Decomposition rank of Z -stable C ∗ -algebras

Aaron Tikuisis, Wilhelm Winter

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)


We show that C ∗ -algebras of the form C(X)⊗Z , where X is compact and Hausdorff and Z denotes the Jiang–Su algebra, have decomposition rank at most 2. This amounts to a dimension reduction result for C ∗ -bundles with sufficiently regular fibres. It establishes an important case of a conjecture on the fine structure of nuclear C ∗ -algebras of Toms and Winter, even in a nonsimple setting, and gives evidence that the topological dimension of noncommutative spaces is governed by fibres rather than base spaces.
Original languageEnglish
Pages (from-to)673-700
Number of pages28
JournalAnalysis & PDE
Issue number3
Publication statusPublished - 18 Jun 2014


  • nuclear C ∗ -algebras
  • decomposition rank
  • nuclear dimension
  • Jiang-Su algebra
  • classification
  • C(X)-algebras


Dive into the research topics of 'Decomposition rank of Z -stable C ∗ -algebras'. Together they form a unique fingerprint.

Cite this