Adaptive sampling for WSAN control applications using artificial neural networks

Daniel N Nkwogu, Alistair Allen

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)


Wireless sensor actuator networks are becoming a solution for control applications. Reliable data transmission and real time constraints are the most significant challenges. Control applications will have some Quality of Service (QoS) requirements from the sensor network, such as minimum delay and guaranteed delivery of packets. We investigate variable sampling method to mitigate the effects of time delays in wireless networked control systems using an observer based control system model. Our focus for variable sampling methodology is to determine the appropriate neural network topology for delay prediction and also investigate the impact of additional inputs to the neural network such as network packet loss rate and throughput. The major contribution of this work is the use of typical obtainable delay series for training the neural network. Most studies have used random generated numbers, which are not a correct representation of delays actually experienced in a wireless network. Our results here shows that adequate prediction of the time delay series using the observer based variable sampling is able to compensate for delays in the communication loop and influences the performance of the control system model.
Original languageEnglish
Pages (from-to)299-320
Number of pages22
JournalJournal of Sensor and Actuator Networks
Issue number3
Publication statusPublished - Dec 2012


Dive into the research topics of 'Adaptive sampling for WSAN control applications using artificial neural networks'. Together they form a unique fingerprint.

Cite this