DFT study of the reduction reaction of calcium perchlorate on olivine surface: Implications to formation of Martian’s regolith

Elizabeth Escamilla-Roa* (Corresponding Author), María-Paz Zorzano, Javier Martin-Torres, Alfonso Hernández-Laguna, C. Ignacio Saínz-Díaz

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)


Perchlorates have been found widespread on the surface of Mars, their origin and degradation pathways are not understood to date yet. We investigate here, from a theoretical point of view, the potential redox processes that take place in the interaction of Martian minerals such as olivine, with anhydrous and hydrated perchlorates. For this theoretical study, we take as mineral substrate the (1 0 0) surface of forsterite and calcium perchlorate salt as adsorbate. Our DFT calculations suggests a reduction pathway to chlorate and chlorite. When the perchlorate has more than 4 water molecules, this mechanism, which does not require high-temperature or high energy sources, results in parallel with the oxidation of the mineral surface, forming magnesium peroxide, MgO2, and in the formation of ClO3, which through photolysis is known to form ClO-O2. Because of the high UV irradiance that reaches the surface of Mars, this may be a source of O2 on Mars. Our results suggest that this process may be a natural removal pathway for perchlorates from the Martian regolith, which in the presence of atmospheric water for salt hydration, can furthermore lead to the production of oxygen. This mechanism may thus have implications on the present and future habitability of the Martian surface.
Original languageEnglish
Article number145634
Number of pages11
JournalApplied Surface Science
Early online date3 Feb 2020
Publication statusPublished - 15 May 2020

Bibliographical note

Authors would like to acknowledge the contribution of the European COST Action CA17120 supported by the EU Framework Programme Horizon 2020, and the Spanish MINECO projects CGL2014-55230-R, FIS2016-77692-C2, PCIN-2017-098. MPZ acknowledges the partial support of the Spanish State Research Agency (AEI) Project No.MDM-2017-0737. E. E. acknowledges to Rafael Esteso for his help with the Graphical Abstract


  • Calcium perchlorate
  • Reduction
  • Oxygen
  • Water
  • Mars
  • Chlorate
  • Chlorite
  • Ozone
  • Magnesium peroxide
  • Regolith
  • (1 0 0) forsterite surface
  • Olivine
  • Chemisorption
  • Physisorption
  • Redox
  • Infrared spectroscopy
  • Density Functional Theory (DFT)


Dive into the research topics of 'DFT study of the reduction reaction of calcium perchlorate on olivine surface: Implications to formation of Martian’s regolith'. Together they form a unique fingerprint.

Cite this