Conceptualizing the evolutionary quantitative genetics of phenological life-history events: Breeding time as a plastic threshold trait

Jane M Reid, Paul Acker

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)
2 Downloads (Pure)


Successfully predicting adaptive phenotypic responses to environmental changes, and predicting resulting population outcomes, requires that additive genetic (co)variances underlying microevolutionary and plastic responses of key traits are adequately estimated on appropriate quantitative scales. Such estimation in turn requires that focal traits, and their underlying quantitative genetic architectures, are appropriately conceptualized. Here, we highlight that directly analyzing observed phenotypes as continuously distributed quantitative traits can potentially generate biased and misleading estimates of additive genetic variances and individual-by-environment and gene-by-environment interactions, and hence of forms of plasticity and genetic constraints, if in fact the underlying biology is best conceptualized as an environmentally sensitive threshold trait. We illustrate this scenario with particular reference to the key phenological trait of seasonal breeding date, which has become a focus for quantifying joint microevolutionary, plastic, and population responses to environmental change, but has also become a focus for highlighting that predicted adaptive outcomes are not always observed. Specifically, we use simple simulations to illustrate how potentially misleading inferences on magnitudes of additive genetic variance, and forms of environmental interactions, can arise by directly analyzing observed breeding dates if the transition to breeding in fact represents a threshold trait with latent-scale plasticity. We summarize how existing and new datasets could be (re)analyzed, potentially providing new insights into how critical microevolutionary and plastic phenological responses to environmental variation and change can arise and be constrained.

Original languageEnglish
Pages (from-to)220-233
Number of pages14
JournalEvolution Letters
Issue number3
Early online date5 Apr 2022
Publication statusPublished - 24 Jun 2022

Bibliographical note

We thank Y. Araya-Ajoy, P. Arcese, C. Pélabon, A. Phillimore, and J. Pick for helpful comments on a manuscript draft, and the Norwegian Research Council (grant 223257) and NTNU for funding.

Data Availability Statement

There are no primary data associated with this concept manuscript. Simulation code is provided as Supporting Information.


  • Additive genetic variance
  • breeding date
  • gene-by-environment interaction
  • phenology
  • Phenotypic plasticity
  • quantitative genetics
  • reaction norm
  • threshold trait


Dive into the research topics of 'Conceptualizing the evolutionary quantitative genetics of phenological life-history events: Breeding time as a plastic threshold trait'. Together they form a unique fingerprint.

Cite this