A molecular switch for photoperiod responsiveness in mammals

Hugues Dardente, Cathy A. Wyse, Mike J. Birnie, Sandrine M. Dupre, Andrew S. I. Loudon, Gerald A. Lincoln, David G. Hazlerigg

Research output: Contribution to journalArticlepeer-review

214 Citations (Scopus)


Seasonal synchronization based on day length (photoperiod) allows organisms to anticipate environmental change. Photoperiodic decoding relies on circadian clocks, but the underlying molecular pathways have remained elusive [1]. In mammals and bids, photoperiodic responses depend crucially on expression of thyrotrophin beta subunit RNA (TSH beta) in the pars tuberalis (PT) of the pituitary gland [2-4]. Now, using our well-characterized Soay sheep model [2], we describe a molecular switch governing TSH beta transcription through the circadian clock. Central to this is a conserved D element in the TSH beta promoter, controlled by the circadian transcription factor thyrotroph embryonic factor (Tef). In the PT, long-day exposure rapidly induces expression of the coactivator eyes absent 3 (Eya3), which synergizes with Tef to maximize TSH beta transcription. The pineal hormone melalonin, secreted nocturnally, sets the phase of rhythmic Eya3 expression in the PT to peak 12 hr after nightfall. Additionally, nocturnal melatonin levels directly suppress Eya3 expression. Together, these effects form a switch triggering a strong morning peak of Eya3 expression under long days. Species variability in the TSH beta D element influences sensitivity to TEF, reflecting species variability in photoperiodic responsiveness. Our findings define a molecular pathway linking the circadian clock to the evolution of seasonal timing in mammals.

Original languageEnglish
Pages (from-to)2193-2198
Number of pages6
JournalCurrent Biology
Issue number24
Publication statusPublished - 21 Dec 2010


  • leucine-zipper proteins
  • MT1 melatonin receptor
  • pars tuberalis
  • gene-expression
  • pituitary
  • sheep
  • embryogenesis
  • thyrotropin
  • hamster
  • signals


Dive into the research topics of 'A molecular switch for photoperiod responsiveness in mammals'. Together they form a unique fingerprint.

Cite this