Design, synthesis, conjugation and reactivity of novel trans,trans-1,5-cyclooctadiene-derived bioorthogonal linkers

Beatrice Longo, Chiara Zanato, Monica Piras, Sergio Dall'angelo, Albert D. Windhorst, Danielle Vugts, Massimiliano Baldassarre, Matteo Zanda* (Corresponding Author)

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)
7 Downloads (Pure)


The tetrazine/trans cyclooctene (TCO) inverse-electron-demand Diels-Alder (IEDDA) reaction is the fastest bioorthogonal “click” ligation process reported to date. In this context, TCO reagents have found widespread applications, however their availability and structural diversity is still somewhat limited, due to challenges connected with their synthesis and structural modification. To address this issue, we developed a novel strategy for the conjugation of TCO derivatives to a biomolecule, which allows for the creation of greater structural diversity from a single precursor molecule, i.e. trans,trans-1,5-cyclooctadiene [(E,E)-COD] 1, whose preparation requires standard laboratory equipment and readily available reagents. This two-step strategy relies on the use of new bifunctional TCO-linkers (5a-11a) for IEDDA reactions, which can be synthesized via 1,3-dipolar cycloaddition of (E,E)-COD 1 with different azido-spacers (5-11) carrying an electrophilic function (NHS-ester, N-succinimidyl carbonate, p-nitrophenyl-carbonate, maleimide) in the -position. Following bioconjugation of these electrophilic linkers to the nucleophilic residue (cysteine or lysine) of a protein (step 1), the resulting TCO-decorated constructs can be subjected to a IEDDA reaction with tetrazines functionalized with fluorescent or near infrared (NIR) tags (step 2). We successfully used this strategy to label bovine serum albumin with the TCO-linker 8a and subsequently reacted it in a cell lysate with the fluorescein-isothiocyanate (FITC)-derived tetrazine 12. The same strategy was then used to label the bacterial wall of gram-positive S. aureus showing the potential of these linkers for live-cell imaging. Finally, we determined the impact of structural differences of the linkers upon the stability of the bioorthogonal constructs. The compounds for stability studies were prepared by conjugation of TCO-linkers 6a, 8a and 10a to mAbs, such as Rituximab and Obinutuzumab, and subsequent labelling with a reactive Cy3-functionalized tetrazine.

Original languageEnglish
Pages (from-to)2201-2210
Number of pages10
JournalBioconjugate Chemistry
Issue number9
Early online date30 Jul 2020
Publication statusPublished - 16 Sept 2020

Bibliographical note

Funding Information:
The authors thank Irene Feiner, Marion van Leeuwen-Chomet, and Joey Muns for their helpful insight. We acknowledge financial support from the University of Aberdeen and European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 675417.


  • PET


Dive into the research topics of 'Design, synthesis, conjugation and reactivity of novel trans,trans-1,5-cyclooctadiene-derived bioorthogonal linkers'. Together they form a unique fingerprint.

Cite this