Early stage dissolution characteristics of aluminosilicate glasses with a blast furnace and fly-ash-like composition

Katrina C. Newlands, Morten Foss, Thomas Matchei, Jørgen Skibsted, Donald E MacPhee

Research output: Contribution to journalArticlepeer-review

91 Citations (Scopus)
15 Downloads (Pure)


Supplementary Cementitious Materials (SCM) have been used by the cement industry for decades to partly replace the Portland cement fraction of concrete binders. This is particularly important today in addressing CO2 emissions from the cement manufacturing process. However, defining the reactivity of these mainly aluminosilicate-based materials and their influence on Portland cement hydration chemistry has however challenged the research community and has limited SCM replacement levels in cementitious binders. In the present study aluminosilicate glasses as models for blast furnace slag and fly-ash systems were synthesised and exposed to different activator solutions in a continuously stirred closed system reactor for a period up to 3 h. Solution compositions were measured from the very first minutes of dissolution and correlated with results from complementary solid surface analysis. Initial Ca concentration maxima in the first 30 min of exposure to the activating solution was a common feature in most dissolution profiles with a subsequent rapid decline attributable to Ca-reincorporation on the reacting surface. Surface specific analysis confirmed Ca and Al enrichment at the surface, suggesting the formation of a Ca-modified aluminosilicate layer, supporting a dissolution-reprecipitation mechanism for SCM reactivity. Differing chemistries are thought to be responsible for the Ca and Al re-integration on the reacting surface depending on the pH of the solution; near-neutral conditions favour Ca-readsorption and surface condensation reactions, whereas alkaline solutions favour Ca-reintegration via covalently bound phases.
Original languageEnglish
Pages (from-to)1941–1955
Number of pages15
JournalJournal of the American Ceramic Society
Issue number5
Early online date23 Feb 2017
Publication statusPublished - 1 May 2017

Bibliographical note

The authors would like to thank Nanocem (www.nanocem.org), an industrial-academic research network for sustainable cement and concrete research, for their financial support. The use of the ToF-SIMS and XPS facilities at iNano, Århus University is much appreciated and particularly the support offered by John Hansen. Special thanks to Ruben Snellings for providing one of the glass samples and valuable discussions.


  • aluminosilicates
  • fly ash
  • glass
  • slags
  • surface


Dive into the research topics of 'Early stage dissolution characteristics of aluminosilicate glasses with a blast furnace and fly-ash-like composition'. Together they form a unique fingerprint.

Cite this