Fatty acid suppression of glial activation prevents central neuropathic pain after spinal cord injury

Marieta Georgieva, Yuting Wei, Maria Dumitrascuta, Roger Pertwee, Nanna B. Finnerup, Wenlong Huang* (Corresponding Author)

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)
17 Downloads (Pure)

Abstract

About half of spinal cord injury (SCI) patients develop debilitating central neuropathic pain (CNP), with no effective treatments. Thus, effective, safe, and novel therapies are needed urgently. Previously, docosahexaenoic acid (DHA) was reported to confer neuroprotection in preclinical SCI models. However, its therapeutic potential on SCI-CNP remains to be elucidated. Here, we demonstrated for the first time that intravenous DHA administrations with 3-day intervals (250 nmol/kg; starting 30 minutes post-injury and maintained for 6 weeks), effectively prevented SCI-CNP development in a clinically relevant rat contusion model. SCI-CNP was assessed by a novel sensory profiling approach combining evoked pain measures and pain-related ethologically relevant rodent behaviours (burrowing, thigmotaxis, and place/escape avoidance) to mimic those for measuring human (sensory, affective, cognitive, and spontaneous) pain. Strikingly, already established SCI-CNP could be abolished partially by similar DHA administrations, starting from the beginning of week 4 post-injury and maintained for 4 weeks. At spinal (epicenter and L5 dorsal horns) and supra-spinal (anterior cingulate cortex) levels, both treatment regimens potently suppressed microglial and astrocyte activation, which underpins SCI-CNP pathogenesis. Spinal microgliosis, a known hallmark associated with neuropathic pain behaviours, was reduced by DHA treatments. Finally, we revealed novel potential roles of peroxisome proliferator-activated and retinoid X receptors and docosahexaenoyl ethanolamide (DHA’s metabolite) in mediating DHA’s effects on microglial activation. Our findings, coupled with the excellent long-term clinical safety of DHA even in surgical and critically ill patients, suggest that systemic DHA treatment is a translatable, effective, safe, and novel approach for preventing and managing SCI-CNP.

Original languageEnglish
Pages (from-to)2724-2742
Number of pages19
JournalPain
Volume160
Issue number12
Early online date29 Jul 2019
DOIs
Publication statusPublished - Dec 2019

Bibliographical note

Supplemental digital content associated with this article can be
found online at http://links.lww.com/PAIN/A853

Keywords

  • central neuropathic pain
  • spinal cord injury
  • DHA
  • burrowing
  • thigmotaxis
  • PEAP

Fingerprint

Dive into the research topics of 'Fatty acid suppression of glial activation prevents central neuropathic pain after spinal cord injury'. Together they form a unique fingerprint.

Cite this