhibited synthesi&s" induced degradation (Rahman et al.
2007). Another possibility is that Asstress may have an effect on availability of Fehsas
due to reduction in endogenous NO level. Iron hatesis strongly depends on the iron
storage protein ferritins which are ubiquitous irstorage proteins. Nitric oxide has been
reported to influence the ferritins level (Murgiaad., 2002; Grun et al., 2006). Thereins
vitro evidence for the first mechanism that NO can resmioon from horse spleen ferritin
(Graziano and Lamattina, 2005). So, NO is belieieethcrease the internal Fe availability
and revert the chlorotic symptonisitric oxide has been reported to increase intefrel

availability and reverts chlorotic symptoms (Grawat al. 2002).
17



It has been reported previously that OsIRO2 seagegpositive regulator of genes
involved in iron uptake and utilization (Ogo et 2007), was found to negative correlated
with shoots Fe accumulation irrespective of presené As' showing its role in Fe
deficiency. OSNRAMPS that is responsible for Mn uptake along with Fghifnaru et al.
2006), in presence of As Mn accumulation in shoots was negatively coreglgR= -0.95,
p<0.05) suggesting its role in Mn transportation g@emental Information Table S2). The
transcripts of Fe uptake transport@sIRT1 was negatively correlated with the Fe
accumulation in shoots in presence of'AsOsIRT1is known to strongly induced with Fe
deficiency (Kobayashi and Nishizawa 201@sYLS2was negatively correlated (R= -0.98,
p<0.05) with shoots Fe level in presence of'Asuggesting its role as long distance Fe

transporter (Kobayashi and Nishizawa 2012).

Conclusion

NO and SA both showed a protective role againét #tsess. Arsenite stresse lead to
oxidative stress burst and consequently activityaofioxidant enzymes was increased.
Exogenous application of NO and SA alleviated Asiddiated oxidative stress. Nitric oxide
decreased the As accumulation in roots probablgutiit the down regulatio®sLsil
transporter while NO and SA both decreased the &raulation in shoots potentially
through the down regulation oDsLsi2 Nitric oxide application enhanced the Fe

accumulation in shoots and overcame th¥ Asediated chlorosis.
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Figurelegends

Fig. 1: Effect of different combinations of NO, SA and"Asn (A) O, (B) TBARS, (C)
SOD, (D) CAT, (E) APX, (F) GPX and (G) GR actwin roots ofOryza sativaafter 7 d
treatment. P value marked with same alphabets atesignificantly different (DMRT,

p<0.05). All the values are mean of three repleaisD.

Fig. 2: Effect of different combinations of NO, SA and "A®n (A) endogenous NO
dependent fluorescence, (B) endogenous level ofaBé (C) nitrate reductase activity in
roots of Oryza sativaafter 7 d treatment. P value marked with same adlpts are not

significantly different (DMRT, p<0.05). All the vaés are the mean of three replicates +SD.

Fig. 3: Imaging of NO production i©ryza sativaby CLSM. Images are showing the NO-
dependent DAF-FM 2DA fluorescence (green; excitat 495 nm, emission at 515 nm)
after 7 d treatment with different combinationsNd®, SA and AS. Negative control is

treated with 20Mm cPTIO, a NO scavenger and pdataining with DAF-FM2DA.

Fig. 4. Quantitative real-time PCR analysis to study tikpression gene pattern. Y-axis
represents relative fold change expression of mR&N#&I in different combinations of NO,
SA and A$' on (A) OsLsil, (B) OsNRAMP5, (C) OsIRT1, (D) OsIRQ(E) OsFRDL1 and
(F) OsYSL2 transporters roots Qfryza sativaafter 7 d treatment. Effect P value marked
with same alphabets are not significantly differddMRT, p<0.05). All the values are the

mean of three replicates £SD.
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Table 1. Effect on root, shoot, biomass and total chloropbghtent ofOryza sativa after 7d
treatment with different combinations of NO, SA aAd". P value marked with same

alphabet is not significantly different (DMRT, pd®). All the values are mean of three

replicates +SD.

Treatments Root (cm) Shoot (cm) Biomass (g) Totdb@phyll (mg ")
Control 7.206+0.1 23.08+1.3 0.242+0.02 2.6840.05

NO 7.56+0.4 28.6€"+1.6 | 0.385+0.01 2.85°40.0°

SA 8.18+1.1 30.5%+1.8 0.5070.03 3.45+0.06

As" 3.75+0.2 16.88+t1.0 0.164+0.01 1.56+0.03

AsT+NO 5.09°+0.4 25.88+1.7 0.265+0.02 2.7¥40.07

As"+SA 4.54°+0.4 19.28+1.7 | 0.205+0.01 2.81+0.09




Table 2: Effect on various metal accumulations %) in roots (A), shoot (B) and shoot/root

Translocation Factor (C) ddryza sativa after 7d treatment with different combinations of

NO, SA and AY. P values marked with same alphabets are notfisignily different

(DMRT, p<0.05). All the values are mean of threglicates +SD.

