Deformation and breakup of single drop in laminar and transitional jet flows

Wenjun Liang, Dengfei Wang, Ziqi Cai, Zhipeng Li (Corresponding Author), Xiongbin Huang, Zhengming Gao (Corresponding Author), J. J. Derksen, Alexandra E. Komrakova

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)
7 Downloads (Pure)

Abstract

Liquid drops were released in laminar and transitional jet flows to investigate their deformation and breakup characteristics. Silicone oil and deionized water were the dispersed phase and continuous phase, respectively. Calibration experiments of oil drops rising in quiescent ambient water were performed to benchmark the experimental system and the image processing method. In jet flow, drop breakup probability, breakup time, and the characteristics of daughter drops were investigated in detail. To address the underlying mechanisms of the drop breakup, visualization experiments and two-dimensional particle image velocimetry (PIV) experiments of the single-phase jet flow were performed. Visualization experiments show that the jet flow changes from laminar to transitional in the Reynolds number interval between 1283 and 1610. Critical capillary and Weber numbers for drop breakup were estimated based on the mean flow velocity and mean deformation and were found to be of the order of 0.2 and 30 respectively for this particular flow system.
Original languageEnglish
Article number121812
Number of pages13
JournalChemical Engineering Journal
Volume386
Early online date25 May 2019
DOIs
Publication statusPublished - 15 Apr 2020

Bibliographical note

The authors gratefully acknowledge the financial support from the National Key R&D Program of China (2017YFB0306701), National Natural Science Foundation of China (No.21676007),the Fundamental Research Funds for the Central Universities (XK1802-1), and Scientific Research and Technology Development Projects of China National Petroleum Corporation (No. 2016B-2605).

Keywords

  • drop breakup
  • jet flow
  • PIV
  • quantitative flow visualization
  • breakup mechanism
  • Breakup mechanism
  • Drop breakup
  • Jet flow
  • Quantitative flow visualization

Fingerprint

Dive into the research topics of 'Deformation and breakup of single drop in laminar and transitional jet flows'. Together they form a unique fingerprint.

Cite this