Assessing Eulerian-Lagrangian simulations of dense solid-liquid suspensions settling under gravity

J. J. Derksen* (Corresponding Author)

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)
8 Downloads (Pure)


We study dense solid-liquid suspensions through numerical simulations. The liquid flow is solved by the lattice-Boltzmann method on a fixed (Eulerian), cubic, uniform grid. Spherical solid particles are tracked through that grid. Our main interest is in cases where the grid spacing and the particle diameter have the same order of magnitude (d/Δ=O(1)). Critical issues then are the mapping operations that relate properties on the grid and properties of the particles, e.g. the local solids volume fraction seen by a particle, or the distribution of solid-to-liquid hydrodynamic forces over grid points adjacent to a particle. For assessing the mapping operations we compare results for particles settling under gravity in fully periodic, three-dimensional domains of simulations with d/Δ=O(1) to much higher resolved simulations (d/Δ=O(10)) that do not require mapping. Comparisons are made in terms of average slip velocities as well as in terms of liquid and fluid velocity fluctuation levels. Solids volume fractions are in the range 0.3 to 0.5, Reynolds numbers are of order 0.1 to 10.
Original languageEnglish
Pages (from-to)266-275
Number of pages10
JournalComputers & Fluids
Early online date21 Dec 2016
Publication statusPublished - 15 Nov 2018


  • solid-liquid suspension
  • lattice-Boltzmann method
  • discrete particle method
  • hindered settling
  • two-way coupling
  • agitated suspensions


Dive into the research topics of 'Assessing Eulerian-Lagrangian simulations of dense solid-liquid suspensions settling under gravity'. Together they form a unique fingerprint.

Cite this