Table: 2A

Treatments |Fe As Ca Zn Mn

Control 869.4°%28.2 | - 518.4:28.4 513.4:24.1 | 387.8+27.4
NO 830.f+54.5 |- 536.8t33.4 546.3:25.1 | 451.2+33.6
SA 939.°+33.4 |- 503.8+41.1 532.2429.1 [479.8+24.;
As" 1666.9+40.C [576.°+36.€ |449.7%+27.¢€ 543.7+27.4 [395.2+28.2
As" and NO | 1312.864.8 | 370.5+21.4 | 521.2+31.5 531.3+33.2 | 389.6+19.6
As" and SA | 1622.849.1 | 576.9+42.3 | 509.5+12.5 598.38:25.1 | 383.3t12.4
Table 2B

Treatments |Fe As Ca Zn Mn

Control 257.76%17.1 |- 4813.7492.4 841.474.3 | 1473.172.2
NO 296.08+14.3 | - 4801.#118.3 | 859.2+77.8 | 1562.384.6
SA 304.64+26.9 | - 4802.5:108.3 | 844.5:34.5 | 1533.8:91.1
As" 237.08+14.2 | 57.18+2.9 |4825.4+89.1 839.5t61.1 | 1469.3:64.9
As" anc NO [286.5¢+15.2 [22.14+1.4 |4794.P+106.5 [878.F°+34.E [1460./+116.%
As" anc SA [292.2¢423.1[41.2°+3.4 [4684.C+42 E 864.7+59.1 [1530.A+62.7
Table: 2C:

Treatments |Fe AsS Ca n Mn

Contro 0.30 ] 9.29 1.64 3.80

NO 0.3¢€ - 8.2( 1.57 3.4¢€

SA 0.32 - 9.53 1.59 3.20

As™ 0.14 0.10 10.74 1.54 3.72
As"and NO | 0.22 0.06 9.20 1.65 4.75
As"and SA | 0.18 0.07 9.20 1.44 3.99




VS+IISY

ON+l1IsY
o nsy £
Q
£
o
vs =
ON
0.JJUO:
o) [03u0D
(my 6 jow w) suvaL (uproud (Bwsiun) 1vo
VS+IISY
ON+1II8Y
nsy £
o - £
g
£
ON
© [onuoD
< (@)
T &§ 8 8 8 @ R B o o S S
— — —
. (uv104d Bwsnun) Yo
(my T-6 jow U)¢O°H (ueio0ad 1 Bwsnun) AOS (ue104d L BW SHUN) XAV

Fig. 1.



(22ua3saio|y an1Ie|3Y) BPIXO ILIUN

© VS+1IsY
ON+IIsY

s 2

sy &

()]

€

®

© VS o

S

-

© ON
o) |0J1U0D
) T T T T
n < o o~ -
(my +8 1) prae d1jhailes
(8]
o]
o)
m©
m©
[J]
©
o
© o
r T T T T r T T T T

Y m ] S n © N < ™ ~

(d 18w puiw M) 1004 YN

VS+IIISY

ON+IIISV

1isv

VS

ON

|0J3U0)

Treatments

Fig. 2.



Phase-contrast Fluorescence Phase-contrast + Fluorescence

Aslll + NO Aslll SA NO Cantrol Negative control

Aslll+SA

Fig. 3.



2.5

© o VS+IIISY
o ON+IIISY
2
° 11sv c
]
€
®
VS [
=
o} o ON
© - j0J3u0)
© o n o n n N ) ©
~N - Lol - - o =3
¢S50 TLYISO 11QY4450
© © o
©
© © 9]
© °
e} © (U]

! ! ! T T T T
1 - 1 - o © < ~ [
- o -

15750 SANVENSO 04150 Z15A0

VSHIISY

ON+IlIsY

1sv

VS

ON

|043U0)

Treatments

Fig. 4.



Highlights
1. Nitric oxide (NO) decreased the arsenic (As) accumulation in both root and shoot
2. Sdlicylic acid (SA) decreased the root to shoot translocation of As.
3. NO and SA mitigated the As-mediated oxidative stress.
4. NO and SA were worked in a mutually coordination manner irrespective of As

presence.



