BERT-Based Deep Spatial-Temporal Network for Taxi Demand Prediction

Dun Cao, Kai Zeng, Jin Wang, Pradip Kumar Sharma, Xiaomin Ma, Yonghe Liu, Siyuan Zhou

Research output: Contribution to journalArticlepeer-review

30 Citations (Scopus)


Taxi demand prediction plays a significant role in assisting the pre-allocation of taxi resources to avoid mismatches between demand and service, particularly in the era of the sharing economy and autonomous driving. However, most studies have only tried to figure out the complex spatial-temporal pattern of taxi demand from historical taxi demand series, neglecting the intrinsic influences of regional functions, and failing to effectively capture the dynamic long-term periodicity. In this paper, we make two important observations: (1) taxi demand pattern varies significantly between different functional regions; and (2) taxi demand follows a dynamic daily and weekly pattern. To address these two issues, we adopt Points of Interest (POIs) to identify regional functions, and propose a novel BERT-based Deep Spatial-Temporal Network (BDSTN) to model the complex spatial-temporal relations from heterogeneous local and global features. In BDSTN, a Spatiotemporal Pattern Matching module is introduced to capture the complex spatiotemporal pattern of taxi demand while considering its dynamic temporal periodicity, and a Functional Similarity Embedding module is adopted to learn the functional similarity among all regions via POIs. To the best of our knowledge, this is the first work to use BERT-based architecture to learn taxi demand patterns, and is also the first to take functional similarity represented by POIs into consideration. Our experimental results on real-world traffic datasets in New York City demonstrate that the effectiveness of the proposed method outperforms the state-of-the-art methods, and that the efficiency of our proposed model is higher than other deep learning methods.

Original languageEnglish
Pages (from-to)9442 - 9454
Number of pages13
JournalIEEE Transactions on Intelligent Transportation Systems
Issue number7
Early online date13 Nov 2021
Publication statusPublished - Jul 2022


  • BERT
  • Data models
  • Deep learning
  • demand pattern
  • points of interest
  • Predictive models
  • Public transportation
  • spatial-temporal network.
  • Spatiotemporal phenomena
  • Taxi demand prediction
  • Time series analysis
  • Urban areas


Dive into the research topics of 'BERT-Based Deep Spatial-Temporal Network for Taxi Demand Prediction'. Together they form a unique fingerprint.

Cite this